EP0184517B1 - Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d'hydrocarbures - Google Patents

Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d'hydrocarbures Download PDF

Info

Publication number
EP0184517B1
EP0184517B1 EP85402416A EP85402416A EP0184517B1 EP 0184517 B1 EP0184517 B1 EP 0184517B1 EP 85402416 A EP85402416 A EP 85402416A EP 85402416 A EP85402416 A EP 85402416A EP 0184517 B1 EP0184517 B1 EP 0184517B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
gas
regeneration
stage
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402416A
Other languages
German (de)
English (en)
Other versions
EP0184517A1 (fr
Inventor
Jean-Louis Mauleon
Jean-Bernard Sigaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Marketing Services SA
Original Assignee
Compagnie Francaise de Raffinage SA
Compagnie de Raffinage et de Distribution Total France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Francaise de Raffinage SA, Compagnie de Raffinage et de Distribution Total France SA filed Critical Compagnie Francaise de Raffinage SA
Publication of EP0184517A1 publication Critical patent/EP0184517A1/fr
Application granted granted Critical
Publication of EP0184517B1 publication Critical patent/EP0184517B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to catalytic cracking of hydrocarbon charges. It relates more particularly to improvements made to the regeneration of the spent catalyst of such a process, with a view to the use of "load elevators" shorter than those of the prior art.
  • the most commonly used process for this purpose is the so-called fluid catalytic cracking process (in English, Fluid Catalytic Cracking, or FCC process).
  • FCC process Fluid Catalytic Cracking
  • the hydrocarbon charge is simultaneously vaporized and brought into contact at high temperature with a cracking catalyst, which is kept in suspension in the vapors of the charge. After the desired molecular weight range has been reached by cracking, with a corresponding lowering of the boiling points, the catalyst is separated from the products obtained.
  • the catalyst of the FCC process and the charge to be treated are injected under pressure and at a high temperature at the base of a column known as "charge elevator", which technicians often designate by the English term “riser”. .
  • charge elevator which technicians often designate by the English term “riser”.
  • At the top of the column is generally arranged a tank concentric with the elevator.
  • a ballistic separation system such as a cyclone, in which the spent catalyst is separated from the cracked charge.
  • This is evacuated at the top of said tank, after passing through cyclones, to reduce the entrainment of dust, while the recovered catalyst particles encounter a stripping gas such as water vapor, injected for example annularly at the base of said tank, before being evacuated to a regenerator.
  • Combustion air is injected, for example annularly, at the base of the regenerator, while at the top of the latter are provided cyclones making it possible to separate the combustion gas from the particles of regenerated catalyst.
  • This is evacuated to the bottom of the regenerator and recycled to the base of the elevator or "riser", where the charge is usually injected at a temperature between 80 ° C and 400 ° C and under a pressure ranging from 0 , 7.10 5 to 3.5.10 5 Relative Pascals.
  • the amount of coke present on the catalyst at the entrance to the regeneration zone as well as the regeneration mode will determine the final temperature reached in the regeneration zone, since the calories from the combustion of the coke serve both, heat losses, to heat the regeneration fluid (air and / or oxygen) and are shared between the combustion gases and the catalyst particles. Under operating conditions, the quantity of coke produced in the cracking unit will therefore be substantially constant, if the thermal equilibrium is not modified by external constraints.
  • This quantity of coke is linked to the difference Delta coke between the quantities of coke present on the catalyst at the entry of the regeneration zone and at the exit of this zone by the following relation:
  • Coke produced ⁇ coke x C / 0, where C / 0 denotes the mass ratio of the catalyst and the charge brought into contact with it at the inlet of the reaction zone.
  • T reactor the difference between the regeneration temperature, T r gg generation . and the temperature at the outlet of the reaction section, T reactor , is given by the following relation: where TI denotes the efficiency of the exchange of combustion heat with the catalyst, AH the heat of combustion of coke and Cp the specific heat of the catalyst.
  • WO-A-82/04061 thus describes an FCC process comprising, compared to the conventional process, an additional stripping step by desorption of the catalyst, comprised between the usual stripping step and the regeneration step.
  • the desorption is carried out using gases originating from the regenerator and whose temperature is at least 100 ° F (38 ° C) higher than that of the catalyst to be desorbed.
  • the desorbed catalyst is then introduced above the level of the fluidized bed into the first stage of the regenerator.
  • This additional stripping step makes it possible to separate some of the metals deposited on the catalyst during the reaction and, the gases being hot enough to desorb hydrocarbons with high boiling point, the residual water vapor and hydrogen will necessarily be desorbed .
  • the gas coming from the regenerator is introduced against the current into the stripping device by desorption, while the catalyst is brought to the degenerator by gravity.
  • ratio 8 that is to say the mass ratio of the catalyst in contact with the load at the inlet of the riser "riser", in order to improve the contact of the feed and the catalyst and increase the conversion of the feed, by bringing the latter in the presence of a greater number of active sites of the catalyst.
  • the Applicant has established that effective desorption of the products entrained by the spent catalyst grains, prior to their regeneration, contributes to obtaining these results.
  • the stripping of the used catalyst aims to displace by a gas, usually steam, the hydrocarbons entrained in the voids separating the catalyst grains and, to a certain extent, the lighter hydrocarbons adsorbed on the surface in the pores of the catalyst. It is known, in fact, that a poorly stripped catalyst before its regeneration has a higher Acoke and a hydrogen concentration on the deposited coke greater than 7% by weight.
  • the present invention provides for carrying out, after the conventional stripping of the catalyst, a desorption of the products entrained by the spent catalyst at a temperature at least 25 ° C higher than that of the particles of catalyst having just undergone a stripping.
