EP0554151B1 - Procédé d'hydrogénation sélective, notamment des dioléfines dans les essences de vapocraquage, avec un catalyseur sous forme de lits mis en oeuvre successivement - Google Patents

Procédé d'hydrogénation sélective, notamment des dioléfines dans les essences de vapocraquage, avec un catalyseur sous forme de lits mis en oeuvre successivement Download PDF

Info

Publication number
EP0554151B1
EP0554151B1 EP93400164A EP93400164A EP0554151B1 EP 0554151 B1 EP0554151 B1 EP 0554151B1 EP 93400164 A EP93400164 A EP 93400164A EP 93400164 A EP93400164 A EP 93400164A EP 0554151 B1 EP0554151 B1 EP 0554151B1
Authority
EP
European Patent Office
Prior art keywords
bed
charge
catalyst
product
beds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400164A
Other languages
German (de)
English (en)
Other versions
EP0554151A1 (fr
Inventor
Jean Cosyns
Patrick Sarrazin
Jean-Paul Boitiaux
Charles Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0554151A1 publication Critical patent/EP0554151A1/fr
Application granted granted Critical
Publication of EP0554151B1 publication Critical patent/EP0554151B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/06Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins

Definitions

  • the present invention relates to a hydrogenation process and more particularly to a process for the selective hydrogenation of diolefins in liquid hydrocarbon fractions such as, for example, steam cracked gasolines.
  • liquid hydrocarbon fractions such as, for example, steam cracked gasolines.
  • These essences indeed contain gum-generating compounds that are diolefins mixed with olefinic compounds and aromatic compounds. To recover these olefinic compounds and these aromatic compounds, it is necessary to selectively hydrogenate the diolefins.
  • Such treatments are generally carried out on metal catalysts deposited on an amorphous or crystalline support.
  • the metals used are the Group VIII metals and among these, nickel and palladium can be noted.
  • the implementation of the hydrogenation operation itself involves a heat extraction system because the exotherm is such that the catalyst would be damaged by the excessively high temperatures which prevail at the outlet of the catalyst bed.
  • This extraction of calories can be done by exchange with a heat transfer fluid in a reactor-exchanger, the catalyst being maintained in the tubes and the heat transfer fluid being debited from the grille side.
  • Such an implementation, called isothermal is complicated and requires the use of very expensive reactors.
  • An improvement consists in separating the catalyst into two beds and cooling the effluent from the first bed with a quenching liquid consisting of cold hydrogenated product.
  • the object of the invention is therefore to extend the operating time of the catalyst payload by gradually bringing the entire catalyst charge into service instead of using it entirely from the start. It has in fact been surprisingly found that it is better to use the minimum quantity of catalyst rather than having a substantial excess at the start of operation, as is commonly done in order to compensate for the deactivation of the first part. bed.
  • the process which is the subject of the invention therefore consists in distributing the catalyst into several beds and preferably in the same reactor, but putting these beds into service successively, by adding a new catalyst bed at the head as soon as the need arises. is felt, that is to say when the performance of the mass of catalyst in operation is insufficient to give a product to the specifications.
  • the invention is a process for the hydrogenation of hydrocarbon feedstock by contact with p catalytic beds n 1 ... n i ... np, said beds being separated and containing the same catalyst, process characterized in that the feedstock is introduced into the bed n p and the resulting product p p is extracted, that, when the product p p does not reach the required quality, the introduction of the load in bed np is stopped, and that simultaneously the load is introduced into bed n p-1 , the product obtained p p-1 being introduced into bed n p , and that then, generally, when the product p p reaches the minimum performance threshold, the introduction of the load into the bed ni is stopped, at the same time the load is introduced into the bed n i-1 , the product obtained p i-1 being introduced into the bed n i , and so on until i has taken all the integer values up to 1.
  • FIG. 1 represents the process applied with several separate reactors, FIG. 2 in a single reactor.
  • the known technique consisted in using an entire mass of catalyst to obtain a product p p having the required specifications, for a cycle time D (or operating time).
  • the mass of catalyst or an amount less than this mass is divided into p beds (n 1 , n i , n p ) distributed in 1 or more reactors and each containing at least the minimum quantity of catalyst necessary for obtaining the required specifications.
