EP0577969A1 - Wärmerohr - Google Patents

Wärmerohr Download PDF

Info

Publication number
EP0577969A1
EP0577969A1 EP93108818A EP93108818A EP0577969A1 EP 0577969 A1 EP0577969 A1 EP 0577969A1 EP 93108818 A EP93108818 A EP 93108818A EP 93108818 A EP93108818 A EP 93108818A EP 0577969 A1 EP0577969 A1 EP 0577969A1
Authority
EP
European Patent Office
Prior art keywords
heat
channel
arrangement according
liquid
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93108818A
Other languages
English (en)
French (fr)
Other versions
EP0577969B1 (de
Inventor
Alois Dr. Köppl
Robert Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Erno Raumfahrttechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG, Erno Raumfahrttechnik GmbH filed Critical Daimler Benz Aerospace AG
Publication of EP0577969A1 publication Critical patent/EP0577969A1/de
Application granted granted Critical
Publication of EP0577969B1 publication Critical patent/EP0577969B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Definitions

  • the invention relates to an arrangement for the transfer of heat, consisting of a heat pipe filled with a heat transfer medium, in which at least one flow channel each for the liquid and for the heat transfer medium transferred in the vaporous unit state are present and in which means are further provided to in the liquid channel transport any bubbles into the steam channel.
  • Heat pipes or "heat pipes” for the transport of heat are already known, in particular from the field of space technology. With this, a liquid, usually ammonia, is evaporated on the heat-emitting side and the steam becomes heat-emitting side. There, the steam condenses, the latent heat stored in it being dissipated to the environment, and the condensate produced flows back again to the heat-absorbing side, the evaporator.
  • the steam flow that occurs is a normal pressure flow, while the liquid flow is a capillary flow.
  • Modern cooking performance heat pipes are able to transport heat quantities of the order of about 1 kW over distances between one and about 20 meters, even with comparatively small temperature differences.
  • This higher performance of the high-performance heat pipe compared to conventional heat pipes is achieved by using channels of different dimensions for the transport of the liquid: While a large number of very small channels with capillary geometries are used in the evaporation area to achieve large driving capillary forces, the flow is guided in the Condenser area and in the transport zone via only a few flow channels, possibly a single channel with a relatively large diameter, which is also referred to as an artery. In this way, the friction-related pressure loss is minimized and it results with the same capillary forces significantly larger fluid mass flow and as a result also a much higher heat flow.
  • a major problem with the operation of such high-performance heat pipes is that their function can be significantly impaired or completely interrupted if there are bubbles in the artery from the vapor of the heat transfer fluid or from gaseous, non-condensable foreign substances. These may either have happened to be there when the heat pipe was put into operation, but they may also have arisen due to operational overloading of the heat pipe, for example overheating at the end of the evaporator and the evaporation zone drying out briefly. The bubbles can interrupt the transport of the heat transfer fluid to the heat-absorbing zone, so that it dries out further and the function of the heat pipe is blocked.
  • the heat pipe design handbook volume 1, B&K Engineering Inc., Towson, Maryland 21204, USA, pages 149 and 152, therefore describes two heat pipes in which measures for removing bubbles and thus for preventing blockages are described Glass bubbles are provided. These measures consist in one case of an arrangement with vent holes in the wall between the artery and the steam channel, in the other case of a valve nozzle which is arranged in the transport area for the steam and which at the same time sucks off gas bubbles present in the artery as a jet pump via an intake pipe .
  • a disadvantage of an arrangement of ventilation holes in the arterial wall is the fact that the pressure in the steam channel is significantly higher than in the artery during operation of the heat pipe, so that for Transfer of gas bubbles from the artery to the steam channel requires an interruption in service.
  • the ventilation holes are blocked by liquid bridges, which first have to evaporate before the gas bubbles can pass through, these breaks in operation require a comparatively long period of time before the heat pipe is ready for use again.