  • This desorption will advantageously be carried out by injection of combustion gases coming from the regenerator (s) in the current of the catalyst flow. This injection also makes it possible to bring this catalyst to the height required for feeding the regenerator or regenerators, which makes it possible to use a shorter load lifter than in the prior art.
  • the subject of the present invention is therefore, in a process for the catalytic cracking in the fluid state of a hydrocarbon charge, comprising a phase of contacting in an upward flow in an elevator, under cracking conditions, of said said charge and particles of a cracked catalyst, a phase of separation of the spent catalyst and the cracked charge, downstream of the upper end of said riser, a phase of stripping of the spent catalyst using an injected gas against the flow of this catalyst, a phase of regeneration of said catalyst under conditions of combustion of the coke deposited on it, and a phase of recycling of the regenerated catalyst to the supply of said elevator, the improvement consisting in that, after having undergone said stripping and before being subjected to said regeneration, said catalyst is subjected to a desorption by a gas injected cocurrently with the catalyst at a temperature at least 25 ° C higher than the particle temperature s of catalyst having just undergone said stripping phase, and the resulting mixture is injected into the fluidized part of the regeneration zone which is located above the dense fluidized bed.
  • the gas used for the desorption phase may be an inert gas or water vapor, but, in a preferred embodiment of the invention, use will be made of the gases originating from the regeneration of the catalyst, which have l advantage of being at a higher temperature than the catalyst to be regenerated, either alone or in mixture with steam.
  • the invention also relates to a catalytic cracking device in the fluid state of hydrocarbon charges, comprising a riser type column, means arranged at the base of said elevator for supplying the latter under pressure with a hydrocarbon charge and particles of a cracking catalyst, a means of stripping by a gas of spent catalyst particles in a chamber disposed at the top of said elevator, concentrically thereto, this stripping gas being injected into this chamber countercurrent with particles of spent catalyst, at least one unit for regenerating said catalyst by combustion of the coke deposited thereon, and means for recycling the regenerated catalyst to said supply means, said device being characterized in that it comprises, between said means of stripping and said regeneration unit, a means of desorption by a second gas of the products entrained by the particles of the catalyst, this means of desorption being such that ue the second gas is injected under pressure into the flow of co-current catalyst particles thereof, and that the resulting mixture of spent catalyst and gas is injected into the fluidized part of the regeneration zone which is located above the dense fluid
  • Said desorption means will advantageously be placed in the device at a level lower than that of said regeneration unit, said gas thus injected co-current then also serving as carrier gas for said particles, which allows the use of an elevator short.
  • the desorption gas may or may not be identical to the stripping gas.
  • it will be constituted at least in part by the gases coming from the regeneration unit.
  • a desorption means provides the catalyst particles with additional driving pressure, which makes it possible to diversify the positioning of the different units of the cracking device, in particular the elevator and the regenerator. It also improves the qualities of the stripping, in particular if the gases coming from the regeneration unit are used as injection gas, which have a higher temperature of about 25 and if possible about 100 ° C. that at which stripping is carried out, which makes it possible to appreciably reduce the Acoke and to limit the latter to the reaction Acoke, with the consequence of a less release of heat on regeneration and a less degraded and more stable catalyst. We can thus reduce the length of the elevator and / or process heavier loads. Finally, it is possible to better control and regularize the supply of spent catalyst to the regenerator, with the advantage of being able to control its temperature by limiting hot spots, which preserves the stability of the catalyst, and thus to obtain a better regenerated catalyst and therefore more active.
  • the length of the elevator must be emphasized. It makes it possible, on the one hand, to obtain better selectivity in cracked products of the gasoline type and light distillates, on the other hand, to raise the temperature of the elevator without increased production of gas and even with a reduction in Acoke. A better conversion of the charge is therefore obtained, with a better octane number of the resulting products and it is possible to process heavier charges which are more difficult to crack. A reduced height lift also lends itself to ultra-short residence times of the load.
  • the invention applies equally to cracking assemblies comprising two regeneration units in series as to those comprising a single regeneration unit.
  • the device for cracking by the FCC process shown in FIG. 1 is of a type known per se. It essentially comprises a column 1 known as a charge riser, or else a "riser", supplied at its base, by line 2, with the charge to be treated and, via line 3, with particles of a cracking catalyst.
  • Column 1 opens at its apex in an enclosure 4 which is concentric with it and in which, on the one hand, the separation of the cracked charge takes place and, on the other hand, the stripping of the spent catalyst.
  • the treated charge is separated in a cyclone 5, which is housed in the enclosure 4, at the top of which a discharge line 6 of the cracked charge is provided, while the spent catalyst particles are discharged at the base of the enclosure 4.
  • a line 7 supplies stripping gas, generally water vapor, to injectors 8 regularly arranged at the base of enclosure 4. Stripping is therefore preferably carried out in a dense medium against the current of the catalyst.
  • the spent catalyst particles thus stripped are evacuated at the base of the enclosure 4 to a regenerator 9 via a conduit 10, on which is provided a control valve 11.
  • the regenerator 9 the coke deposited on the particles of the catalyst are burnt using air, injected at the base of the regenerator by a line 12, which feeds injectors 13 regularly spaced.
  • the particles of the treated catalyst entrained by the combustion gas are separated by cyclones 14, from which the combustion gas is evacuated by a line 15, while the particles of catalyst are discharged towards the base of the regenerator 9, from where they are recycled through line 3, fitted with a control valve 16, to the supply of elevator 1.
  • FIG. 2 represents a device according to the invention, in which the members already described in relation to FIG. 1 are designated by the same reference numbers assigned to the index '.
  • the conduit 10 ' through which the spent catalyst particles are discharged from the enclosure 4' disposed at the upper end of the elevator 1 ', does not open directly into the regenerator 9', but present here a vertical portion 101, communicating through a portion 102 with the regenerator 9 ', and connected by an elbow to the lower end of the conduit 10'.