  • the supply of the load is moved to the bed n i-1 , located upstream of the bed nor so that the load to be treated successively crosses the bed n i-1 of new catalyst, then the product from this bed through the spent catalyst bed ni, the product obtained pi passing through the spent catalyst bed n i + 1 etc ... until the bed np either crossed, the product p p then being obtained.
  • valve 40 when p 4 reaches its threshold S, the valve 40 is closed (preferably progressively), thus stopping the introduction of charge into n 4 and in the same time, the valve 30 is open so as to supply the bed n 3 with the load via the pipe 3.
  • the product p 3 obtained after passage of the charge over n 3 , passes over the bed n 4 (downstream). It appears p 4 of bed no 4 .
  • the procedure is the same as above, forming the valve 30 while simultaneously opening the valve 20 for supplying the bed n 2 through the pipe 2.
  • the product p 2 from this bed then passes over the bed n 3 , the product p3 from n 3 passes over the bed n4 and the final product p4 is extracted.
  • the hydrogen necessary for the reaction is brought for example by means of the pipes 41, 31, 21, 11 successively put into service on the reaction beds.
  • the use of a single reactor is particularly advantageous in terms of costs, but the reactor can only operate with a downflow, the bed n p having to be the lowest and the bed n 1 the top.
  • the operator may also prefer to use smaller quantities of catalyst (total mass less than ) for comparable cycle times.
  • catalyst test unit comprising 4 reactors which can operate in series, the effluent from the first being transferred to the second then to the third and then to the fourth.
  • reactors modeling each bed consist of a steel tube 3 cm in diameter. Each of these reactors can be heated by an electric oven which makes it possible to maintain the desired temperature in each of the beds.
  • All of the reactors can be used as described above, that is to say N ° 1, N ° 2, N ° 3, N ° 4 but a device also makes it possible to use the reactor 4 only or else 3 and 4 in series, or 2, 3 and 4 in series.
  • catalyst LD 265 from the company Procatalyse containing 0.3% of palladium supported on alumina in the 4 reactors arranged in series at a rate of 100 cm 3 per reactor.
  • This catalyst is reduced by hydrogen delivered for 6 hours at 150 ° C at a rate of 40 l / h.
  • the performances are measured by the variation of the maleic anhydride index (AVM) between the inlet of the first reactor and the outlet of the fourth.
  • the temperature is set at 80 ° C in all of the reactors at the start of operation and then regularly increased to 120 ° C to restore the conversion when it decreases.
  • the load gives an AVM of 106, the AVMs of the products are given as a function of time as well as the operating temperature in table 1.
  • Table 1 Walking time in hours
  • Temperature MAV output 50 80 ⁇ 2 100 80 ⁇ 2 200 80 ⁇ 2 500 80 2.2 750 80 2.3 820 80 2.8 950 80 3.8 1160 95 ⁇ 2 1300 95 4 1400 110 ⁇ 2 1540 110 5 1600 120 ⁇ 2 1800 120 8
  • a new reactor is put into service when the assembly in operation no longer makes it possible to obtain an AVM of less than 3 at output for a temperature of 80 ° C. Then, the temperature of the four reactors is gradually increased to restore performance.
  • the AVMs of the products are given as well as the arrangement of the reactors and the operating temperature as a function of time in Table 2.
  • Table 2 Walking time in hours Arrangement Temperature MAV output 50 4 80 ⁇ 2 100 4 80 ⁇ 2 200 4 80 2.4 500 4 80 2.8 600 4 80 3.8 700 3.4 80 ⁇ 2 800 3.4 80 ⁇ 2 1000 3.4 80 2.5 1200 3.4 80 3.2 1300 2,3,4 80 ⁇ 2 1400 2,3,4 80 ⁇ 2 1600 2,3,4 80 2.7 1800 2,3,4 80 3 1900 1,2,3,4 80 ⁇ 2 2000 1,2,3,4 80 ⁇ 2 2200 1,2,3,4 80 2.5 2400 1,2,3,4 80 3.8 2800 1,2,3,4 90 ⁇ 2 2950 1,2,3,4 90 3.7 3000 1,2,3,4 95 ⁇ 2 3280 1,2,3,4 95 2.6 3300 1,2,3,4 100 ⁇ 2 3480 1,2,3,4 100 3 3500 1,2,3,4 115 ⁇ 2 2590 1,2,3,4 115 3.7 3600 1,2,3,4 120 ⁇ 2
  • catalyst LD 241 from the company Procatalyse containing 10% of nickel supported on alumina in the 4 reactors arranged in series at the rate of 100 cm 3 per reactor.
  • This catalyst is reduced by hydrogen delivered for 15 hours at 400 ° C at a rate of 40 l / h.
  • the activity of the catalyst is then measured under the same conditions as in Example 1.
  • the AVMs of the products are given as a function of time as well as the operating temperature in table 3.
  • Table 3 Walking time in hours Temperature MAV output 40 80 ⁇ 2 70 80 ⁇ 2 100 80 2 400 80 4.2 420 95 ⁇ 2 470 95 2.7 500 95 3.2 520 110 ⁇ 2 540 110 ⁇ 2 600 110 3.1 620 120 ⁇ 2 640 120 ⁇ 2 650 120 2.5 670 120 2.9 700 120 3.2