  • the arrangement of a Venturi nozzle in the steam channel has the following disadvantage: If there is no gas bubble in the suction area of the nozzle, a, albeit small, amount of heat transfer fluid constantly collects from the artery in the suction pipe. If a gas bubble now reaches the suction opening, the amount of liquid must first be removed from the suction pipe so that it can be sucked out of the artery. Because of the associated large pressure loss of the flow in the intake manifold, the pressure reduction caused in the Venturi nozzle must be considerable, i.e. the nozzle must have a comparatively large narrowing of the cross section. On the other hand, however, this leads to a considerable impairment of the steam flow due to the pressure loss and thus to a greatly reduced performance of the heat pipe.
  • the object of the invention is to design a heat pipe of the type mentioned in such a way that vapor bubbles of the heat transfer fluid and bubbles from non-condensable gas can be removed quickly and easily from the flow channel for the fluid, and thus safe commissioning of such a pipe, either for the first time or after an interruption in operation caused, for example, by overloading is guaranteed.
  • the heat pipe according to the invention is to a large extent fault-tolerant to overloads occurring during operation, since the start-up or restart process is simplified and accelerated considerably.
  • a particularly important advantage of the heat pipe according to the invention is that it is possible not only to remove bubbles from non-condensable gases from the liquid channel, but also to effectively remove steam bubbles.
  • actuating force required for opening can in a particularly advantageous manner thermostatically, electromagnetically or by using an actuator made of a so-called memory alloy ("shape memory alloy”), such as. B. nickel-titanium.
  • the section shown in FIG. 1 shows the transport zone of a high-performance heat pipe in the central area, to which the evaporator zone is connected in the left part of the drawing and the condenser zone in the right part.
  • the transport zone consists of a flow channel 1 for the evaporated heat transfer medium and, arranged in the image below, a second flow channel 2, the artery, in which the heat transfer medium liquefied again at the end of the condenser flows back to the end of the evaporator.
  • the liquid channel 2 is designed in such a way that its capillary radius, which is relevant for the formation of gas or vapor bubbles, constantly increases starting from the end of the evaporator and reaches its greatest value at the end of the condenser.
  • FIGS. 2 and 3 differs from the one described above in that in this case the wall 13 separating the steam channel 11 from the liquid channel 12 runs parallel to the longitudinal axis of the heat pipe and in this case the conical taper of the capillary cross section of the liquid channel 12 in the direction of the evaporator end is achieved by a wedge-shaped plate 17 arranged on the partition 13 and projecting into the liquid channel 12. The thickness of this sheet 17 increases continuously towards the end of the evaporator.
  • the image also shows the liquid / vapor interface 14 and the capillary structure 15.
  • Fig. 4 shows an embodiment of an advantageous shut-off device 16 in the manner of an electromagnetic valve.
  • the shut-off device 16 is constructed identically to the shut-off device 6 of the arrangement shown in FIG. 1. It consists of a stamp 21, which is held on a shaft 22, which in turn is designed as an armature for an electromagnet.
  • the latter is formed by a cylindrical current-carrying coil 23 which surrounds a cylindrical extension 25 of the heat pipe in a separate housing 24, this extension 25 having a smaller diameter than the actual heat pipe and at the same time serving as a guide for the shaft 22.
  • a compression spring 26 is arranged, which presses the sealing surface of the plunger 21 against the evaporator-side end of the wall 13 and of the wedge-shaped plate 17.
  • the liquid channel 12 fills up to the capillary structure 15 completely with the liquid heat transfer medium, as a result of which the prerequisite for starting up the heat pipe is given.
  • the heat transfer medium passes through the capillaries located on the inner wall of the tube in the evaporator area into the steam channel 11, where it evaporates while absorbing the heat to be removed.
  • the brief opening process is controlled in that a current pulse flows through the coil 23 via connecting lines 27 and thereby pulls the shaft 22 into the extension 25 against the force of the compression spring 26.
  • a thermostatically controlled shut-off device instead of such an electromagnetic valve, which is formed by a heating device and an actuator, the temperature-dependent expansion of which is converted into a movement of the plunger closing the passage opening.
  • an element made of a shape memory alloy, for example nickel titanium, is also suitable as an actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Central Heating Systems (AREA)
  • Surgical Instruments (AREA)