  • the base of the duct 101 is supplied with a desorption gas by a line 18.
  • this desorption gas can be constituted by a mixture of steam, brought to the line 18 by the line 19, and of effluent gas from the regenerator 9 ′, derived from line 15 ′ to line 18 by line 20, equipped with the pump 21.
  • the desorption of the catalyst particles is carried out co-current in the vertical part 101 , that the resulting mixture of spent catalyst and gas is injected into the fluidized part of the regeneration zone which is located above the dense fluidized bed, thus allowing good separation of the gases and the grains of catalyst, and that the gas of desorption acts as a carrier gas to raise the particles to the regenerator.
  • the enclosure 4 ′ will not be at a sufficient height so that the spent catalyst particles can, by simple gravity, feed the regenerator 9 and, after regeneration, be recycled to the supply of the elevator 1 ′ .
  • the desorption gas injected at a temperature at least 25 ° C higher than that of the catalyst, enters via line 18 in the section of conduit 101 and therefore advantageously exerts a suitable desorption and a thrust on the particles of spent catalyst for route them to the regenerator.
  • FIGS 3 and 4 illustrate two other forms of implementation of the catalytic cracking method according to the invention, in which a two-stage regeneration enclosure is used.
  • the members already described in relation to Figures 1 and 2 are designated by the same reference numbers, assigned the indices a and b, respectively.
  • the regenerator 9a is in an upward flow and comprises two stages 91a and 91b.
  • the spent catalyst which has already undergone stripping in the enclosure 4a is conveyed by line 10a, the vertical section of pipe 101a and the horizontal section 102c to the lower stage 91a of the regenerator.
  • a desorption gas is injected under pressure through line 18a at the bottom of the vertical section 101a; this desorption gas comprises a mixture of combustion gases coming from the regeneration enclosure, supplied by line 20a, and optionally steam, supplied by line 19a.
  • the base of the first combustion stage 91a is supplied with air by the line 12a and the air is distributed by regularly spaced injectors 13a.
  • cyclones 14a separate the combustion gas from the partially regenerated catalyst particles.
  • the combustion gas is conveyed to line 20a by a line 115, fitted with a valve 116, making it possible to divert part of the gas flow to a line 117.
  • the particles of the catalyst having undergone a first regeneration treatment are then transferred to the second stage 91b of the regenerator by the central duct 110a, supplied with air by the line 11a.
  • the base of the stage 91b is also supplied with air by the line 112a and by the injectors 113a.
  • the particles of the regenerated catalyst are discharged laterally in a buffer enclosure 118a and are recycled through the conduit 3a to the supply of the elevator 1a.
  • the combustion gases discharged to the upper part of stage 91b are treated in an external cyclone 119a, at the base of which the particles of the catalyst are returned by the conduit 120a to stage 91a, while the combustion gases are discharged by lines 121a and 20a to line 18a.
  • a safety valve 122a is provided on line 121a and a valve 123a makes it possible to divert part of the gas to a line 124a.
  • the embodiment of FIG. 4 also includes a two-stage regenerator 9b 92a and 92b with downward flow.
  • the catalyst already stripped in the enclosure 4b is conveyed by the conduit 10b, the vertical section 101b and the horizontal section 102b to the upper floor 92b.
  • Desorption gas is injected under pressure into the lower part of the vertical duct 101b via a line 18b.
  • This stripping gas can consist of a mixture of water vapor, supplied by line 19b, and combustion gas, coming from regenerator 9b by line 20b.
  • Air is injected at the base of stage 92b through line 112b and injectors 113b.
  • Cyclones 14b separate the suspended particles from the combustion gas, which is evacuated by a line 121b, on which a valve 123b makes it possible to divert part of the combustion gas to a line 124b.
  • the particles treated in the first stage 92b are conveyed by gravity through the conduit 125 to the lower stage 92a of the regenerator, at the base of which air is injected via the line 112b and the injectors 113b.
  • the combustion gas is evacuated to an external cyclone 119b, from where the catalyst particles are returned by the conduit 120b to stage 92a, while the gas is evacuated by line 115b to line 20b.
  • a valve 116b makes it possible to divert part of the gas to an auxiliary line 117b.
  • the regenerated catalyst is evacuated from the base of stage 92a via line 3b and recycled to the supply of elevator 1b.

Description

  • La présente invention concerne le craquage catalytique de charges d'hydrocarbures. Elle a plus particulièrement pour objet des perfectionnements apportés à la régénération du catalyseur usé d'un tel procédé, en vue de l'utilisation d'"élévateurs de charge" plus courts que ceux de la technique antérieure.
  • On sait que l'industrie pétrolière utilise de façon usuelle des procédés de craquage, dans lesquels des molécules d'hydrocarbures à hauts poids moléculaires et à point d'ébullition élevé sont scindées en molécules plus petites, qui peuvent bouillir dans des domaines de températures plus faibles, convenant à l'usage recherché.
  • Le procédé le plus couramment employé dans ce but, à l'heure actuelle, est le procédé dit de craquage catalytique à l'état fluide (en anglais, Fluid Catalytic Cracking, ou encore procédé FCC). Dans ce type de procédé, la charge d'hydrocarbures est simultanément vaporisée et mise en contact à haute température avec un catalyseur de craquage, qui est maintenu en suspension dans les vapeurs de la charge. Après que l'on ait atteint par craquage la gamme de poids moléculaires désirée, avec un abaissement correspondant des points d'ébullition, le catalyseur est séparé des produits obtenus.