  • Table 4 shows the AVM of the products as well as the arrangement of the reactors and the operating temperature as a function of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention concerne un procédé d'hydrogénation et plus particulièrement un procédé d'hydrogénation sélective des dioléfines dans les coupes hydrocarbures liquides comme par exemple les essences de vapocraquage. Ces essences contiennent en effet des composés générateurs de gommes que sont les dioléfines en mélange avec des composés oléfiniques et des composés aromatiques. Pour valoriser ces composés oléfiniques et ces composés aromatiques, il est nécessaire d'hydrogéner sélectivement les dioléfines.
  • De tels traitements sont généralement effectués sur des catalyseurs métalliques déposés sur support amorphe ou cristallin. Les métaux utilisés sont les métaux du groupe VIII et parmi ceux-ci, on peut noter le nickel et le palladium.
  • Le caractère très instable de ces essences de pyrolyse en rend le traitement peu aisé car parallèlement à l'hydrogénation se produit sur le catalyseur une réaction de polymérisation qui provoque un colmatage et une désactivation du catalyseur. Pour compenser cette perte d'activité, on augmente progressivement la température opératoire mais cette façon de procéder augmente encore la vitesse à laquelle les dépôts polymériques se font. En conséquence, il est nécessaire de stopper périodiquement l'opération afin de procéder à un brûlage du catalyseur pour retrouver son activité initiale. Cet arrêt représente une perte réelle de production et la combustion doit être conduite très précisément pour éviter la dégradation irréversible des propriétés du catalyseur. Toute amélioration du procédé qui permettra d'augmenter la durée de cycle, c'est-à-dire la période entre deux combustions augmentera sensiblement la qualité de celui-ci.
  • La mise en oeuvre de l'opération d'hydrogénation elle-même implique un système d'extraction de calories car l'exothermicité est telle que le catalyseur serait endommagé par les températures trop élevées qui règneraient à la sortie du lit de catalyseur. Cette extraction des calories peut se faire par échange avec un fluide caloporteur dans un réacteur-échangeur, le catalyseur étant maintenu dans les tubes et le fluide caloporteur étant débité du côté calandre. Une telle mise en oeuvre, dite isotherme est compliquée et oblige à utiliser des réacteurs très onéreux.
  • On préfère généralement utiliser des réacteurs chambres et le contrôle de l'exothermicité de la réaction est réalisé par recyclage important de produit hydrogéné en tête de lit. Une amélioration consiste à séparer le catalyseur en deux lits et refroidir l'effluent du premier lit par un liquide de trempe constitué par du produit hydrogéné froid.
  • Néanmoins, une telle mise en oeuvre n'est pas entièrement satisfaisante car l'ensemble du catalyseur est soumis à la polymérisation, ce qui provoque dans beaucoup de cas un arrêt prématuré de l'installation pour perte de charge excessive à l'entrée de la section.
  • L'objet de l'invention est donc de prolonger la durée de fonctionnement de la charge utile de catalyseur en mettant en service progressivement l'ensemble de la charge de catalyseur au lieu de la mettre en oeuvre en totalité dès le démarrage. Il a été en effet trouvé de façon surprenante qu'il valait mieux mettre en oeuvre la quantité minimale de catalyseur plutôt que d'avoir un excès substantiel en début de fonctionnement comme cela se pratique couramment dans le but de compenser la désactivation de la première partie du lit.
  • Le procédé, objet de l'invention consiste donc à répartir le catalyseur en plusieurs lits et de préférence dans le même réacteur, mais de mettre ces lits en service successivement, en ajoutant un lit de catalyseur neuf en tête dès que le besoin s'en fait sentir, c'est-à-dire quand la performance de la masse de catalyseur en opération est insuffisante pour donner un produit aux spécifications.
  • Plus précisément, l'invention est un procédé d'hydrogénation de charge hydrocarbonée par contact avec p lits catalytiques n1...ni...np, lesdits lits étant séparés et contenant le même catalyseur, procédé caractérisé en ce que la charge est introduite dans le lit np et le produit résultant pp est extrait, que, lorsque le produit pp n'atteint pas la qualité demandée, l'introduction de la charge dans le lit np est stoppée, et que, simultanément la charge est introduite dans le lit np-1, le produit obtenu pp-1 étant introduit dans le lit np, et que ensuite, de façon générale, lorsque le produit pp atteint le seuil minimum de performance, l'introduction de la charge dans le lit ni est stoppée, dans le même temps la charge est introduite dans le lit ni-1, le produit obtenu pi-1 étant introduit dans le lit ni, et ainsi de suite jusqu'à ce que i ait pris toutes les valeurs entières jusqu'à 1.
  • L'invention sera mieux comprise en se référant à la description des figures 1 et 2.
  • La figure 1 représente le procédé appliqué avec plusieurs réacteurs séparés, la figure 2 dans un seul réacteur.
  • Antérieurement à l'invention, la technique connue consistait à utiliser une entière masse
    Figure imgb0001
    de catalyseur pour obtenir un produit pp présentant les spécifications requises, ce pour une durée de cycle D (ou durée de fonctionnement).
