EP0293856B1 - Process for preparation of fluorinated ether - Google Patents

Process for preparation of fluorinated ether Download PDF

Info

Publication number
EP0293856B1
EP0293856B1 EP88108765A EP88108765A EP0293856B1 EP 0293856 B1 EP0293856 B1 EP 0293856B1 EP 88108765 A EP88108765 A EP 88108765A EP 88108765 A EP88108765 A EP 88108765A EP 0293856 B1 EP0293856 B1 EP 0293856B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
cell
carried out
electrolyte
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108765A
Other languages
German (de)
French (fr)
Other versions
EP0293856A2 (en
EP0293856A3 (en
Inventor
Steffen Dr. Dapperheld
Werner Dr. Schwertfeger
Manfred Wildt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0293856A2 publication Critical patent/EP0293856A2/en
Publication of EP0293856A3 publication Critical patent/EP0293856A3/en
Application granted granted Critical
Publication of EP0293856B1 publication Critical patent/EP0293856B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • Perfluoropropyl vinyl ether is produced by dimerization of hexafluoropropene oxide and pyrolysis of the acid fluoride formed.
  • Other fluorinated vinyl ethers are prepared analogously (Angewandte Chemie, Internat. Ed. Engl. 24 (1985), 161-179).
  • the addition of the halogen causes an increase in the boiling point so that impurities can be removed by distillation.
  • the halogen must be split off from the compounds of the formula (II) after the purification. This is generally done with the help of zinc or other metals, but this is associated with the inevitable occurrence of zinc or other metal salts.
  • the method according to the invention is carried out in divided or undivided cells.
  • the usual diaphragms made of polymers, preferably perfluorinated polymers, or other organic or inorganic materials, such as glass or ceramic, are used to divide the cells into anode and cathode spaces.
  • Ion exchange membranes, in particular cation exchange membranes made of polymers, preferably perfluorinated polymers with carboxyl and / or sulfonic acid groups, are preferably used.
  • the use of stable anion exchange membranes is also possible.
  • the electrolysis can be carried out in all customary electrolysis cells, for example in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar switching of the electrodes can be used.
  • the electrolysis can be carried out on all cathodes stable in the electrolyte.
  • Materials with a medium to high quality are particularly suitable Hydrogen overvoltage, such as carbon, Pb, Cd, Zn, Cu, Sn, Zr, Hg and alloys of the metals mentioned, such as the amalgams of copper or lead, but also alloys such as lead-tin or zinc-cadmium.
  • the use of carbon cathodes is preferred, in particular for the electrolysis in acid electrolytes.
  • all possible carbon electrode materials come into question as carbon cathodes, such as electrode graphites, impregnated graphite materials, carbon felts and also glassy carbon.
  • All materials on which the corresponding anode reactions take place can be used as anode material.
  • lead, lead dioxide on lead or other carriers, platinum, titanium dioxide doped with noble metal oxides (such as platinum oxide) on titanium are suitable for the development of oxygen from dilute sulfuric acid.
  • Platinum, titanium dioxide doped with noble metal oxides are suitable, for example, for the development of chlorine from aqueous alkali metal chloride or aqueous or alcoholic hydrogen chloride solutions.
  • Preferred anolyte liquids are aqueous mineral acids or solutions of their salts, such as, for example, dilute sulfuric acid, concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions or solutions of hydrogen chloride in alcohol.
  • the electrolyte in the undivided or the catholyte in the divided cell contains the compound of formula (II) used and one or more organic solvents and can additionally contain water.
  • suitable organic solvents are short-chain aliphatic alcohols such as methanol, ethanol, Propanol or butanol; Diols such as ethylene glycol, propanediol, but also polyethylene glycols and their ethers; Ethers such as tetrahydrofuran, dioxane; Amides such as N, N-dimethylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone; Nitriles such as acetonitrile, propionitrile; Ketones such as acetone; and sulfolane.
  • organic acids such as acetic acid, is also possible.
  • the electrolyte can also consist of water or of water and a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in combination with a phase transfer catalyst.
  • a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in combination with a phase transfer catalyst.
  • salts of metals with a hydrogen overvoltage of at least 0.25 V (based on a current density of 300 mA / cm2) and / or dehalogenating properties are added to the electrolyte in the undivided cell or the catholyte in the divided cell.
  • Such salts are mainly the soluble salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co or Ni, preferably the soluble salts of Pb, Sn, Ag, Zn, Cd and Cr.
  • the preferred anions of these salts are
  • the salts can be added directly or, for example, by adding oxides, carbonates - in some cases also the metals themselves (if soluble) - can be generated in the solution.
  • the salt concentration in the electrolyte of the undivided cell or in the catholyte of the divided cell is expediently from about 10 ⁇ 5 to 25% by weight, preferably from about 10 ⁇ 3 to 10% by weight, in each case based on the total amount of the electrolyte or catholyte , set.
  • Electrolysis is carried out at a current density of 1 to 500 mA / cm2, preferably at 10 to 400 mA / cm2.
  • the electrolysis temperature is in the range from -20 ° C to the boiling point of the electrolyte or catholyte, preferably 10 ° to 90 ° C, in particular 10 ° to 80 ° C.
  • inorganic or organic acids can be added to the catholyte in the divided cell or to the electrolyte in the undivided cell, preferably Acids such as hydrochloric, boric, phosphoric, sulfuric or tetrafluoroboric acid or formic, acetic or citric acid or their salts.
  • organic bases can also be useful for setting the pH value which is favorable for the electrolysis or can have a favorable influence on the course of the electrolysis.
  • Suitable are primary, secondary or tertiary C2-C12 alkyl or cycloalkylamines, aromatic or aliphatic-aromatic amines or their salts, inorganic bases such as alkali or alkaline earth metal hydroxides such as Li, Na, K, Cs, Mg, Ca, Ba hydroxide, quaternary ammonium salts such as the fluorides, chlorides, bromides, iodides, acetates, sulfates, hydrogen sulfates, tetrafluoroborates, phosphates or hydroxides of C1-C12-tetraalkylammonium, C1-C12-trialkylarylammonium or C1-C12ammonium trialonyl also anionic or cationic emulsifiers, in amounts of 0.01 to 25 percent by weight
  • compounds can be added to the electrolyte which are oxidized at a more negative potential than the released halogen ions in order to avoid the formation of the free halogen.
  • the salts of oxalic acid, methoxyacetic acid, glyoxylic acid, formic acid and / or hydrochloric acid are suitable, for example.
  • the electrolysis product is worked up in a known manner, e.g. by extracting or distilling off the solvent.
  • the compounds added to the catholyte can thus be returned to the process.
  • Electrolysis cell 1
  • Jacketed glass pot cell with a volume of 350 ml;
  • Anode platinum mesh, graphite or lead plate (20 cm2); Cathode area: 12 cm2; Electrode distance: 1.5 cm;
  • Anolyte dilute aqueous sulfuric acid or methanolic hydrochloric acid;
  • Cation exchange membrane two-layer membrane made from a copolymer of a perfluorosulfonylethoxy vinyl ether and tetrafluoroethylene; Mass transfer: by magnetic stirrer.
  • Electrolytic cell 2
  • electrolysis cell 1 As for electrolysis cell 1, except for the following deviations: coated glass pot circulation cell with a volume of 450 ml; Electrode distance: 1 cm; Flow: 360 l / h.
  • Electrodes were electrolyzed on a cathode made of electrode graphite at a current density of 166 mA / cm2, a terminal voltage of 32-16V, a temperature of 34-36 ° C, a current consumption of 12.66 Ah and a pH value of 7.85. Electrolysis result: 62.75 g (84%) after extraction with pentane and distillation of the pentane.
  • Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 83-42 mA / cm2, a terminal voltage of 20-8 V, a temperature of 30 ° and a current consumption of 3.15 Ah. Electrolysis result: 11.2 g (77%) after extraction with pentane and distillation of the pentane.
  • the starting electrolyte contained 100 ml of methanol, 0.6 g of CrCl3, 2 ml of conc. Hydrochloric acid and 20 g Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 42 mA / cm2, a terminal voltage of 6.5 V, a temperature of 30-40 ° and a current consumption of 4 Ah.
  • the starting electrolyte contained 200 ml of methanol, 5 g of Na (OOCCH3), 0.5 g of AgNO3 and 20 g Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 83.3 mA / cm2, a terminal voltage of 11-8.5 and a temperature of 30 °.
  • the pH was 8.0 at the beginning; in the course of the electrolysis, the pH was kept in the range from 6.7 and 4.4 by adding 3 g of NaOCH3.
  • the power consumption was 13.12 Ah.
  • Electrolysis was carried out on a lead sheet cathode at a current density of 88 mA / cm2, a terminal voltage of 29-18 V, a temperature of 32 ° C. and a power consumption of 1.76 Ah. Electrolysis result: 8.84 g (64.1%) 1.81 g
  • Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 88 mA / cm2, a terminal voltage of 28-17 V, a temperature of 30 ° and a current consumption of 1.76 Ah. Electrolysis result: 1.8 g 11.7 g (87.6%)