Abstract

Bei einem mit einem Wärmeträgermedium gefüllten Wärmerohr sind wenigstens je ein Strömungskanal für das flüssige und für das verdampfte Wärmeträgermedium vorgesehen. Der Strömungskanal (2) für das flüssige Wärmeträgermedium weist einen Querschnitt auf, dessen Kapillarradius in Richtung auf das kondensatorseitige Ende des Wärmerohres kontinuierlich zunimmt. Vorzugsweise ist am verdampferseitigen Ende des Wärmerohres eine verschließbare Öffnung vorgesehen, um die Strömungskanäle miteinander zu verbinden. Die Absperrvorrichtung (16) für diese Durchtrittsöffnung für Gas- bzw. Dampfblasen, die sich im Flüssigkeitskanal (2) gesammelt haben, ist von außen betätigbar und kann als elektromagnetisches Ventil ausgebildet sein. <IMAGE>

Description

  • Die Erfindung betrifft eine Anordnung zur Übertragung von Wärme, bestehend aus einen mit einem Wärmeträgermedium gefüllten Wärmerohr, in dem wenigstens je ein Strömungskanal für das flüssige und für das in dem dampfförmigen Aggregatznstand überführte Wärmeträgermedium vorhanden sind und bei dem ferner Mittel vorgesehen sind, um im Flüssigkeitskanal befindliche Blasen in den Dampfkanal zu befördern.
  • Wärmerohre oder "heat pipes" für den Transport von Wärme sind, insbesondere aus dem Bereich der Raumfahrttechnik bereits bekannt. Bei diesem wird auf der wärmeabgebenden Seite eine Flüssigkeit, in der Regel Ammoniak, verdampft und der Dampf wird zur wärmeabgebenden Seite geleitet. Dort kondensiert der Dampf, wobei die in ihm gespeicherte latente Wärme an die Umgebung abgeführt wird, und das entstehende Kondensat fließt wieder zur wärmeaunfnehmenden Seite, dem Verdampfer, zurück. Die dabei auftretende Dampfströmung ist eine normale Druckströmung, während die Flüssigkeitsströmung eine Kapillarströmung ist. Unterschiedliche Krümmungsradien der Grenzfläche zwischen der Flüssigkeit und dem Dampf im Verdampferende einerseits und im Kondensatorende andererseits und die dadurch hervorgerufenen Kapillarkräfte bewirken eine Druckdifferenz in Richtung Verdampferende, die die Strömung antreibt. Die sich einstellende Strömungsgeschwindigkeit ergibt sich aus dem Gleichgewicht zwischen dem Druckverlust aufgrund von Reibungskräften und der wirksamen Druckdifferenz der Kapillarkräfte.
  • Moderne Kochleistungswärmerohre sind in der Lage, auch bei vergleichsweise geringen Temperaturdifferenzen, Wärmemengen in der Größenordnung von etwa 1 kW über Entfernungen zwischen einem und etwa 20 Metern zu transportieren.
  • Diese im Vergleich zu konventionellen Wärmerohren höhere Leistung der Hochleistungswärmerohr wird dadurch erzielt, daß für den Transport der Flüssigkeit Kanäle unterschiedlicher Abmessungen verwendet werden: Während im Verdampfungsbereich eine Vielzahl sehr kleiner Kanäle mit Kapillargeometrien verwendet wird, um große treibende Kapillarkräfte zu erzielen, erfolgt die Strömungsführung im Kondensatorbereich sowie in der Transportzone über nur wenige Strömungskanäle, gegebenenfalls einem einzigen Kanal mit relativ großem Durchmesser, der auch als Arterie bezeichnet wird. Auf diese Weise wird der reibungsbedingte Druckverlust minimiert und es ergibt sich bei gleichen Kapillarkräften ein wesentliche größerer Fluidmassenstrom und als dessen Folge ein ebenfalls wesentlich höherer Wärmestrom.