  • Lorsque le produit pp présentait des spécifications inférieures à celles requises (c'est-à-dire que le produit pp atteint le seuil minimum S de performance), on arrêtait le réacteur et régénérait le catalyseur.
  • Selon l'invention, la masse
    Figure imgb0001
    de catalyseur ou une quantité inférieure à cette masse est fractionnée en p lits (n1, ni, np) répartis dans 1 ou plusieurs réacteurs et contenant chacun au moins la quantité minimale de catalyseur nécessaire à l'obtention des spécifications requises. Chaque fois que le produit pp n'atteint plus la qualité demandée, l'alimentation de la charge est déplacée vers le lit ni-1, situé en amont du lit ni de façon à ce que la charge à traiter traverse successivement le lit ni-1 de catalyseur neuf, puis le produit, issu de ce lit travers le lit de catalyseur usé ni, le produit obtenu pi traversant le lit de catalyseur usé ni+1 etc... jusqu'à ce que le lit np soit traversé, le produit pp étant alors obtenu.
  • Plus précisément, en se référant aux figures 1 et 2 dans lesquelles p = 4, lorsque p4 atteint son seuil S, la vanne 40 est fermée (de préférence progressivement), arrêtant ainsi l'introduction de charge dans n4 et dans le même temps, la vanne 30 est ouverte de façon à alimenter le lit n3 avec la charge par la canalisation 3.
  • Le produit p3, obtenu après passage de la charge sur n3, passe sur le lit n4 (en aval). Il ressort p4 du lit n4. Lorsqu'on détecte (par mesure d'une spécification et comparaison avec la spécification demandée pour la qualité) que p4 ne présente plus la qualité demandée, on procède de la même façon que précédemment, en formant la vanne 30 tandis que simultanément on ouvre la vanne 20 pour alimenter le lit n2 par la canalisation 2. Le produit p2 issu de ce lit passe ensuite sur le lit n3, le produit p3 issu de n3 passe sur le lit n4 et le produit final p4 est extrait.
  • Et ainsi de suite jusqu'au dernier lit n1 qui est alimenté par une canalisation 1 munie d'une vanne 10.
  • L'hydrogène nécessaire à la réaction est amené par exemple au moyen des canalisations 41, 31, 21, 11 mises successivement en service sur les lits en réaction.
  • On a représenté 4 lits pour illustrer l'invention, on conçoit qu'elle s'applique à p lits.
  • Lorsque le dernier lit, n1 est mis en service et que le produit pp obtenu présente une qualité inférieure à celle demandée, on peut alors, de façon avantageuse, augmenter progressivement la température de la masse totale de catalyseur de façon à obtenir à nouveau et maintenir la qualité demandée sur pp, ceci jusqu'à la désactivation complète du catalyseur.
  • L'utilisation d'un seul réacteur est particulièrement avantageuse au niveau des coûts, mais le réacteur ne peut fonctionner qu'avec un écoulement descendant, le lit np devant être le plus bas et le lit n1 le puys haut.
  • La demanderesse a ainsi pu constater que de façon surprenante (montrée par les exemples), par rapport à un procédé d'hydrogénation avec un lit unique d'une masse
    Figure imgb0001
    de catalyseur, on obtient pour une même masse
    Figure imgb0001
    de catalyseur totale (somme de tous les lits n1 à np) des durées de cycle notablement plus importantes (gain de 57 % selon l'exemple).
  • L'exploitant peut également préférer utiliser des quantités de catalyseur moins importantes (masse totale inférieure à
    Figure imgb0001
    ) pour des durées de cycle comparables.
  • Les exemples suivants illustrent l'invention.
  • EXEMPLE 1 (comparaison)
  • On dispose d'une unité de test de catalyseur comportant 4 réacteurs pouvant fonctionner en série, l'effluent du premier étant transféré dans le second puis dans le troisième puis dans le quatrième.
  • Ces réacteurs modélisant chaque lit sont constitués par un tube en acier de 3 cm de diamètre. Chacun de ces réacteurs peut être chauffé par un four électrique qui permet de maintenir la température désirée dans chacun des lits.
  • On peut utiliser l'ensemble des réacteurs comme décrit ci-dessus, c'est-à-dire N°1, N°2, N°3, N°4 mais un dispositif permet également d'utiliser le réacteur 4 seulement ou bien 3 et 4 en série, ou bien 2, 3 et 4 en série.
  • On dispose 400 cm3 de catalyseur LD 265 de la Société Procatalyse contenant 0,3 % de palladium supporté sur alumine dans les 4 réacteurs disposés en série à raison de 100 cm3 par réacteur.
  • On réduit ce catalyseur par de l'hydrogène débité pendant 6 heures à 150°C à raison de 40 l/h.
  • On mesure alors l'activité hydrogénante de ces 400 cm3 de catalyseur vis-à-vis des dioléfines contenues dans une essence de vapocraquage ayant les caractéristiques suivantes :
    • Intervalle de distillation : 39-181 °C
    • Densité : 0,834
    • Soufre : 150 ppm
    • Diènes : 16 % Poids
    • Oléfines : 4 % Poids
    • Aromatiques : 68 % Poids
    • Paraffines : 12 % Poids
  • Les conditions de test sont les suivantes :
    • Pression : 30 bar
    • Température : 80 °C initialement