Description

Fluorierte Vinylether der Formel R₁-O-CF=CF₂ (I) sind wichtige Comonomere zur Herstellung fluorierter Harze, die besondere Eigenschaften haben. So ist das Copolymere von Tetrafluorethylen mit Perfluorpropylvinylether (wobei R₁ = CF₃ - CF₂ - CF₂- ist) im Gegensatz zum reinen Polytetrafluorethylen thermoplastisch verarbeitbar(US-PS 3132123). Perfluorpropylvinylether wird hergestellt durch Dimerisierung von Hexafluorpropenoxid und Pyrolyse des entstandenen Säurefluorids. Andere fluorierte Vinylether werden analog hergestellt (Angewandte Chemie, Internat. Ed. Engl. 24 (1985), 161-179).Fluorinated vinyl ethers of the formula R₁-O-CF = CF₂ (I) are important comonomers for the preparation of fluorinated resins which have special properties. Thus, the copolymer of tetrafluoroethylene with perfluoropropyl vinyl ether (where R₁ = CF₃ - CF₂ - CF₂-) is, in contrast to pure polytetrafluoroethylene, processable thermoplastically (US Pat. No. 3,132,123). Perfluoropropyl vinyl ether is produced by dimerization of hexafluoropropene oxide and pyrolysis of the acid fluoride formed. Other fluorinated vinyl ethers are prepared analogously (Angewandte Chemie, Internat. Ed. Engl. 24 (1985), 161-179).

Mit Hilfe anderer Vinylether der Formel (I) mit

Figure imgb0001

wobei n = 2, 3 und
m = 0, 1 ist,
können perfluorierte Ionenaustauschermembranen erhalten werden. Der Einsatz von Monohydroperfluoralkylvinylethern der Formel (I) mit
Figure imgb0002

wobei n = 2-8 und m = 0-2
ist oder mit
Figure imgb0003

wobei m = 0-2 ist,
eröffnet ebenfalls die Möglichkeit, perfluorierte Ionenaustauscherharze herzustellen. (R.E. Banks: Organofluorine Chemicals and their Industrial Applications, Ellis Horwood Ltd., 1979)*). Bromhaltige Vinylether der Formel (I) mit R₁ = BrCF₂-CF₂- sind zur Synthese fluorierter Harze geeignet, die nachträglich vernetzt werden können (EP-A1-79555).
*) S.235-247With the help of other vinyl ethers of formula (I)
Figure imgb0001

where n = 2, 3 and
m = 0.1,
perfluorinated ion exchange membranes can be obtained. The use of monohydroperfluoroalkyl vinyl ethers of the formula (I) with
Figure imgb0002

where n = 2-8 and m = 0-2
is or with
Figure imgb0003

where m = 0-2,
also opens up the possibility of producing perfluorinated ion exchange resins. (RE Banks: Organofluorine Chemicals and their Industrial Applications, Ellis Horwood Ltd., 1979) * ) . Bromine-containing vinyl ethers of the formula (I) with R₁ = BrCF₂-CF₂- are for the synthesis of fluorinated resins suitable, which can be cross-linked later (EP-A1-79555).
*) P.235-247

Zur Reinigung von Vinylethern der Formel (I) ist es häufig von Vorteil, die Vinylethergruppe mit Hilfe von Chlor oder Brom zu Verbindungen der Formel (II) zu halogenieren:



        (II)   R₁-O-CFR₂-CF₂R₃ mit R₂, R₃ = Cl, Br.