  • Dans les procédés de ce type, la réduction souhaitée des points d'ébuilition résulte de réactions catalytiques et thermiques contrôlées. Ces réactions interviennent de façon quasi-instantanée lorsque la charge finement atomisée est mise en contact avec le catalyseur. Celui-ci se désactive cependant rapidement, pendant le court laps de temps où il est en contact avec la charge, et ceci du fait, essentiellement, d'une adsorption d'hydrocarbures et d'un dépôt de coke sur ses sites actifs. Il est nécessaire de stripper en continu le catalyseur usé, par exemple à la vapeur, pour récupérer les hydrocarbures adsorbés, et de le réactiver, également en continu, sans altérer ses caractéristiques, en procédant à une combustion contrôlée du coke, dans une section de régénération à un ou plusieurs étages, avant de recycler le catalyseur vers la zone réactionnelle.
  • Dans la pratique, le catalyseur du procédé FCC et la charge à traiter sont injectés sous pression et à une température élevée à la base d'une colonne dite "élévateur de charge", que les techniciens désignent souvent par le terme anglais de "riser". Au sommet de la colonne est généralement disposé un réservoir concentrique à l'élévateur. Dans ce réservoir et au-dessus de l'élévateur est logé un système de séparation balistique, tel qu'un cyclone, dans lequel le catalyseur usé est séparé de la charge craquée. Celle-ci est évacuée au sommet dudit réservoir, après passage dans des cyclones, pour réduire les entraînements de poussière, tandis que les particules de catalyseur récupérées rencontrent un gaz de strippage tel que de la vapeur d'eau, injecté par exemple annulairement à la base dudit réservoir, avant d'être évacuées vers un régénérateur. De l'air de combustion est injecté par exemple annulairement à la base du régénérateur, tandis qu'à la partie supérieure de celui-ci sont prévus des cyclones permettant de séparer le gaz de combustion des particules de catalyseur régénéré. Celui-ci est évacué à la partie inférieure du régénérateur et recyclé vers la base de l'élévateur ou "riser", où la charge est habituellement injectée à une température comprise entre 80°C et 400°C et sous une pression allant de 0,7.105 à 3,5.105 Pascals relatifs.
  • Le procédé FCC est naturellement mis en oeuvre de façon que l'unité de craquage soit en équilibre thermique. Autrement dit, l'alimentation en catalyseur chaud régénéré doit être telle qu'elle puisse répondre aux diverses exigences thermiques de la section réactionnelle, à savoir, en particulier:
    • - le préchauffage de la charge liquide;
    • - la vaporisation de cette charge;
    • - l'apport de calories exigé par les réactions impliquées, lesquelles globalement sont endothermiques;
    • - les pertes de chaleur de l'unité.
  • La quantité de coke présent sur le catalyseur, à l'entrée de la zone de régénération ainsi que le mode de régénération détermineront la température finale atteinte dans la zone de régénération, car les calories provenant de la combustion du coke servent à la fois, outre les pertes de chaleur, à réchauffer le fluide de régénération (air et/ou oxygène) et se partagent entre les gaz de combustion et les particules de catalyseur. En régime de fonctionnement, la quantité de coke produit dans l'unité de craquage sera donc sensiblement constante, si l'équilibre thermique n'est pas modifié par des contraintes extérieures.
  • Cette quantité de coke est liée à la différence Delta coke entre les quantités de coke présentes sur le catalyseur à l'entrée de la zone de régénération et à la sortie de cette zone par la relation suivante:
  • Coke produit = Δcoke x C/0, où C/0 désigne le rapport massique du catalyseur et de la charge amenée à son contact à l'entrée de la zone réactionnelle.
  • Par ailleurs, la différence entre la température de régénération, Trggénération. et la température à la sortie de la section de réaction, Tréacteur, est donnée par la relation suivante:
    Figure imgb0001
    TI désigne l'efficacité de l'échange de la chaleur de combustion avec le catalyseur, AH la chaleur de combustion du coke et Cp la chaleur spécifique du catalyseur.
  • Il est apparent que, si le 0 coke croît, il est nécessaire, pour maintenir la quantité de coke produit constante, de réduire le débit du catalyseur en circulation. Par ailleurs, l'accroissement du Δ coke correspond à une température de régénération plus élevée du catalyseur, ce qui peut être souhaitable pour vaporiser les charges lourdes.
  • Ainsi, le contrôle du A coke, dans une unité moderne de craquage par le procédé FCC, où la température de régénération n'est pas limitée, apparaît comme une des variables de base fondamentales du procédé. WO-A-82/04061 décrit ainsi un procédé FCC comprenant, par rapport au procédé classique, une étape supplémentaire de strippage par désorption du catalyseur, comprise entre l'étape usuelle de strippage et l'étape de régénération.
  • Au cours de ce strippage, la désorption est réalisée à l'aide de gaz provenant du régénérateur et dont la température est d'au moins 100° F (38° C) supérieure à celle du catalyseur à désorber.
  • Le catalyseur désorbé est ensuite introduit au-dessus du niveau du lit fluidisé dans le premier étage du régénérateur.
  • Cette étape supplémentaire de strippage permet de séparer une partie des métaux déposés sur le catalyseur durant la réaction et, les gaz étant suffisamment chauds pour désorber des hydrocarbures à haut point d'ébullition, la vapeur d'eau et l'hydrogène résiduels seront nécessairement désorbés.
  • Dans le dispositif décrit, le gaz provenant du régénérateur est introduit à contre-courant dans le dispositif de strippage par désorption, tandis que le catalyseur est amené au dégénérateur par gravité.