  • Ein wesentliches Problem beim Betrieb derartiger Hochleistungswärmerohre liegt darin, daß ihre Funktion erheblich beeinträchtigt bzw. ganz unterbrochen werden kann, wenn sich Blasen aus dem Dampf des Wärmeträgerfluids oder aus gasförmigen, nicht kondensierbaren Fremdstoffen in der Arterie befinden. Diese können sich entweder bereits bei der Inbetriebnahme des Wärmerohres zufällig dort befunden haben, sie können aber auch durch eine betriebsbedingte Überlastung des Wärmerohres, beispielsweise eine Überhitzung am Verdampferende bei kurzzeitiger Austrocknung der Verdampfungszone, entstanden sein. Die Blasen können den Transport des Wärmeträgerfluids zur wärmeaufnehmenden Zone unterbrechen, so daß diese weiter austrocknet und das Wärmerohr in seiner Funktion blockiert wird.
  • In der Literaturstelle Heat Pipe Design Handbook, Volume 1, B & K Engineering Inc., Towson, Maryland 21204, USA, Seiten 149 und 152, sind deshalb zwei Wärmerohre beschrieben, bei denen Maßnahmen zur Entfernung von Blasen und damit zur Vermeidung von Blockaden durch Glasblasen vorgesehen sind. Diese Maßnahmen bestehen in einem Fall aus einer Anordnung mit Entlüftungsbohrungen in der Wand zwischen der Arterie und dem Dampfkanal, im anderen Fall aus einer Ventildüse, die im Transportbereich für den Dampf angeordnet ist und die zugleich als Strahlpumpe über ein Ansaugrohr in der Arterie vorhandene Gasblasen absaugt.
  • Nachteilig bei einer Anordnung von Entlüftungslöchern in der Arterienwand ist der Umstand, daß während des Betriebes des Wärmerohrs der Druck im Dampfkanal wesentlich höher als in der Arterie ist, so daß zur Überführung von Gasblasen aus der Arterie in den Dampfkanal eine Betriebsunterbrechung erforderlich ist. Da dann aber die Entlüftungsbohrungen von Flüssigkeitsbrücken blockiert sind, die zunächst verdampfen müssen bevor die Gasblasen hindurchtreten können, erfordern diese Betriebspausen einen vergleichsweise langen Zeitraum, bevor das Wärmerohr wieder einsatzbereit ist.
  • Die Anordnung einer Venturidüse im Dampfkanal hat andererseits den folgenden Nachteil: Befindet sich keine Gasblase im Ansaugbereich der Düse, so sammelt sich ständig eine, wenn auch geringe, Menge an Wärmeträgerfluid aus der Arterie im Ansaugrohr. Wenn nun eine Gasblase vor die Ansaugöffnung gelangt, so muß, damit diese aus der Arterie abgesaugt werden kann, zunächst die Flüssigkeitsmenge aus dem Ansaugrohr entfernt werden. Wegen des damit verbundenen großen Druckverlustes der Strömung im Ansaugrohr muß die in der Venturidüse hervorgerufene Druckminderung beträchtlich sein, d.h., die Düse muß eine vergleichsweise starke Querschnittsverengung aufweisen. Dies aber führt auf der anderen Seite zu einer erheblichen Beeinträchtigung der Dampfströmung infolge des Druckverlustes und damit zu einer stark herabgesetzten Leistungsfähigkeit des Wärmerohres.
  • Aufgabe der Erfindung ist es, ein Wärmerohr der eingangs genannten Art so auszubilden, daß Dampfblasen des Wärmeträgerfluids sowie Blasen aus nicht kondensierbarem Gas einfach und schnell aus dem Strömungskanal für das Fluid entfernt werden können und damit eine sichere Inbetriebnahme eines derartigen Rohres, entweder erstmalig oder nach einer beispielsweise durch Überlastung hervorgerufenen Betriebsunterbrechung, gewährleistet ist.