For the purification of vinyl ethers of the formula (I) it is often advantageous to halogenate the vinyl ether group with the aid of chlorine or bromine to give compounds of the formula (II):



(II) R₁-O-CFR₂-CF₂R₃ with R₂, R₃ = Cl, Br.


Die Addition des Halogens bewirkt eine Erhöhung des Siedepunktes, so daß Verunreinigungen destillativ abgetrennt werden können.The addition of the halogen causes an increase in the boiling point so that impurities can be removed by distillation.

Zur Wiedergewinnung der Verbindungen der Formel (I) muß aus den Verbindungen der Formel (II) nach der Reinigung das Halogen wieder abgespalten werden. Dies wird im allgemeinen mit Hilfe von Zink oder anderen Metallen durdhgeführt, was jedoch mit einem Zwangsanfall von Zinkoder anderen Metallsalzen verbunden ist.To recover the compounds of the formula (I), the halogen must be split off from the compounds of the formula (II) after the purification. This is generally done with the help of zinc or other metals, but this is associated with the inevitable occurrence of zinc or other metal salts.

Es ergab sich daher die Aufgabe, die Halogenabspaltung aus Verbindungen der Formel (II) in einem technisch realisierbaren und wirtschaftlichen Verfahren durchzuführen, das nicht mit dem Zwangsfall von Metallsalzen belastet ist. Diese Aufgabe löst die vorliegende Erfindung. Gegenstand dieser Erfindung ist ein Verfahren zur Herstellung von Verbindungen der Formel



        (I)   R₁-O-CF=CF₂



durch Abspaltung von Halogenatomen aus Verbindungen der Formel

Figure imgb0004

worin
Figure imgb0005

ist, mit
R₄ = F, Cl, Perfluoralkyl mit 1-3 C-Atomen
R₅ = F, Perfluoralkyl mit 1-3 C-Atomen
X = F, Cl, Br, J, H, -O-Alkyl, -COO-Alkyl, -SO₂F
Y = F, Cl,
n = 0-10
m = 0-5
R₂ = Cl, Br
R₃ = Cl, Br ist,
dadurch gekennzeichnet, daß man die Verbindungen der Formel (II) in einer ungeteilten oder geteilten Elektrolysezelle in einer organischen Flüssigkeit, die auch Wasser enthalten kann, bei einer Temperatur von -20°C bis zur Siedetemperatur des Elektrolyten oder Katholyten bei einer Stromdichte von 1-500 mA/cm² an einer Kathode aus Blei, Cadmium, Zink, Kupfer, Zinn, Zirkon, Quecksilber, Legierungen dieser Metalle oder Kohlenstoff elektrolysiert.It was therefore the task of performing the halogen elimination from compounds of the formula (II) in a technically feasible and economical process which is not burdened with the inevitable case of metal salts. The present invention achieves this object. This invention relates to a process for the preparation of compounds of the formula



(I) R₁-O-CF = CF₂



by elimination of halogen atoms from compounds of the formula
Figure imgb0004

wherein
Figure imgb0005

is with
R₄ = F, Cl, perfluoroalkyl with 1-3 C atoms
R₅ = F, perfluoroalkyl with 1-3 C atoms
X = F, Cl, Br, J, H, -O-alkyl, -COO-alkyl, -SO₂F
Y = F, Cl,
n = 0-10
m = 0-5
R₂ = Cl, Br
R₃ = Cl, Br is
characterized in that the compounds of formula (II) in an undivided or divided electrolysis cell in an organic liquid, which may also contain water, at a temperature from -20 ° C to the boiling point of the electrolyte or catholyte at a current density of 1- 500 mA / cm² electrolyzed on a cathode made of lead, cadmium, zinc, copper, tin, zircon, mercury, alloys of these metals or carbon.

Vorzugsweise ist n = 0-8, insbesondere 0-6; m ist vorzugsweise 0-3, insbesondere 0-2.Preferably n = 0-8, in particular 0-6; m is preferably 0-3, in particular 0-2.

Als Ausgangssubstanzen geeignet sind insbesondere die Dichloride oder Dibromide folgender Vinylether:

Figure imgb0006
Figure imgb0007
The dichlorides or dibromides of the following vinyl ethers are particularly suitable as starting substances:
Figure imgb0006
Figure imgb0007

Das erfindungsgemäße Verfahren wird in geteilten oder ungeteilten Zellen durchgeführt. Zur Teilung der Zellen in Anoden- und Kathodenraum werden die üblichen, im Elektrolyten stabilen Diaphragmen aus Polymeren, vorzugsweise perfluorierten Polymeren, oder anderen organischen oder anorganischen Werkstoffen, wie biespielsweise Glas oder Keramik verwendet. Vorzugsweise verwendet man Ionenaustauschermembranen, insbesondere Kationenaustauschermembranen aus Polymeren, vorzugsweise perfluorierten Polymeren mit Carboxyl- und/oder Sulfonsäuregruppen. Die Verwendung von stabilen Anionenaustauschermembranen ist ebenfalls möglich.The method according to the invention is carried out in divided or undivided cells. The usual diaphragms made of polymers, preferably perfluorinated polymers, or other organic or inorganic materials, such as glass or ceramic, are used to divide the cells into anode and cathode spaces. Ion exchange membranes, in particular cation exchange membranes made of polymers, preferably perfluorinated polymers with carboxyl and / or sulfonic acid groups, are preferably used. The use of stable anion exchange membranes is also possible.

Die Elektrolyse kann in allen üblichen Elektrolysezellen, wie beispielsweise in Becherglas- oder Platten- und Rahmenzellen oder Zellen mit Festbett- oder Fließbettelektroden, durchgeführt werden. Es ist sowohl die monopolare als auch die bipolare Schaltung der Elektroden anwendbar.The electrolysis can be carried out in all customary electrolysis cells, for example in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar switching of the electrodes can be used.

Es ist möglich, die Elektrolyse sowohl kontinuierlich als auch diskontinuierlich durchzuführen.It is possible to carry out the electrolysis both continuously and batchwise.