    • Débit d'hydrocarbure : 500 cm3/h
    • Débit d'hydrogène : 100 l/h
  • Les performances sont mesurées par la variation de l'indice d'anhydride maléique (MAV) entre l'entrée du premier réacteur et la sortie du quatrième. La température est fixée à 80 °C dans l'ensemble des réacteurs en début de fonctionnement puis régulièrement augmentée jusqu'à 120 °C pour rétablir la conversion lorsque celle-ci diminue. La charge donne une MAV de 106, les MAV des produits sont données en fonction du temps ainsi que la température de fonctionnement dans le tableau 1. Tableau 1
    Temps de marche en heures Température MAV sortie
    50 80 < 2
    100 80 < 2
    200 80 < 2
    500 80 2,2
    750 80 2,3
    820 80 2,8
    950 80 3,8
    1160 95 < 2
    1300 95 4
    1400 110 < 2
    1540 110 5
    1600 120 < 2
    1800 120 8
  • On peut voir sur ce tableau que l'arrangement en quatre lits successivement traversés permet de maintenir le produit en sortie de section réactionnelle à une MAV inférieure à 3 pendant environ 1500 heures.
  • EXEMPLE 2 (selon l'invention)
  • On utilise maintenant l'installation de test selon sa deuxième possibilité. On charge donc les quatre réacteurs avec les mêmes quantités du même catalyseur et on active l'ensemble de la même façon que ci-dessus puis l'on mesure les performances en fonction du temps de la même façon que ci-dessus.
  • Cependant, on ne met en oeuvre les réacteurs que successivement dans l'ordre suivant :
    • Réacteur 4,
    • Réacteur 3 + réacteur 4,
    • Réacteur 2 + réacteur 3 + réacteur 4,
    • Réacteur 1 + réacteur 2 + réacteur 3 + réacteur 4.
  • Un nouveau réacteur est mis en service lorsque l'ensemble en opération ne permet plus d'obtenir une MAV inférieure à 3 en sortie pour une température de 80 °C. Ensuite, la température des quatre réacteurs est progressivement augmentée pour rétablir la performance.
  • Les MAV des produits sont données ainsi que l'agencement des réacteurs et la température de fonctionnement en fonction du temps dans le tableau 2. Tableau 2
    Temps de marche en heure Arrangement Température MAV sortie
    50 4 80 < 2
    100 4 80 < 2
    200 4 80 2,4
    500 4 80 2,8
    600 4 80 3,8
    700 3,4 80 < 2
    800 3,4 80 < 2
    1000 3,4 80 2,5
    1200 3,4 80 3,2
    1300 2,3,4 80 < 2
    1400 2,3,4 80 < 2
    1600 2,3,4 80 2,7
    1800 2,3,4 80 3
    1900 1,2,3,4 80 < 2
    2000 1,2,3,4 80 < 2
    2200 1,2,3,4 80 2,5
    2400 1,2,3,4 80 3,8
    2800 1,2,3,4 90 < 2
    2950 1,2,3,4 90 3,7
    3000 1,2,3,4 95 < 2
    3280 1,2,3,4 95 2,6
    3300 1,2,3,4 100 < 2
    3480 1,2,3,4 100 3
    3500 1,2,3,4 115 < 2
    2590 1,2,3,4 115 3,7
    3600 1,2,3,4 120 < 2
  • On voit que la mise en oeuvre progressive de la même quantité de catalyseur que dans l'exemple 1 permet une durée de fonctionnement satisfaisante bien supérieure.
  • EXEMPLE 3 (Comparatif)
  • On dispose 400 cm3 de catalyseur LD 241 de la Société Procatalyse contenant 10 % de nickel supporté sur alumine dans les 4 réacteurs disposés en série à raison de 100 cm3 par réacteur.
  • On réduit ce catalyseur par de l'hydrogène débité pendant 15 heures à 400 °C à raison de 40 l/h.
  • On mesure alors l'activité du catalyseur dans les mêmes conditions que dans l'exemple 1.
  • Les MAV des produits sont données en fonction du temps ainsi que la température de fonctionnement dans le tableau 3. Tableau 3
    Temps de marche en heures Température MAV sortie
    40 80 < 2
    70 80 < 2
    100 80 2
    400 80 4,2
    420 95 < 2
    470 95 2,7
    500 95 3,2
    520 110 < 2
    540 110 < 2
    600 110 3,1
    620 120 < 2
    640 120 < 2
    650 120 2,5
    670 120 2,9
    700 120 3,2
  • On peut voir sur ce tableau que l'arrangement en quatre lits successivement traversés permet de maintenir le produit en sortie de section réactionnelle à une MAV inférieure à 3 pendant environ 700 heures.
  • EXEMPLE 4 (selon l'invention)
  • On utilise maintenant le même catalyseur LD 241 mais selon l'arrangement de l'exemple 2.
  • Le tableau 4 présente la MAV des produits ainsi que l'arrangement des réacteurs et la température de fonctionnement en fonction du temps.
  • On voit que la mise en oeuvre progressive de la même quantité de catalyseur que dans l'exemple 3 permet une durée de fonctionnement satisfaisante bien supérieure. Tableau 4
    Temps de marche en heures Arrangement Température MAV sortie
    40 4 80 < 2
    80 4 80 < 2
    100 4 80 2
    300 4 80 4
    320 3,4 80 < 2
    340 3,4 80 < 2
    370 3,4 80 2,8
    400 3,4 80 3,4
    420 2,3,4 80 < 2
    450 2,3,4 80 < 2
    480 2,3,4 80 2,1
    500 2,3,4 80 2,9
    520 1,2,3,4 80 < 2
    560 1,2,3,4 80 < 2
    600 1,2,3,4 80 2,4
    640 1,2,3,4 80 3,4
    650 1,2,3,4 95 < 2
    680 1,2,3,4 95 < 2
    700 1,2,3,4 95 2,5
    740 1,2,3,4 95 3,4
    760 1,2,3,4 110 < 2
    800 1,2,3,4 110 < 2
    860 1,2,3,4 110 3,2
    880 1,2,3,4 110 < 2
    900 1,2,3,4 110 < 2
    930 1,2,3,4 120 2,9
    950 1,2,3,4 120 < 2
    990 1,2,3,4 120 < 2
    1020 1,2,3,4 120 2,5
    1100 1,2,3,4 120 2,9