  • Die Erfindung löst diese Aufgabe durch ein Wärmerohr mit den kennzeichnenden Merkmalen des Patentanspruchs 1. Vorteilhafte weiterbildungen sind durch die Merkmale der Unteransprüche gekennzeichnet.
  • Das Wärmerohr nach der Erfindung ist dabei in hohem Maße fehlertolerant gegenüber im Betrieb auftretenden Überlastungen, da der Start- bzw. Wiederanfahrvorgang wesentlich vereinfacht und beschleunigt wird. Ein besonders wichtiger Vorteil des erfindungsgemäßen Wärmerohres liegt ferner darin, daß es möglich ist, nicht nur Blasen aus nicht-kondensierbaren Gasen aus dem Flüssigkeitskanal zu entfernen, sondern ebenso wirksam auch Dampfblasen.
  • Im Rahmen der Ausgestaltung der Erfindung ist es dabei möglich, den für das Entfernen von Dampfblasen durchzuführenden Vorgang, durch einen kurzzeitigen Öffnungsvorgang des verdampferseitigen Endes entweder manuell anzusteuern oder aber diesen voll automatisch zu initiieren, um die Entlüftung erheblich zu beschleunigen. Die zur Öffnung erforderliche Betätigungskraft kann dabei auf besonders vorteilhafte Weise thermostatisch, elektromagnetisch oder aber durch die Verwendung eines Stellgliedes aus einer sogenannten Gedächtnislegierung ("shape memory alloy"), wie z. B. Nickel-Titan, erzeugt werden.
  • Im folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Es zeigen:
  • Fig. 1 und 2
    je einen Längsschnitt durch einen Teil eines Hochleistungswärmerohres,
    Fig. 3
    einen Schnitt gemäß III-III durch die in Fig. 2 dargestellte Anordnung und
    Fig. 4
    eine Ausführungsform im Längsschnitt durch das verdampferseitige Ende des in Fig. 2 dargestellte Wärmerohres.
  • Der in Fig. 1 dargestellte Schnitt zeigt im mittleren Bereich die Transportzone eines Hochleistungswärmerohres, an die sich im linken Teil der Zeichnung die Verdampferzone, im rechten Teil die Kondensatorzone anschließt. Die Transportzone besteht aus einem Strömungskanal 1 für das verdampfte Wärmeträgermedium sowie, im Bild darunter liegend angeordnet, einem zweiten Strömungskanal 2, der Arterie, in dem das am Kondensatorende wieder verflüssigte Wärmeträgermedium zum Verdampferende zurückfließt. Der Flüssigkeitskanal 2 ist so gestaltet, daß sein für die Ausbildung von Gas- oder Dampfblasen relevanter kapilarer Radius, vom Verdampferende ausgehend, ständig zunimmt und seinen größten Wert am Kondensatorende erreicht. Bei dem in Fig. 1 dargestellten Wärmerohr wird diese dadurch erreicht, daß die die beiden Strömungskanäle 1 und 2 trennende Wand 3 unter einem von Null verschiedenen Winkel zur Längsachse des Wärmerohres angeordnet ist. Im Bild erkennbar sind ferner die Grenzfläche 4 zwischen der flüssigen und der dampfförmigen Phase sowie eine in tangentialer Richtung umlaufende feine Kapillarstruktur 5 an der Innenwand des Wärmerohres. Auf eine Ausführungsform mit einer Vorrichtung 6 zum verdampferseitigen Abschluß des Wärmerohres zur Freigabe einer Durchtrittsöffnung zwischen dem Flüssigkeitskanal 2 und dem Dampfkanal 1 wird im Zusammenhang mit den Erläuterungen zur Fig. 4 näher eingegangen.