Die Elektrolyse kann an allen im Elektrolyten stabilen Kathoden durchgeführt werden. In Frage kommen insbesondere Materialien mit einer mittleren bis hohen Wasserstoffüberspannung, wie beispielsweise Kohlenstoff, Pb, Cd, Zn, Cu, Sn, Zr, Hg und Legierungen der genannten Metalle, wie die Amalgame des Kupfers oder Bleis, aber auch Legierungen wie Blei-Zinn oder Zink-Cadmium. Bevorzugt ist die Verwendung von Kohlenstoffkathoden, insbesondere bei der Elektrolyse in saurem Elektrolyten. Als Kohlenstoffkathoden kommen im Prinzip alle möglichen Kohle-Elektrodenmaterialien in Frage, wie z.B. Elektrodengraphite, imprägnierte Graphitwerkstoffe, Kohlefilze und auch glasartiger Kohlenstoff.The electrolysis can be carried out on all cathodes stable in the electrolyte. Materials with a medium to high quality are particularly suitable Hydrogen overvoltage, such as carbon, Pb, Cd, Zn, Cu, Sn, Zr, Hg and alloys of the metals mentioned, such as the amalgams of copper or lead, but also alloys such as lead-tin or zinc-cadmium. The use of carbon cathodes is preferred, in particular for the electrolysis in acid electrolytes. In principle, all possible carbon electrode materials come into question as carbon cathodes, such as electrode graphites, impregnated graphite materials, carbon felts and also glassy carbon.

Als Anodenmaterial können alle Materialien verwendet werden, an denen die korrespondierenden Anodenreaktionen ablaufen. Beispielsweise sind Blei, Bleidioxid auf Blei oder anderen Trägern, Platin, mit Edelmetalloxiden (wie Platinoxid) dotiertes Titandioxid auf Titan für die Sauerstoffentwicklung aus verdünnter Schwefelsäure geeignet. Kohlenstoff oder mit Edelmetalloxiden dotiertes Titandioxid auf Titan sind beispielsweise zur Entwicklung von Chlor aus wäßrigen Alkalichlorid- oder wäßrigen oder alkoholischen Chlorwasserstoff-Lösungen geeignet.All materials on which the corresponding anode reactions take place can be used as anode material. For example, lead, lead dioxide on lead or other carriers, platinum, titanium dioxide doped with noble metal oxides (such as platinum oxide) on titanium are suitable for the development of oxygen from dilute sulfuric acid. Carbon or titanium dioxide on titanium doped with noble metal oxides are suitable, for example, for the development of chlorine from aqueous alkali metal chloride or aqueous or alcoholic hydrogen chloride solutions.

Bevorzugte Anolytflüssigkeiten sind wäßrige Mineralsäuren oder Lösungen ihrer Salze, wie beispielsweise verdünnte Schwefelsäure, konzentrierte Salzsäure, Natriumsulfat- oder Natriumchloridlösungen oder Lösungen von Chlorwasserstoff in Alkohol.Preferred anolyte liquids are aqueous mineral acids or solutions of their salts, such as, for example, dilute sulfuric acid, concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions or solutions of hydrogen chloride in alcohol.

Der Elektrolyt in der ungeteilten oder der Katholyt in der geteilten Zelle enthält die eingesetzte Verbindung der Formel (II) und ein oder mehrere organische Lösungsmittel und kann zusätzlich Wasser enthalten. Beispiele für geeignete organische Lösungsmittel sind kurzkettige aliphatische Alkohole wie Methanol, Ethanol, Propanol oder Butanol; Diole wie Ethylenglykol, Propandiol, aber auch Polyethylenglykole und deren Ether; Ether wie Tetrahydrofuran, Dioxan; Amide wie N,N-Dimethylformamid, Hexamethylphosphorsäuretriamid, N-Methyl-2-pyrrolidon; Nitrile wie Acetonitril, Propionitril; Ketone wie Aceton; sowie Sulfolan. Auch die Verwendung organischer Säuren, wie beispielsweise Essigsäure ist möglich.The electrolyte in the undivided or the catholyte in the divided cell contains the compound of formula (II) used and one or more organic solvents and can additionally contain water. Examples of suitable organic solvents are short-chain aliphatic alcohols such as methanol, ethanol, Propanol or butanol; Diols such as ethylene glycol, propanediol, but also polyethylene glycols and their ethers; Ethers such as tetrahydrofuran, dioxane; Amides such as N, N-dimethylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone; Nitriles such as acetonitrile, propionitrile; Ketones such as acetone; and sulfolane. The use of organic acids, such as acetic acid, is also possible.

Der Elektrolyt kann aber auch aus Wasser oder aus Wasser und einem nicht wasserlöslichen organischen Lösungsmittel wie t-Butylmethylether oder Methylenchlorid in Verbindung mit einem Phasentransferkatalysator bestehen.However, the electrolyte can also consist of water or of water and a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in combination with a phase transfer catalyst.

Vorzugsweise werden dem Elektrolyten in der ungeteilten Zelle oder dem Katholyten in der geteilten Zelle Salze von Metallen mit einer Wasserstoffüberspannung von mindestens 0,25 V (bezogen auf eine Stromdichte von 300 mA/cm²) und/oder enthalogenierenden Eigenschaftern zugesetzt. Als derartige Salze kommen hauptsächlich infrage die löslichen Salze von Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co oder Ni, vorzugsweise die löslichen Salze von Pb, Sn, Ag, Zn, Cd und Cr. Die bevorzugten Anionen dieser Salze sind

Figure imgb0008
Preferably, salts of metals with a hydrogen overvoltage of at least 0.25 V (based on a current density of 300 mA / cm²) and / or dehalogenating properties are added to the electrolyte in the undivided cell or the catholyte in the divided cell. Such salts are mainly the soluble salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co or Ni, preferably the soluble salts of Pb, Sn, Ag, Zn, Cd and Cr. The preferred anions of these salts are
Figure imgb0008

Die Salze können direkt zugesetzt oder auch, z.B. durch Zugabe von Oxiden, Carbonaten - in einigen Fällen auch der Metalle selbst (sofern löslich) - in der Lösung erzeugt werden.
Die Salzkonzentration im Elektrolyten der ungeteilten Zelle bzw. im Katholyten der geteilten Zelle wird zweckmäßig auf etwa 10⁻⁵ bis 25 Gew.-%, vorzugsweise auf etwa 10⁻³ bis 10 Gew.-%, jeweils bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten, eingestellt.
The salts can be added directly or, for example, by adding oxides, carbonates - in some cases also the metals themselves (if soluble) - can be generated in the solution.
The salt concentration in the electrolyte of the undivided cell or in the catholyte of the divided cell is expediently from about 10⁻⁵ to 25% by weight, preferably from about 10⁻³ to 10% by weight, in each case based on the total amount of the electrolyte or catholyte , set.