  • Actuellement, avec des conditions opératoires de plus en plus sévères du procédé FCC, correspondant à des charges de plus en plus lourdes et, par conséquent, à point d'ébullition élevé, on constate un dépôt accru de coke sur le catalyseur. Dans une certaine mesure, ceci se révèle utile, car il en résulte une température plus élevée du catalyseur à l'entrée de la zone de réaction, ce qui permet une vaporisation plus complète de la charge, un craquage thermique contrôlé des asphaltènes et une énergie d'activation plus élevée du catalyseur. Cependant, il est souhaitable de pouvoir contrôler et limiter la température de régénération du catalyseur, en vue de préserver sa stabilité thermique et de réduire l'effet néfaste de certains constituants présents tels que la vapeur de strippage entraînée et les résidus non traités. En outre, il est parfois désirable d'augmenter le rapport 8 défini ci-dessus, c'est-à-dire le rapport massique du catalyseur en contact avec la charge à l'entrée de l'élévateur "riser", afin d'améliorer le contact de la charge et du catalyseur et d'accroître la conversion de la charge, en mettant celle-ci en présence d'un plus grand nombre de sites actifs du catalyseur.
  • La Demanderesse a établi qu'une désorption efficace des produits entraînés par les grains de catalyseur usé, préalablement à leur régénération, contribue à l'obtention de ces résultats.
  • Le strippage du catalyseur usé, déjà utilisé dans la technique classique des procédés FCC, vise à déplacer par un gaz, habituellement de la vapeur d'eau, les hydrocarbures entraînés dans les vides séparant les grains de catalyseur et, dans une certaine mesure, les hydrocarbures les plus légers adsorbés à la surface dans les pores du catalyseur. Il est connu, en effet, qu'un catalyseur mal strippé avant sa régénération présente un Acoke plus élevé et une concentration en hydrogène sur le coke déposé supérieure à 7 % en poids.
  • Il est en outre connu que le strippage est meilleur à haute température.
  • En vue d'obtenir une meilleure régénération du catalyseur, la présente invention prévoit de procéder, après le strippage conventionnel du catalyseur, à une désorption des produits entraînés par le catalyseur usé à une température au moins supérieure de 25°C à celle des particules de catalyseur venant de subir un strippage. Cette désorption sera avantageusement effectuée par injection de gaz de combustion en provenance du ou des régénérateurs à co-courant du flux de catalyseur. Cette injection permet en outre de porter ce catalyseur à la hauteur requise pour l'alimentation du ou des régénérateurs, ce qui permet d'utiliser un élévateur de charge plus court que dans la technique antérieure.
  • La présente invention a donc pour objet, dans un procédé pour le craquage catalytique à l'état fluide d'une charge d'hydrocarbures, comprenant une phase de mise en contact à flux ascendant dans un élévateur, dans des conditions de craquage, de ladite charge et de particules d'un catalyseur de craquage, une phase de séparation du catalyseur usé et de la charge craquée, en aval de l'extrémité supérieure dudit élévateur, une phase de strippage du catalyseur usé à l'aide d'un gaz injecté à contre-courant de ce catalyseur, une phase de régénération dudit catalyseur dans des conditions de combustion du coke déposé sur celui-ci, et une phase de recyclage du catalyseur régénéré à l'alimentation dudit élévateur, le perfectionnement consistant en ce que, après avoir subi ledit strippage et avant d'être soumis à ladite régénération, ledit catalyseur est soumis à une désorption par un gaz injecté à co-courant du catalyseur à une température supérieure d'au moins 25°C à la température des particules de catalyseur venant de subir ladite phase de strippage, et le mélange résultant est injecté dans la partie fluidisée de la zone de régénération qui se trouve au-dessus du lit fluidisé dense.
  • Le gaz utilisé pour la phase de désorption pourra être un gaz inerte ou de la vapeur d'eau, mais, dans une forme de mise en oeuvre préférée de l'invention, on utilisera les gaz provenant de la régénération du catalyseur, qui ont l'avantage d'être à une température plus élevée que le catalyseur à régénérer, soit seuls, soit en mélange avec de la vapeur d'eau.
  • De cette phase de désorption à co-courant et à plus haute température résultent un certain nombre d'avantages parmi lesquels:
    • - l'élévateur est plus court que dans la technique connue;
    • - la vapeur d'eau issue de la zone de strippage et celle formée à partir de l'hydrogène contenu dans le coke ainsi éliminé seront séparées facilement dès le début de la phase de régénération en nt fluidisé; elle sera donc d'autant moins susceptible d'affecter la réactivité du catalyseur;
    • - une partie non négligeable des métaux tels que le nickel et le vanadium, qui sont déposés à la surface du catalyseur, est susceptible d'être séparée sous forme de composés volatils éliminables; la durée de vie du catalyseur sera donc améliorée;
    • - le gaz de cette phase de désorption servira de gaz élévateur pour le catalyseur provenant du strippage, en vue d'acheminer les grains du catalyseur jusqu'au régénérateur; on exposera plus en détail dans la suite de la présente description l'intérêt de cette fonction auxiliaire du gaz ainsi injecté.
  • L'invention concerne également un dispositif de craquage catalytique à l'état fluide de charges d'hydrocarbures, comprenant une colonne du type élévateur, des moyens disposés à la base dudit élévateur pour alimenter celui-ci sous pression avec une charge d'hydrocarbures et des particules d'un catalyseur de craquage, un moyen de strippage par un gaz de particules de catalyseur usé dans une enceinte disposée au sommet dudit élévateur, concentriquement à celui-ci, ce gaz de strippage étant injecté dans cette enceinte à contrecourant des particules de catalyseur usé, au moins une unité de régénération dudit catalyseur par combustion du coke déposé sur celui-ci, et des moyens de recyclage du catalyseur régénéré auxdits moyens d'alimentation, ledit dispositif étant caractérisé en ce qu'il comprend, entre ledit moyen de strippage et ladite unité de régénération, un moyen de désorption par un second gaz des produits entraînés par les particules du catalyseur, ce moyen de désorption étant tel que le second gaz est injecté sous pression dans le flux des particules de catalyseur à co-courant de celles-ci, et que le mélange résultant de catalyseur usé et de gaz est injecté dans la partie fluidisée de la zone de régénération qui se trouve au-dessus du lit fluidisé dense.