  • Zunächst ist in den Figuren 2 und 3 ein zweites Wärmerohr dargestellt, das sich von dem vorangehend beschriebenen dadurch unterscheidet, daß in diesem Fall die den Dampfkanal 11 vom Flüssigkeitskanal 12 trennende Wand 13 parallel zur Längsachse des Wärmerohres verläuft und daß in diesem Fall die konische Verjüngung des kapillaren Querschnitts des Flüssigkeitskanals 12 in Richtung auf das Verdampferende durch ein an der Trennwand 13 angeordnetes, in den Flüssigkeitskanal 12 ragendes keilförmiges Blech 17 erreicht wird. Die Stärke dieses Bleches 17 nimmt in Richtung auf das Verdampferende kontinuierlich zu. Im Bild zu erkennen sind ferner wieder die Grenzfläche 14 Flüssigkeit/Dampf sowie die Kapillarstruktur 15.
  • Fig. 4 zeigt ein Ausführungsbeispiel einer vorteilhaften Absperrvorrichtung 16 nach Art eines elektromagnetischen Ventils. Die Absperrvorrichtung 16 ist dabei identisch aufgebaut wie die Absperrvorrichtung 6 der in Fig. 1 gezeigten Anordnung. Sie besteht aus einem Stempel 21, der auf einem Schaft 22 gehaltert ist, welcher wiederum als Anker für einen Elektromagneten ausgebildet ist. Letzterer wird von einer zylindrischen stromdurchflossenen Spule 23 gebildet, die in einem separaten Gehäuse 24 einen zylindrischen Ansatz 25 des Wärmerohres umgibt, wobei dieser Ansatz 25 einen geringeren Durchmesser als das eigentliche Wärmerohr aufweist und zugleich als Führung für den Schaft 22 dient. Zwischen dem Schaft 22 und dem stirnseitigen Abschluß des Ansatzes 25 ist eine Druckfeder 26 angeordnet, die die Dichtfläche des Stempels 21 gegen das verdampferseitige Ende der Wand 13 sowie des keilförmigen Bleches 17 preßt.
  • Vor der ersten Inbetriebnahme des Wärmerohres oder nach einem Ausfall infolge Überlastung wird bei einer Anordnung mit einer Absperrvorrichtung der Stempel 21 für kurze Zeit von der Wand 13 weggezogen und damit eine Öffnung zwischen dem flüssigkeitskanal 12 und dem Dampfkanal 11 geschaffen. Dampf- bzw. Gasblasen die sich zu diesem Zeitpunkt am verdampferseitigen Ende des Flüssigkeitskanals 12 angesammelt haben, können durch diese Öffnung rasch in den Dampfkanal 11 entweichen. Dadurch füllt sich der Flüssigkeitskanal 12 wieder bis zur Kapillarstruktur 15 hin vollständig mit dem flüssigen Wärmeträgermedium, wodurch die Voraussetzung für die Inbetriebnahme des Wärmerohres gegeben ist. Das Wärmeträgermedium gelangt über die an der Innenwand des Rohres im Verdampferbereich befindlichen Kapillaren in den Dampfkanal 11, wo es unter Aufnahme der abzuführenden Wärme verdampft.
  • Der kurzzeitige Öffnungsvorgang wird dadurch kontrolliert, daß die Spule 23 über Anschlußleitungen 27 von einem Strompuls durchflossen wird und dadurch den Schaft 22 gegen die Kraft der Druckfeder 26 in den Ansatz 25 hereinzieht. Es ist im Rahmen der Erfindung aber auch möglich, anstelle eines solchen elektromagnetischen Ventils eine thermostatisch kontrollierte Absperrvorrichtung vorzusehen, die von einer Aufheizeinrichtung sowie einem Stellglied gebildet wird, dessen temperaturabhängige Dehnung in eine Bewegung des die Durchtrittsöffnung verschließenden Stempels umgesetzt wird. Schließlich ist als Stellglied auch ein Element aus einer Formgedächtnislegierung, zum Beispiel Nickel-Titan, geeignet.