Man elektrolysiert bei einer Stromdichte von 1 bis 500 mA/cm², bevorzugt bei 10 bis 400 mA/cm².Electrolysis is carried out at a current density of 1 to 500 mA / cm², preferably at 10 to 400 mA / cm².

Die Elektrolysetemperatur liegt im Bereich von -20°C bis zur Siedetemperatur des Elektrolyten bzw. Katholyten, vorzugsweise bei 10° bis 90°C, insbesondere bei 10° bis 80°C.The electrolysis temperature is in the range from -20 ° C to the boiling point of the electrolyte or catholyte, preferably 10 ° to 90 ° C, in particular 10 ° to 80 ° C.

Zur Einstellung des für die Elektrolyse günstigsten pH-Wertes von 0 bis 9, vorzugsweise von 0,5 bis 8, und zur Erhöhung der Leitfähigkeit können dem Katholyten in der geteilten Zelle oder dem Elektrolyten in der ungeteilten Zelle anorganische oder organische Säuren zugesetzt werden, vorzugsweise Säuren wie Salz-, Bor-, Phosphor-, Schwefel-oder Tetrafluoroborsäure oder Ameisen-, Essig- oder Citronensäure oder deren Salze.In order to set the most favorable pH value for the electrolysis from 0 to 9, preferably from 0.5 to 8, and to increase the conductivity, inorganic or organic acids can be added to the catholyte in the divided cell or to the electrolyte in the undivided cell, preferably Acids such as hydrochloric, boric, phosphoric, sulfuric or tetrafluoroboric acid or formic, acetic or citric acid or their salts.

Auch die Zugabe organischer Basen kann zur Einstellung des für die Elektrolyse günstigen pH-Wertes nützlich sein oder den Verlauf der Elektrolyse günstig beeinflussen. Geeignet sind primäre, sekundäre oder tertiäre C₂-C₁₂-Alkyl- oder Cycloalkylamine, aromatische oder aliphatisch-aromatische Amine oder deren Salze, anorganische Basen wie Alkali- oder Erdalkalihydroxyde wie beispielsweise Li-, Na-, K-, Cs-, Mg-, Ca-, Ba-hydroxyd, quartäre Ammoniumsalze wie die Fluoride, Chloride, Bromide, Jodide, Acetate, Sulfate, Hydrogensulfate, Tetrafluoroborate, Phosphate oder Hydroxyde des C₁-C₁₂-Tetraalkylammoniums, C₁-C₁₂-Trialkylarylammoniums oder C₁-C₁₂-Trialkylalkylarylammoniums, aber auch anionaktive oder kationaktive Emulgatoren, in Mengen von 0,01 bis 25 Gewichtsprozenten, vorzugsweise 0,03 bis 20 Gewichtsprozenten, bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten.The addition of organic bases can also be useful for setting the pH value which is favorable for the electrolysis or can have a favorable influence on the course of the electrolysis. Suitable are primary, secondary or tertiary C₂-C₁₂ alkyl or cycloalkylamines, aromatic or aliphatic-aromatic amines or their salts, inorganic bases such as alkali or alkaline earth metal hydroxides such as Li, Na, K, Cs, Mg, Ca, Ba hydroxide, quaternary ammonium salts such as the fluorides, chlorides, bromides, iodides, acetates, sulfates, hydrogen sulfates, tetrafluoroborates, phosphates or hydroxides of C₁-C₁₂-tetraalkylammonium, C₁-C₁₂-trialkylarylammonium or C₁-C₁₂ammonium trialonyl also anionic or cationic emulsifiers, in amounts of 0.01 to 25 percent by weight, preferably 0.03 to 20 percent by weight, based on the total amount of the electrolyte or catholyte.

Bei der Elektrolyse in ungeteilter Zelle können dem Elektrolyten Verbindungen zugesetzt werden, die bei einem negativeren Potential oxidiert werden als die freigesetzten Halogenionen, um das Entstehen des freien Halogens zu vermeiden. Geeignet sind beispielsweise die Salze der Oxalsäure, der Methoxyessigsäure, der Glyoxylsäure, der Ameisensäure und/oder der Stickstoffwasserstoffsäure.In the case of electrolysis in undivided cells, compounds can be added to the electrolyte which are oxidized at a more negative potential than the released halogen ions in order to avoid the formation of the free halogen. The salts of oxalic acid, methoxyacetic acid, glyoxylic acid, formic acid and / or hydrochloric acid are suitable, for example.

Die Aufarbeitung des Elektrolyseprodukts erfolgt auf bekannte Weise, z.B. durch Extraktion oder Abdestillieren des Lösungsmittels. Die dem Katholyten zugesetzten Verbindungen können so dem Prozeß wieder zugeführt werden.The electrolysis product is worked up in a known manner, e.g. by extracting or distilling off the solvent. The compounds added to the catholyte can thus be returned to the process.

BeispieleExamples

Die Beispiele wurden in wie folgt definierten Elektrolysezellen durchgeführt:The examples were carried out in electrolysis cells defined as follows:

Elektrolysezelle 1:Electrolysis cell 1:

Ummantelte Glastopfzelle mit einem Volumen von 350 ml; Anode: Platinnetz, Graphit- oder Bleiplatte (20 cm²); Kathodenfläche: 12 cm²; Elektrodenabstand: 1,5 cm; Anolyt: verdünnte wäßrige Schwefelsäure oder methanolische Salzsäure; Kationenaustauschermembran: Zweischichtenmembran aus einem Copolymerisat aus einem Perfluorsulfonylethoxy-vinylether und Tetrafluorethylen; Stofftransport: durch Magnetrührer.Jacketed glass pot cell with a volume of 350 ml; Anode: platinum mesh, graphite or lead plate (20 cm²); Cathode area: 12 cm²; Electrode distance: 1.5 cm; Anolyte: dilute aqueous sulfuric acid or methanolic hydrochloric acid; Cation exchange membrane: two-layer membrane made from a copolymer of a perfluorosulfonylethoxy vinyl ether and tetrafluoroethylene; Mass transfer: by magnetic stirrer.