  • Ledit moyen de désorption sera avantageusement disposé dans le dispositif à un niveau inférieur à celui de ladite unité de régénération, ledit gaz ainsi injecté à co-courant servant alors également de gaz porteur pour lesdites particules, ce qui permet l'utilisation d'un élévateur court.
  • Le gaz de désorption pourra être identique ou non au gaz de strippage. Avantageusement, il sera constitué au moins en partie par les gaz provenant de l'unité de régénération.
  • L'utilisation d'un moyen de désorption apporte aux particules de catalyseur une pression motrice additionnelle, qui permet de diversifier le positionnement des différentes unités du dispositif de cracking, notamment de l'élévateur et du régénérateur. Elle améliore en outre les qualités du strippage, en particulier si l'on utilise comme gaz d'injection les gaz provenant de l'unité de régénération, qui ont une température supérieure d'environ 25 et si possible d'environ 100°C à celle à laquelle est effectué le strippage, ce qui permet de diminuer notablement le Acoke et de limiter ce dernier au Acoke de réaction, avec pour conséquence un moindre dégagement de chaleur à la régénération et un catalyseur moins dégradé et plus stable. On peut ainsi réduire la longueur de l'élévateur et/ou y traiter des charges plus lourdes. On peut enfin mieux contrôler et régulariser l'alimentation du régénérateur en catalyseur usé, avec l'avantage de pouvoir contrôler sa température en limitant les points chauds, ce qui préserve la stabilité du catalyseur, et d'obtenir ainsi un catalyseur mieux régénéré et donc plus actif.
  • La possibilité de réduire, grâce à l'invention, la longueur de l'élévateur doit être soulignée. Elle permet, en effet, d'une part, d'obtenir une meilleure sélectivité en produits craqués du type de l'essence et les distillats légers, d'autre part, d'élever la température de l'élévateur sans production accrue de gaz et même avec une réduction du Acoke. On obtient donc une meilleure conversion de la charge, avec un meilleur indice d'octane des produits résultants et l'on peut traiter des charges plus lourdes et plus difficiles à craquer. Un élévateur de hauteur réduite se prête en outre à des temps de séjour ultra-courts de la charge.
  • Ainsi qu'on le décrira ci-après plus en détail, l'invention s'applique aussi bien aux ensembles de craquage comprenant deux unités de régénération en série qu'à ceux comprenant une seule unité de régénération.
  • Les dessins annexés illustrent, sous une forme schématique, un dispositif connu de craquage catalytique à l'état fluide et diverses formes de mise en oeuvre de l'invention. Sur ces dessins:
    • - la figure 1 est un schéma d'un ensemble conventionnel de craquage catalytique en lit fluide.
    • - la figure 2 est un schéma analogue d'un ensemble conforme à l'invention comprenant une unité de régénération du catalyseur à un seul étage.
    • - les figures 3 et 4 sont des schémas de deux ensembles conformes à l'invention comprenant chacun une unité de régénération du catalyseur à deux étages.
  • Le dispositif de craquage par le procédé FCC représenté sur la figure 1 est d'un type connu en soi. Il comprend essentiellement une colonne 1 dite élévateur de charge, ou encore "riser", alimentée à sa base, par la ligne 2, en charge à traiter et, par le conduit 3, en particules d'un catalyseur de craquage.
  • La colonne 1 débouche à son sommet dans une enceinte 4, qui lui est concentrique et dans laquelle s'effectuent, d'une part, la séparation de la charge craquée et, d'autre part, le strippage du catalyseur usé. La charge traitée est séparée dans un cyclone 5, qui est logé dans l'enceinte 4, au sommet de laquelle est prévue une ligne d'évacuation 6 de la charge craquée, tandis que les particules de catalyseur usé sont rejetées à la base de l'enceinte 4. Une ligne 7 alimente en gaz de strippage, généralement de la vapeur d'eau, des injecteurs 8 disposés régulièrement à la base de l'enceinte 4. Le strippage s'effectue donc de préférence en milieu dense à contre-courant du catalyseur.
  • Les particules de catalyseur usé ainsi strippées sont évacuées à la base de l'enceinte 4 vers un régénérateur 9 par l'intermédiaire d'un conduit 10, sur lequel est prévue une vanne de régulation 11. Dans le régénérateur 9, le coke déposé sur les particules du catalyseur est brûlé à l'aide d'air, injecté à la base du régénérateur par une ligne 12, qui alimente des injecteurs 13 régulièrement espacés. Les particules du catalyseur traité entraînées par le gaz de combustion sont séparées par des cyclones 14, d'où le gaz de combustion est évacué par une ligne 15, tandis que les particules de catalyseur sont rejetées vers la base du régénérateur 9, d'où elles sont recyclées par le conduit 3, équipé d'une vanne de régulation 16, à l'alimentation de l'élévateur 1.
  • Les caractéristiques dimensionnelles et opératoires d'un tel dispositif sont habituellement les suivantes:
    • - hauteur de la partie réactionnelle de l'élévateur 1 : 5 à 40 mètres,
    • - température de la charge à craquer: 75 à 450° C,
    • - débit d'alimentation de l'élévateur 1 en charge à traiter: 1000 à 10 000 tonnes par jour,
    • - débit d'alimentation de l'élévateur 1 en catalyseur: 3 à 50 tonnes par minute,
    • - temps de séjour de la charge dans l'élévateur 1 : 0,1 à 10 secondes,
    • - température de régénération du catalyseur: 650 à 900° C,
    • - temps de séjour du catalyseur dans le régénérateur 9 : 5 à 20 mn.