Claims (8)

  1. Anordnung zur Übertragung von Wärme, bestehend aus einem mit einem Wärmeträgermedium gefüllten Wärmerohr, in dem wenigstens je ein Strömungskanal für das flüssige und für das in dem dampfförmigen Aggregatzustand überführte Wärmeträgermedium vorhanden sind und bei dem ferner Mittel vorgesehen sind, um im Flüssigkeitskanal befindliche Blasen in den Dampfkanal zu befördern, dadurch gekennzeichnet; daß der Flüssigkeitskanal (2, 12) einen in Richtung auf das kondensatorseitige Ende kontinuierlich zunehmenden Kapillarradius aufweist.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß eine den Flüssigkeitskanal (2) vom Dampfkanal (1) trennende Wand (3) zur Längsachse des Rohres geneigt verläuft.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß an der Wand (13) ein in das Innere des Flüssigkeitskanals (12) ragender, in Längsrichtung des Rohres verlaufender Ansatz (17) vorgesehen ist und der Kapillarradius in Richtung auf das Kondensatorende hin abnimmt.
  4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß am verdampferseitigen Ende des Wärmerohres eine mittels einer von außen ansteuerbaren Absperrvorrichtung (6, 16) verschließbare Durchtrittsöffnung zwischen dem Flüssigkeitskanal (2, 12) und dem Dampfkanal (1, 11) vorgesehen ist.
  5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Absperrvorrichtung (6, 16) als elektromagnetisch betätigtes Ventil ausgebildet ist.
  6. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Absperrvorrichtung aus einer elektrischen Aufheizeinrichtung sowie einem temperaturabhängig verformbaren Stellglied besteht.
  7. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Absperrvorrichtung ein Steliglied aus einer Formgedächtnislegierung aufweist.
  8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Absperrvorrichtung (6, 16) automatisch ansteuerbar ist.
EP93108818A 1992-07-08 1993-06-02 Wärmerohr Expired - Lifetime EP0577969B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4222340 1992-07-08
DE4222340A DE4222340C2 (de) 1992-07-08 1992-07-08 Wärmerohr

Publications (2)

Publication Number Publication Date
EP0577969A1 true EP0577969A1 (de) 1994-01-12
EP0577969B1 EP0577969B1 (de) 1995-11-29

Family

ID=6462708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93108818A Expired - Lifetime EP0577969B1 (de) 1992-07-08 1993-06-02 Wärmerohr

Country Status (3)

Country Link
US (1) US5360058A (de)
EP (1) EP0577969B1 (de)
DE (2) DE4222340C2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167948B1 (en) 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
RU2224967C2 (ru) * 2001-08-09 2004-02-27 Сидоренко Борис Револьдович Испарительная камера контурной тепловой трубы
WO2004046631A1 (de) * 2002-11-16 2004-06-03 Karl Heinz Gast Positionier-einrichtung für elemente von heizungskomponenten, verfahren zum betreiben und verwendung
US7420810B2 (en) * 2006-09-12 2008-09-02 Graftech International Holdings, Inc. Base heat spreader with fins
US8919427B2 (en) * 2008-04-21 2014-12-30 Chaun-Choung Technology Corp. Long-acting heat pipe and corresponding manufacturing method
US9163883B2 (en) 2009-03-06 2015-10-20 Kevlin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
TWI494051B (zh) * 2012-11-19 2015-07-21 Acer Inc 流體熱交換裝置
US9315280B2 (en) 2012-11-20 2016-04-19 Lockheed Martin Corporation Heat pipe with axial wick
CN103853297B (zh) * 2012-12-04 2017-06-20 宏碁股份有限公司 流体热交换装置
US11026343B1 (en) 2013-06-20 2021-06-01 Flextronics Ap, Llc Thermodynamic heat exchanger
WO2015014387A1 (fr) * 2013-07-29 2015-02-05 Francois-Mathieu Winandy Procedes et installations de dessalement d'eau par distillation a compression mecanique de vapeur
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
US12104856B2 (en) 2016-10-19 2024-10-01 Kelvin Thermal Technologies, Inc. Method and device for optimization of vapor transport in a thermal ground plane using void space in mobile systems
EP3622238A4 (de) * 2017-05-08 2021-01-13 Kelvin Thermal Technologies, Inc. Wärmeverwaltungsebenen
US20200404805A1 (en) * 2019-06-19 2020-12-24 Baidu Usa Llc Enhanced cooling device
CN115997099A (zh) 2020-06-19 2023-04-21 开尔文热技术股份有限公司 折叠式热接地平面