Elektrolysezelle 2:Electrolytic cell 2:

wie Elektrolysezelle 1, bis auf folgende Abweichungen: Ummantelte Glastopfumlaufzelle mit einem Volumen von 450 ml; Elektrodenabstand: 1 cm; Durchfluß: 360 l/h.as for electrolysis cell 1, except for the following deviations: coated glass pot circulation cell with a volume of 450 ml; Electrode distance: 1 cm; Flow: 360 l / h.

Beispiel 1example 1

Es wurde in Elektrolysezelle 2 gearbeitet. Der Ausgangselektrolyt enthielt 250 ml Methanol, 10 g Na(OOC-CH₃), 0,4 g Pb(OOC-CH₃)₂ und 100 g

Figure imgb0009

An einer Kathode aus Elektrodengraphit wurde bei einer Stromdichte von 166 mA/cm², einer Klemmenspannung von 32-16V, einer Temperatur von 34-36°C, einem Stromverbrauch von 12.66 Ah und einem pH-Wert von 7.85 bis unter 0 elektrolysiert.
Elektrolyseergebnis: 62.75 g (84 %)
Figure imgb0010

nach Extraktion mit Pentan und Abdestillation des Pentans.It was worked in electrolysis cell 2. The starting electrolyte contained 250 ml of methanol, 10 g of Na (OOC-CH₃), 0.4 g of Pb (OOC-CH₃) ₂ and 100 g
Figure imgb0009

Electrodes were electrolyzed on a cathode made of electrode graphite at a current density of 166 mA / cm², a terminal voltage of 32-16V, a temperature of 34-36 ° C, a current consumption of 12.66 Ah and a pH value of 7.85.
Electrolysis result: 62.75 g (84%)
Figure imgb0010

after extraction with pentane and distillation of the pentane.

Beispiel 2Example 2

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 100 ml Methanol, 1 ml konz. Salzsäure und 20 g

Figure imgb0011

An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 83-42 mA/cm², einer Klemmenspannung von 20-8 V, einer Temperatur von 30° und einem Stromverbrauch von 3.15 Ah elektrolysiert.
Elektrolyseergebnis: 11.2 g (77 %)
Figure imgb0012

nach Extraktion mit Pentan und Abdestillation des Pentans.It was worked in electrolysis cell 1. The starting electrolyte contained 100 ml of methanol, 1 ml of conc. Hydrochloric acid and 20 g
Figure imgb0011

Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 83-42 mA / cm², a terminal voltage of 20-8 V, a temperature of 30 ° and a current consumption of 3.15 Ah.
Electrolysis result: 11.2 g (77%)
Figure imgb0012

after extraction with pentane and distillation of the pentane.

Beispiel 3Example 3

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 100 ml Methanol, 0.6 g CrCl₃, 2 ml konz. Salzsäure und 20 g

Figure imgb0013

An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 42 mA/cm², einer Klemmenspannung von 6.5 V, einer Temperatur von 30-40° und einem Stromverbrauch von 4 Ah elektrolysiert.
Das Reaktionsprodukt CF₃-CF₂-CF₂-O-CF=CF₂ wurde während der Elektrolyse kontinuierlich abdestilliert. Nach erneuter Destillation erhielt man 6.7 g (54 %) CF₃-CF₂-CF₂-O-CF=CF₂ (Kp. 36°C)It was worked in electrolysis cell 1. The starting electrolyte contained 100 ml of methanol, 0.6 g of CrCl₃, 2 ml of conc. Hydrochloric acid and 20 g
Figure imgb0013

Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 42 mA / cm², a terminal voltage of 6.5 V, a temperature of 30-40 ° and a current consumption of 4 Ah.
The reaction product CF₃-CF₂-CF₂-O-CF = CF₂ was continuously distilled off during the electrolysis. After renewed distillation, 6.7 g (54%) of CF₃-CF₂-CF₂-O-CF = CF₂ (bp. 36 ° C)

Beispiel 4Example 4

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 100 ml Ethanol, 0.5 g Pb(OOCCH₃)₂, 5g Na(OOCCH₃), 2 g (CH₃)₄N⁺Cl⁻ und 17,4 g H-CF₂-CF₂-O-CFBr-CF₂Br . An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 83 mA/cm², einer Klemmenspannung von 15-9 V, einer Temperatur von 40-46°C und einem Stromverbrauch von 7.2 Ah elektrolysiert.
Elektrolyseergebnis: 6.95 g HCF₂-CF₂-O-CF=CF₂ (78.1 %), Kp. 32°C.
It was worked in electrolysis cell 1. The starting electrolyte contained 100 ml of ethanol, 0.5 g Pb (OOCCH₃) ₂, 5g Na (OOCCH₃), 2 g (CH₃) ₄N⁺Cl⁻ and 17.4 g H-CF₂-CF₂-O-CFBr-CF₂Br. Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 83 mA / cm², a terminal voltage of 15-9 V, a temperature of 40-46 ° C and a current consumption of 7.2 Ah.
Electrolysis result: 6.95 g HCF₂-CF₂-O-CF = CF₂ (78.1%), bp 32 ° C.

Beispiel 5Example 5

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 250 ml Methanol, 10 g Na(OOCCH₃), 0.4 g Pb(OOCCH₃)₂ und 100 g

Figure imgb0014

An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 166 mA/cm², einer Klemmenspannung von 37-15 V, einer Temperatur von 32°, einem Stromverbrauch von 16 Ah und einem pH-Wert von 7.65-0.2 elektrolysiert. Elektrolyseergebnis: 46.4 g (76.4 %) H-(CF₂)₃-O-CF=CF₂ nach Extraktion mit CF₂Cl-CFCl₂ und Abdestillation des Lösungsmittels.It was worked in electrolysis cell 1. The starting electrolyte contained 250 ml of methanol, 10 g of Na (OOCCH₃), 0.4 g of Pb (OOCCH₃) ₂ and 100 g
Figure imgb0014

Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 166 mA / cm², a terminal voltage of 37-15 V, a temperature of 32 °, a current consumption of 16 Ah and a pH of 7.65-0.2. Result of electrolysis: 46.4 g (76.4%) of H- (CF₂) ₃-O-CF = CF₂ after extraction with CF₂Cl-CFCl₂ and distillation of the solvent.