  • La figure 2 représente un dispositif conforme à l'invention, dans lequel les organes déjà décrits en relation avec la figure 1 sont désignés par les mêmes chiffres de référence affectés de l'indice '.
  • Dans ce dispositif, le conduit 10', par lequel les particules usées de catalyseur sont évacuées de l'enceinte 4' disposée à l'extrémité supérieure de l'élévateur 1', ne débouche pas directement dans le régénérateur 9', mais présente ici une portion verticale 101, communiquant par une portion 102 avec le régénérateur 9', et raccordée par un coude à l'extrémité inférieure du conduit 10'.
  • La base du conduit 101 est alimentée en un gaz de désorption par une ligne 18. Dans le cas du dessin, ce gaz de désorption peut être constitué par un mélange de vapeur d'eau, amenée à la ligne 18 par la ligne 19, et de gaz effluent du régénérateur 9', dérivé de la ligne 15' vers la ligne 18 par la ligne 20, équipée de la pompe 21. On notera que la désorption des particules de catalyseur s'effectue à co-courant dans la partie verticale 101, que le mélange résultant de catalyseur usé et de gaz est injecté dans la partie fluidisée de la zone de régénération qui se trouve au-dessus du lit fluidisé dense, permettant ainsi une bonne séparation des gaz et des grains de catalyseur, et que le gaz de désorption joue le rôle de gaz porteur pour élever les particules jusqu'au régénérateur.
  • Il est ainsi possible de réduire considérablement le temps de séjour de la charge à traiter dans l'élévateur 1 et, par conséquent, la hauteur de ce dernier. Dans ces conditions, l'enceinte 4' ne sera pas à une hauteur suffisante pour que les particules de catalyseur usé puissent, par simple gravité, alimenter le régénérateur 9 et, après régénération, être recyclées à l'alimentation de l'élévateur 1'. Le gaz de désorption, injecté à une température supérieure d'au moins 25°C à celle du catalyseur, entre par la ligne 18 dans le tronçon de conduit 101 et exerce donc avantageusement une désorption convenable et une poussée sur les particules de catalyseur usé pour les acheminer jusqu'au régénérateur.
  • Avec le système additionnel conforme à l'invention, les caractéristiques dimensionnelles et opératoires du dispositif de craquage peuvent être modifiées de la façon suivante:
    • - hauteur de la partie réactionnelle de l'élévateur 1': 1 à 30 mètres,
    • - temps de séjour de la charge dans l'élévateur 1': 0,05 à 5 secondes,
    • - température de régénération du catalyseur: 650 à 900° C,
    • - temps de séjour du catalyseur dans le régénérateur 9': 1 à 15 mn,
    • - température du catalyseur à la sortie de l'einceinte 5': 480 à 580° C,
    • - température du gaz de désorption à l'entrée du conduit 101 : 500 à 900° C.
  • Les figures 3 et 4 illustrent deux autres formes de mise en oeuvre du procédé de craquage catalytique selon l'invention, dans lesquelles on utilise une enceinte de régénération à deux étages. Sur ces figures, les organes déjà décrits en relation avec les figures 1 et 2 sont désignés par les mêmes chiffres de référence, affectés des indices a et b, respectivement.
  • Dans le cas de la figure 3, le régénérateur 9a est à flux ascendant et comporte deux étages 91 a et 91 b. Le catalyseur usé ayant déjà subi un strippage dans l'enceinte 4a est acheminé par la conduite 10a, le tronçon vertical de conduit 101a et le tronçon horizontal 102c à l'étage inférieur 91a du régénérateur. Un gaz de désorption est injecté sous pression par la ligne 18a à la partie inférieure du tronçon vertical 101a; ce gaz de désorption comprend un mélange de gaz de combustion en provenance de l'enceinte de régénération, amené par la ligne 20a, et éventuellement de vapeur d'eau, amenée par la ligne 19a.
  • La base du premier étage 91a de combustion est alimentée en air par la ligne 12a et l'air est distribué par des injecteurs régulièrement espacés 13a. Dans cet étage, des cyclones 14a séparent le gaz de combustion des particules de catalyseur partiellement régénéré. Le gaz de combustion est acheminé vers la ligne 20a par une ligne 115, équipée d'une vanne 116, permettant de dévier une partie du flux gazeux vers une ligne 117.
  • Les particules du catalyseur ayant subi un premier traitement de régénération sont ensuite transférées au second étage 91b du régénérateur par le conduit central 110a, alimente en air par la ligne 11 la.
  • La base de t'étage 91b est également alimentée en air par la ligne 112a et par les injecteurs 113a. Les particules du catalyseur régénéré sont évacuées latéralement dans une enceinte tampon 118a et sont recyclées par le conduit 3a à l'alimentation de l'élévateur 1a. Les gaz de combustion évacués à la partie supérieure de l'étage 91b sont traités dans un cyclone extérieur 119a, à la base duquel les particules du catalyseur sont retournées par le conduit 120a l'étage 91a, tandis que les gaz de combustion sont évacués par les lignes 121a et 20a vers la ligne 18a. Une vanne de sécurité 122a est prévue sur la ligne 121a et une vanne 123a permet de dériver une partie du gaz vers une ligne 124a.
  • Cette forme de réalisation du dispositif conforme à l'invention, équipé d'un régénérateur à deux étages à flux ascendant, présente les avantages suivants:
    • - double régénération du catalyseur, permettant une combustion intégrale du coke sans altération des propriétés catalytiques,
    • - aucune limitation de la température du second régénérateur, ce qui permet au catalyseur d'acquérir la température requise pour vaporiser et craquer la charge.
  • La forme de réalisation de la figure 4 comporte également un régénérateur 9b à deux étages 92a et 92b à flux descendant.