Claims (6)

  1. Procédé d'hydrogénation de charge hydrocarbonée par contact avec p lits catalytiques n1...ni...np, lesdits lits étant séparés et contenant le même catalyseur, procédé caractérisé en ce que la charge est introduite dans le lit np et le produit final résultant pp est extrait, que, lorsque le produit pp n'atteint plus la qualité demandée, l'introduction de la charge dans le lit np est stoppée, et que, simultanément la charge est introduite dans le lit np-1, le produit obtenu pp-1 étant introduit dans le lit np, et que, ensuite de façon générale, lorsque le produit final pp n'atteint plus la qualité demandée, l'introduction de la charge dans le lit ni est stoppée, dans le même temps la charge est introduite dans le lit ni-1, le produit obtenu pi-1 étant introduit dans le lit ni, et ainsi de suite jusqu'à ce que i ait pris toutes les valeurs entières 1 de 1 à p.
  2. Procédé selon la revendication 1, caractérisé en ce que au moins 2 lits catalytiques sont agencés successivement et séparément l'un au-dessus de l'autre, le lit np étant le plus bas et le lit n1 le plus haut et la charge circulant en écoulement descendant à travers le(s) lit(s).
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que tous les lits catalytiques sont agencés successivement et séparément dans un même réacteur, la charge étant au départ introduite sur le lit catalytique le plus bas (np) et circulant en écoulement descendant, le produit résultant étant extrait dans la partie basse du réacteur, et que, lorsque ledit produit présente un seuil minimum de performance, le lit supérieur de catalyseur neuf est mis en service en stoppant l'introduction de charge au-dessus du lit précédent utilisé et en introduisant la charge au-dessus du lit de catalyseur neuf, la charge s'écoulant alors vers le bas du réacteur en traversant les lits catalytiques en service.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge hydrocarbonée contient des dioléfines.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge est constituée, par des essences issues de vaprocraquage ou d'autres procédés de craquage.
  6. Procédé selon l'un des revendications précédentes, caractérisé en ce que, la charge ayant été introduite dans le dernier lit n1, et le produit pp final ne présentant plus la qualité demandée, la température de la masse totale est progressivement augmentée pour obtenir à nouveau et maintenir la qualité du produit final pp demandée, ceci jusqu'à désactivation complète du catalyseur.
EP93400164A 1992-01-28 1993-01-25 Procédé d'hydrogénation sélective, notamment des dioléfines dans les essences de vapocraquage, avec un catalyseur sous forme de lits mis en oeuvre successivement Expired - Lifetime EP0554151B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9200992A FR2686617B1 (fr) 1992-01-28 1992-01-28 Procede d'hydrogenation selective de charge hydrocarbonee avec des lets catalytiques mis en óoeuvre successivement.
FR9200992 1992-01-28