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865184A (en) * 1971-02-08 1975-02-11 Q Dot Corp Heat pipe and method and apparatus for fabricating same
WO1982004309A1 (en) * 1981-05-29 1982-12-09 Kotani Koichi Heat pipe
BE903187A (fr) * 1985-09-05 1986-03-05 Belge Const Aeronautiques Caloduc capillaire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537514A (en) * 1969-03-12 1970-11-03 Teledyne Inc Heat pipe for low thermal conductivity working fluids
US4116266A (en) * 1974-08-02 1978-09-26 Agency Of Industrial Science & Technology Apparatus for heat transfer
US4170262A (en) * 1975-05-27 1979-10-09 Trw Inc. Graded pore size heat pipe wick
US4422501A (en) * 1982-01-22 1983-12-27 The Boeing Company External artery heat pipe
JPS5963492A (ja) * 1982-09-30 1984-04-11 Sanyo Electric Co Ltd ヒ−トパイプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865184A (en) * 1971-02-08 1975-02-11 Q Dot Corp Heat pipe and method and apparatus for fabricating same
WO1982004309A1 (en) * 1981-05-29 1982-12-09 Kotani Koichi Heat pipe
BE903187A (fr) * 1985-09-05 1986-03-05 Belge Const Aeronautiques Caloduc capillaire

Also Published As

Publication number Publication date
EP0577969B1 (de) 1995-11-29
DE4222340C2 (de) 1996-07-04
US5360058A (en) 1994-11-01
DE59301042D1 (de) 1996-01-11
DE4222340A1 (de) 1994-01-13

Similar Documents

Publication Publication Date Title
EP0577969B1 (de) Wärmerohr
EP0600191B1 (de) Wärmerohr
DE602005003058T2 (de) Kühlkörper
DE2512480C3 (de) Ventilvorrichtung für einen hydraulisch betätigbaren elektrischen Leistungsschalter
DE102007028562B4 (de) Kühlanlage
DE4445054C2 (de) Dampfsterilisator
DE2061917C3 (de) Kühleinrichtung mit einem Durchflußsteuerventil zwischen Kondensator und Dosiervorrichtung
DE4123036A1 (de) Schieberventil
EP0600192B1 (de) Wärmerohr
WO2003033319A2 (de) Hydrodynamisches bremssystem mit einem retarder
DE69226205T2 (de) Thermisch gesteuerter Kondensatableiter
DE102009023985A1 (de) Abwärmerückgewinnungsvorrichtung
EP0195389B2 (de) Rohrtrenner
DE69807921T2 (de) Ventileinheit zur regulierung des durchflusses eines druckmittels
EP0574678A1 (de) Wärmerohr
DE958845C (de) Kompressionskuehlanlage
DE8002070U1 (de) Kompressorkuehlanordnung
DE102022213811A1 (de) Fluidleitungsvorrichtung mit temperaturabhängig freigebbarer Öffnung
EP0227854B1 (de) Druckmindervorrichtung
EP3478996B1 (de) Ventil zum verschliessen und öffnen eines leitungssystems
DE3106870A1 (de) Oelbrennersystem mit oelruecknahmevorrichtung
DE3402441C2 (de)
DE648852C (de) Gasmangelsicherung
DE60203648T2 (de) Kälteeinheit mit einer kühlvorrichtung
EP0301202B1 (de) Ventileinrichtung für Druckmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19940207

17Q First examination report despatched

Effective date: 19940803

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59301042

Country of ref document: DE

Date of ref document: 19960111

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960217

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990302

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990520

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990624

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990809

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: DAIMLERCHRYSLER AEROSPACE A.G.

Effective date: 20000630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050602