Beispiel 6Example 6

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 200 ml Methanol, 5 g Na(OOCCH₃), 0.5 g AgNO₃ und 20 g

Figure imgb0015

An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 83.3 mA/cm², einer Klemmenspannung von 11-8.5 und einer Temperatur von 30° elektrolysiert. Der pH-Wert war zu Beginn 8.0; im Verlauf der Elektrolyse wurde durch Zugabe von 3 g NaOCH₃ der pH-Wert im Bereich von 6.7 und 4.4 gehalten. Der Stromverbrauch betrug 13.12 Ah.
Elektrolyseergebnis: 0.48 g
Figure imgb0016

0.62 g (4,3 %) CH₃O-CO-CF₂-CF₂-OCF=CF₂ nach Extraktion mit Pentan und Abdestillation des Lösungsmittels. Die verbleibende methanolische Lösung wurde mit H₂SO₄/H₂O auf pH 1 angesäuert und mit Diethylether extrahiert. Nach Abdestillation des Lösungsmittels erhielt man
4.06 g
Figure imgb0017

7.02 g (61.7 %) HOCO-CF₂CF₂-O-CF=CF₂.It was worked in electrolysis cell 1. The starting electrolyte contained 200 ml of methanol, 5 g of Na (OOCCH₃), 0.5 g of AgNO₃ and 20 g
Figure imgb0015

Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 83.3 mA / cm², a terminal voltage of 11-8.5 and a temperature of 30 °. The pH was 8.0 at the beginning; in the course of the electrolysis, the pH was kept in the range from 6.7 and 4.4 by adding 3 g of NaOCH₃. The power consumption was 13.12 Ah.
Electrolysis result: 0.48 g
Figure imgb0016

0.62 g (4.3%) CH₃O-CO-CF₂-CF₂-OCF = CF₂ after extraction with pentane and distillation of the solvent. The remaining methanolic solution was acidified to pH 1 with H₂SO₄ / H₂O and extracted with diethyl ether. To Distillation of the solvent was obtained
4.06 g
Figure imgb0017

7.02 g (61.7%) HOCO-CF₂CF₂-O-CF = CF₂.

Beispiel 7Example 7

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 200 ml DMF, 5 g (CH₃)₄N O₃SOCH₃ und 20 g

Figure imgb0018

An einer Kathode aus Bleiblech wurde bei einer Stromdichte von 88 mA/cm², einer Klemmenspannung von 29-18 V, einer Temperatur von 32°C und einem Stromverbrauch von 1.76 Ah elektrolysiert.
Elektrolyseergebnis:
8.84 g (64.1 %)
Figure imgb0019

1.81 g
Figure imgb0020
It was worked in electrolysis cell 1. The starting electrolyte contained 200 ml of DMF, 5 g (CH₃) ₄N O₃SOCH₃ and 20 g
Figure imgb0018

Electrolysis was carried out on a lead sheet cathode at a current density of 88 mA / cm², a terminal voltage of 29-18 V, a temperature of 32 ° C. and a power consumption of 1.76 Ah.
Electrolysis result:
8.84 g (64.1%)
Figure imgb0019

1.81 g
Figure imgb0020

Beispiel 8Example 8

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 100 ml DMF, 0,5 g Ag NO₃, 3 g (CH₃)₄N O₃SOCH₃ und 20 g

Figure imgb0021

An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 88 mA/cm², einer Klemmenspannung von 28-17 V, einer Temperatur von 30° und einem Stromverbrauch von 1.76 Ah elektrolysiert.
Elektrolyseergebnis: 1.8 g
Figure imgb0022

11.7 g (87,6 %)
Figure imgb0023
It was worked in electrolysis cell 1. The starting electrolyte contained 100 ml DMF, 0.5 g Ag NO₃, 3 g (CH₃) ₄N O₃SOCH₃ and 20 g
Figure imgb0021

Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 88 mA / cm², a terminal voltage of 28-17 V, a temperature of 30 ° and a current consumption of 1.76 Ah.
Electrolysis result: 1.8 g
Figure imgb0022

11.7 g (87.6%)
Figure imgb0023

Beispiel 9Example 9

Es wurde in Elektrolysezelle 1 gearbeitet. Der Ausgangselektrolyt enthielt 100 ml Methanol, 5 g CH₃COONa, 0.5 g (CH₃COO)₂ Pb und 10 g CCl₃-CF₂-O-CFBr-CF₂Br. An einer Kathode aus imprägniertem Graphit wurde bei einer Stromdichte von 88 mA/cm², einer Klemmenspannung von 28-13 V, einer Temperatur von 32° und einem Stromverbrauch von 1.26 Ah elektrolysiert.
Elektrolyseergebnis:



        Cl₃C-CF₂-O-CF=CF₂ 2.795 g (50%)




        Cl₂CH-CF₂-O-CF=CF₂ 0.545 g (9 %)

It was worked in electrolysis cell 1. The starting electrolyte contained 100 ml of methanol, 5 g of CH₃COONa, 0.5 g (CH₃COO) ₂ Pb and 10 g CCl₃-CF₂-O-CFBr-CF₂Br. Electrolysis was carried out on a cathode made of impregnated graphite at a current density of 88 mA / cm², a terminal voltage of 28-13 V, a temperature of 32 ° and a current consumption of 1.26 Ah.
Electrolysis result:



Cl₃C-CF₂-O-CF = CF₂ 2,795 g (50%)




Cl₂CH-CF₂-O-CF = CF₂ 0.545 g (9%)

Claims (7)