Publications (2)

Publication Number Publication Date
EP0554151A1 EP0554151A1 (fr) 1993-08-04
EP0554151B1 true EP0554151B1 (fr) 1996-07-10

Family

ID=39154468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400164A Expired - Lifetime EP0554151B1 (fr) 1992-01-28 1993-01-25 Procédé d'hydrogénation sélective, notamment des dioléfines dans les essences de vapocraquage, avec un catalyseur sous forme de lits mis en oeuvre successivement

Country Status (8)

Country Link
US (1) US5306852A (fr)
EP (1) EP0554151B1 (fr)
JP (1) JPH05247475A (fr)
CN (1) CN1045950C (fr)
DE (1) DE69303505T2 (fr)
ES (1) ES2093370T3 (fr)
FR (1) FR2686617B1 (fr)
IN (1) IN181752B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720754B1 (fr) * 1994-06-01 1996-07-26 Inst Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique.
FR2724390B1 (fr) * 1994-09-08 1996-12-13 Inst Francais Du Petrole Hydrogenation selective de coupes hydrocarbonees renfermant des hydrocarbures monoinsatures et polyinsatures
US5954950A (en) * 1995-09-07 1999-09-21 Institut Francais Du Petrole Intensive hydrofining of petroleum fractions
FR2743079B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
US5847251A (en) 1996-02-12 1998-12-08 Catalytic Distillation Technologies Multibed transalkylator and process
EP0921179A1 (fr) * 1997-12-05 1999-06-09 Fina Research S.A. Production d'oléfines
FR2970260B1 (fr) * 2011-01-10 2014-07-25 IFP Energies Nouvelles Procede d'hydrotraitement de charges lourdes d'hydrocarbures avec des reacteurs permutables incluant au moins une etape de court-circuitage d'un lit catalytique
FR2970261B1 (fr) * 2011-01-10 2013-05-03 IFP Energies Nouvelles Procede d'hydrotraitement de charges lourdes d'hydrocarbures avec des reacteurs permutables incluant au moins une etape de permutation progressive
EP2865440A1 (fr) 2013-10-28 2015-04-29 Haldor Topsoe A/S Procédé et réacteur pour réaction exothermique
WO2017130081A1 (fr) * 2016-01-27 2017-08-03 Sabic Global Technologies B.V. Procédés et systèmes pour augmenter la sélectivité pour des oléfines légères dans l'hydrogénation de co2

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1306238A (fr) * 1961-10-19 1962-10-13 Shell Int Research Procédé de raffinage d'essences obtenues par craquage et contenant des diènes
US3705204A (en) * 1967-05-18 1972-12-05 Nippon Oil Co Ltd Process for recovering conjugated diolefins selectively from a c5 fraction
US3926784A (en) * 1973-08-22 1975-12-16 Gulf Research Development Co Plural stage residue hydrodesulfurization process with hydrogen sulfide addition and removal
NL191763C (nl) * 1979-09-26 1996-07-02 Shell Int Research Werkwijze voor ontmetalliseren van een koolwaterstofolie.
US4560815A (en) * 1983-04-25 1985-12-24 The Babcock & Wilcox Company Automated catalyst regeneration in a reactor
US4704492A (en) * 1986-12-24 1987-11-03 Mobil Oil Corporation Selective hydrogenation of acetylenic impurities in crude butadiene
GB8702654D0 (en) * 1987-02-06 1987-03-11 Davy Mckee Ltd Process

Also Published As

Publication number Publication date
DE69303505D1 (de) 1996-08-14
ES2093370T3 (es) 1996-12-16
US5306852A (en) 1994-04-26
JPH05247475A (ja) 1993-09-24
EP0554151A1 (fr) 1993-08-04
CN1045950C (zh) 1999-10-27
DE69303505T2 (de) 1996-11-21
FR2686617A1 (fr) 1993-07-30
CN1092756A (zh) 1994-09-28
IN181752B (fr) 1998-09-12
FR2686617B1 (fr) 1994-03-18

Similar Documents

Publication Publication Date Title
CA1117146A (fr) Procede catalytique de reformage ou de production d&#39;hydrocarbures aromatiques
EP0450997B1 (fr) Procédé d&#39;hydrotraitement d&#39;un résidu pétrolier ou d&#39;une huile lourde en vue de les raffiner et de les convertir en fractions plus légères
EP0554151B1 (fr) Procédé d&#39;hydrogénation sélective, notamment des dioléfines dans les essences de vapocraquage, avec un catalyseur sous forme de lits mis en oeuvre successivement
FR2681871A1 (fr) Procede d&#39;hydrotraitement d&#39;une fraction lourde d&#39;hydrocarbures en vue de la raffiner et de la convertir en fractions plus legeres.
EP1343857A1 (fr) Procede d&#39;hydrotraitement d&#39;une fraction lourde d&#39;hydrocarbures avec des reacteurs permutables et des reacteurs court-circuitables
FR2784687A1 (fr) Procede d&#39;hydrotraitement d&#39;une fraction lourde d&#39;hydrocarbures avec reacteurs permutables et introduction d&#39;un distillat moyen
WO2006067305A1 (fr) Procede de conversion directe d’une charge comprenant des olefines a quatre et/ou cinq atomes de carbone, pour la production de propylene avec une co-production d’essence
EP0872276B2 (fr) Procédé et enceinte de régénération d&#39;un catalyseur de production d&#39;aromatiques ou de reformage avec oxychloration améliorée
FR2746673A1 (fr) Procede de regeneration d&#39;un catalyseur d&#39;hydrogenation selective de diolefines et de nitriles
FR2761907A1 (fr) Procede et dispositif a combustion etagee pour la regeneration d&#39;un catalyseur de reformage ou de production d&#39;aromatiques en lit mobile
EP0184517B1 (fr) Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d&#39;hydrocarbures
WO2022023263A1 (fr) Procede de traitement d&#39;huiles de pyrolyse de plastiques incluant un hydrocraquage en deux etapes
EP0685552B1 (fr) Procédé et installation pour le traitement par hydrogénation sélective d&#39;une essence de craquage catalytique
CA3200635A1 (fr) Procede de traitement d&#39;huiles de pyrolyse de plastiques incluant une etape d&#39;hydrogenation
EP1242568B1 (fr) Procede et installation pour la production d&#39;aromatiques en lit mobile incluant une reduction du catalyseur
FR2852323A1 (fr) Nouveau procede de reformage regeneratif
EP1281669A1 (fr) Procédé de récuperation d&#39;hydrogène dans un effluent hydrocarboné gazeux, avec mise en oeuvre d&#39;un réacteur membranaire
EP3184610B1 (fr) Procédé d&#39;hydrogenation selective de charges olefiniques avec un seul reacteur principal et un reacteur de garde de taille reduite
FR3054558A1 (fr) Procede multi-lits en un seul reacteur a lit fixe pour l&#39;hydrogenation selective et l&#39;hydrodesulfuration d&#39;essence de pyrolyse
EP1252259B1 (fr) Procede et dispositif pour la production d&#39;aromatiques incluant une reduction du catalyseur
CA2372620C (fr) Procede de conversion de fractions lourdes petrolieres pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre
BE507655A (fr)
WO2020260029A1 (fr) Réacteur de traitement catalytique d&#39;hydrocarbures avec remplacement semi-continu de catalyseur
BE512376A (fr)
FR2515680A1 (fr) Procede de commande de la temperature d&#39;un regenerateur dans un processus de craquage catalytique fluidifie assurant une combustion pratiquement complete du coke et de l&#39;oxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT NL PT SE

17P Request for examination filed

Effective date: 19940127

17Q First examination report despatched

Effective date: 19950913

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL PT SE

REF Corresponds to:

Ref document number: 69303505

Country of ref document: DE

Date of ref document: 19960814

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960820

SC4A Pt: translation is available

Free format text: 960712 AVAILABILITY OF NATIONAL TRANSLATION

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093370

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69303505

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20111206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120126

Year of fee payment: 20

Ref country code: IT

Payment date: 20120120

Year of fee payment: 20

Ref country code: GB

Payment date: 20120125

Year of fee payment: 20

Ref country code: SE

Payment date: 20120125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69303505

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20130125

BE20 Be: patent expired

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20130125

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20130125

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130124

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130124

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120126

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130126