  1. A process for preparing compounds of the formula



            (I)   R₁-O-CF=CF₂



    by elimination of halogen atoms from compounds of the formula
    Figure imgb0027
    in which
    Figure imgb0028
    with R₄ = F, Cl, perfluoroalkyl
    having 1-3 carbon atoms
    R₅ = F, perfluoroalkyl having 1-3 carbon atoms
    X = F, Cl, Br, I H, -O-alkyl, -COO-alkyl, -SO₂F
    Y = F, Cl,
    n = 0-10
    m = 0-5
    R₂ = Cl, Br,
    R₃ = Cl, Br,
    which comprises electrolyzing the compounds of the formula (II) in an undivided or divided electrolysis cell in an organic liquid which can also contain water at a temperature of -20°C to the boiling temperature of the electrolyte or catholyte at a current density of 1-500 mA/cm² at a cathode made of lead, cadmium, zinc, copper, tin, zirconium, mercury, alloys of these metals or carbon.
  2. The process as claimed in claim 1, wherein the electrolysis is carried out at a pH from 0 to 9 in the electrolyte in the undivided cell or in the catholyte in the divided cell.
  3. The process as claimed in either of claims 1 or 2, wherein the dichlorides or dibromides of the following vinyl ethers:
    Figure imgb0029
    are electrolyzed.
  4. The process as claimed in any one of claims 1 to 3, wherein the electrolysis is carried out at a temperature from 10 to 90°C.
  5. The process as claimed in any one of claims 1 to 4, wherein the electrolysis is carried out at a current density from 10 to 400 mA/cm².
  6. The process as claimed in any one of claims 1 to 5, wherein the electrolysis is carried out using a carbon cathode.
  7. The process as claimed in any one of claims 1 to 6, wherein a soluble salt of copper, silver, gold, zinc, cadmium, mercury, tin, lead, thallium, titanium, zirconium, bismuth, vanadium, tantalum, chromium, cerium, cobalt or nickel is added in a concentration of 10⁻³ to 10% by weight to the electrolyte in the undivided cell or to the catholyte in the divided cell.
EP88108765A 1987-06-04 1988-06-01 Process for preparation of fluorinated ether Expired - Lifetime EP0293856B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3718726 1987-06-04
DE19873718726 DE3718726A1 (en) 1987-06-04 1987-06-04 METHOD FOR PRODUCING FLUORINATED VINYL ETHER

Publications (3)

Publication Number Publication Date
EP0293856A2 EP0293856A2 (en) 1988-12-07
EP0293856A3 EP0293856A3 (en) 1989-10-11
EP0293856B1 true EP0293856B1 (en) 1992-03-18

Family

ID=6329049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108765A Expired - Lifetime EP0293856B1 (en) 1987-06-04 1988-06-01 Process for preparation of fluorinated ether

Country Status (5)

Country Link
US (1) US4908107A (en)
EP (1) EP0293856B1 (en)
JP (1) JP2680607B2 (en)
CA (1) CA1327766C (en)
DE (2) DE3718726A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731914A1 (en) * 1987-09-23 1989-04-06 Hoechst Ag METHOD FOR THE PRODUCTION OF FLUORINATED ACRYLIC ACIDS AND THEIR DERIVATIVES
US6255535B1 (en) 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing allylethers and higher homologs
FR3007427B1 (en) * 2013-06-20 2016-07-01 Ifp Energies Now ACTIVE METAL-BASED PARTICLE LAYER ON POROUS CONDUCTIVE SUPPORT, METHOD OF MANUFACTURE AND USE AS A CATHODE FOR CARBON DIOXIDE ELECTRODEEDUCTION.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132123A (en) * 1960-11-25 1964-05-05 Du Pont Polymers of perfluoroalkoxy perfluorovinyl ethers
GB1518510A (en) * 1975-11-27 1978-07-19 Ici Ltd Vinyl ethers
US4120761A (en) * 1977-12-15 1978-10-17 Monsanto Company Electrochemical process for the preparation of acetals of 2-haloaldehydes
US4544458A (en) * 1978-11-13 1985-10-01 E. I. Du Pont De Nemours And Company Fluorinated ion exchange polymer containing carboxylic groups, process for making same, and film and membrane thereof
JPS5885831A (en) * 1981-11-18 1983-05-23 Asahi Glass Co Ltd Prefluoro(2-bromoethyl vinyl ether)
GB2135669A (en) * 1983-03-01 1984-09-05 Ici Plc Electrolytic production of tetrafluoroethylene
FR2582320B1 (en) * 1985-05-21 1987-06-26 Atochem ELECTROCHEMICAL PROCESS FOR THE PREPARATION OF ORGANIC DERIVATIVES TRIFLUORO (OR CHLORODIFLUORO OR DICHLOROFLUORO) METHYLES

Also Published As

Publication number Publication date
JP2680607B2 (en) 1997-11-19
US4908107A (en) 1990-03-13
EP0293856A2 (en) 1988-12-07
DE3869212D1 (en) 1992-04-23
DE3718726A1 (en) 1988-12-22
EP0293856A3 (en) 1989-10-11
CA1327766C (en) 1994-03-15
JPS63317686A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
EP0280120B1 (en) Electrochemical process for the exchange of halogen atoms in an organic compound
EP0457320B1 (en) Process for partial electrolyte dehalogenation dichloro- and trichloro-acetic acids and electrolysis solution
WO1993017151A1 (en) Electrochemical process for preparing glyoxylic acid
EP0308838B1 (en) Process for the production of fluorinated acrylic acids and their derivatives
EP0334796B1 (en) Process for the production of unsaturated halogenated hydrocarbons
EP0293856B1 (en) Process for preparation of fluorinated ether
DE4217338C2 (en) Electrochemical process for the reduction of oxalic acid to glyoxylic acid
EP0326855B1 (en) Process for manufacturing fluoromalonic acid and its derivatives
WO1992005299A1 (en) Process for producing halogenated acrylic acids
EP1769103B1 (en) Electrochemical process for preparing cyclopropylbenzylamines
EP0382106B1 (en) Process for manufacturing thiophene derivatives
DE4217336C2 (en) Electrochemical process for the production of glyoxylic acid
DE4205423C1 (en) Electrochemical process for the production of glyoxylic acid
EP0100498B1 (en) Process for the manufacture of dichlorolactic acid or the nitrile or the amide of dichlorolactic acid
EP0179377B1 (en) Process for the preparation of 1-alkoxyisochromanes, and 1-alkoxy alkylisochromanes
EP0237769B1 (en) Benzaldehyde-dialkyl acetals
DE4340896A1 (en) Process for the preparation of 3-alkyl-2,6-dichloroacylanilides by electrolytic debromination of 3-alkyl-4-bromo-2,6-dichloroacylanilides
DE2409117A1 (en) METHOD FOR THE PRODUCTION OF PROPIOLIC ACID
DE1961364A1 (en) Monosubst hydrazines by electrochemical - prodn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19891123

17Q First examination report despatched

Effective date: 19910729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3869212

Country of ref document: DE

Date of ref document: 19920423

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940510

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950630

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980518

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980718

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601