  • Le catalyseur déjà strippé dans l'enceinte 4b est acheminé par le conduit 10b, le tronçon vertical 101b et le tronçon horizontal 102b vers l'étage supérieur 92b. Un gaz de désorption est injecté sous pression a la partie inférieure du conduit vertical 101b par une ligne 18b. Ce gaz de strippage peut être constitué d'un mélange de vapeur d'eau, amenée par la ligne 19b, et de gaz de combustion, provenant du régénérateur 9b par la ligne 20b.
  • De l'air est injecté à la base de l'étage 92b par la ligne 112b et les injecteurs 113b. Des cyclones 14b séparent les particules en suspension du gaz de combustion, lequel est évacué par une ligne 121b, sur laquelle une vanne 123b permet de dériver une partie du gaz de combustion vers une ligne 124b.
  • Les particules traitées dans le premier étage 92b sont acheminées par gravité par le conduit 125 vers l'étage inférieur 92a du régénérateur, à la base duquel de l'air est injecté par la ligne 112b et les injecteurs 113b. Le gaz de combustion est évacué vers un cyclone extérieur 119b, d'où les particules de catalyseur sont retournées par le conduit 120b à l'étage 92a, tandis que le gaz est évacué par la ligne 115b vers la ligne 20b. Une vanne 116b permet de dériver une partie du gaz vers une ligne auxiliaire 117b.
  • Le catalyseur régénéré est évacué de la base de l'étage 92a par le conduit 3b et recyclé à l'alimentation de l'élévateur 1b.
  • Cette forme de réalisation du dispositif de craquage conforme à l'invention, qui comporte un régénérateur à deux étages à flux descendant, présente en plus des avantages précédemment décrits les avantages suivants:
    • - les deux étages de régénération se font à contre-courant,
    • - les cyclones sont externes et leurs supports moins élevés,
    • - le régénérateur fonctionnant à la température la plus élevée, et par conséquent le plus lourd, se trouve au niveau inférieur, ce qui simplifie la construction de l'unité.
  • L'exemple qui suit vise à illustrer l'invention et n'a pas de caractère limitatif.
  • Exemple
  • Deux essais de craquage catalytique ont été réalisés à partir d'une même charge d'hydrocarbures dans une unité à deux régénérateurs du type de celle décrite à la figure 3. Contrairement au premier essai, le deuxième essai a été réalisé à l'aide d'un dispositif comprenant une phase de désorption à co-courant conforme à la présente invention avec un élévateur court.
  • Nature de la charge:
  • Figure imgb0002
  • Conditions opératoires:
  • Figure imgb0003
  • On constate que l'utilisation conjointe d'un élévateur court et d'une désorption à co-courant avec du gaz de régénération à 595°C entraîne une réduction du delta coke, provoquant une baisse de la température de régénération. Ceci autorise une augmentation de la circulation de catalyseur (C/O de 5,6) et une meilleure stabilité du catalyseur. Les changements les plus importants sur les réactions de craquage sont les suivants:
    • - réduction des gaz secs,
    • - réduction de l'addition de catalyseur frais de 26 %,
    • - augmentation de la conversion,
    • - augmentation des rendements en liquides, comme le montre le tableau suivant:
      Figure imgb0004

Claims (9)

1. Dans un procédé pour le craquage catalytique à l'état fluide d'une charge d'hydrocarbures, comprenant une phase de mise en contact à flux ascendant dans un élévateur, dans des conditions de craquage, de ladite charge et de particules d'un catalyseur de craquage, une phase de séparation du catalyseur usé et de la charge craquée, en aval de l'extrémité supérieure dudit élévateur, une phase de strippage du catalyseur usé à l'aide d'un gaz injecté à contrecourant de ce catalyseur, une phase de régénération dudit catalyseur dans des conditions de combustion du coke déposé sur celui-ci, et une phase de recyclage du catalyseur régénéré à l'alimentation dudit élévateur, le perfectionnement consistant en ce que, après avoir subi ledit strippage et avant d'être soumis à ladite régénération, ledit catalyseur est soumis à une phase de désorption par un gaz injecté à co-courant du catalyseur à une température supérieure d'au moins 25°C à la température des particules de catalyseur venant de subir ladite phase de strippage, et en ce que le mélange résultant de catalyseur usé et de gaz est injecté dans la partie fluidisée de la zone de régénération qui se trouve au-dessus du lit fluidisé dense.
2. Procédé selon la revendication 1, caractérisé en ce que ledit gaz de désorption est constitué au moins partiellement par des gaz provenant de la phase de régénération du catalyseur.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que ledit gaz de désorption est à une pression suffisante pour servir de gaz élévateur, en vue de remonter le catalyseur vers le ou les régénérateurs.
4. Dispositif de craquage catalytique à l'état fluide de charges d'hydrocarbures, comprenant une colonne (1') du type élévateur, des moyens disposés à la base dudit élévateur pour alimenter celui-ci sous pression avec une charge d'hydrocarbures et des particules d'un catalyseur de craquage, un moyen de strippage (7', 8') par un gaz des particules de catalyseur usé dans une enceinte (4') disposée au sommet dudit élévateur, concentriquement à celui-ci, le gaz de strippage étant injecté dans cette enceinte à contre-courant des particules de catalyseur usé, au moins une unité (9') de régénération dudit catalyseur par combustion du coke déposé sur celui-ci, et des moyens (3') de recyclage du catalyseur régénéré auxdits moyens d'alimentation, ledit dispositif étant caractérisé en ce qu'il comprend, entre ledit moyen de strippage et ladite unité de régénération, un moyen (13') de désorption par un second gaz desdites particules de catalyseur, ce moyen de désorption étant tel que le second gaz de strippage est injecté sous pression dans le flux des particules de catalyseur à co-courant de celles-ci, et en ce que le mélange résultant de catalyseur et de gaz est injecté dans la partie de la zone de régénération qui se trouve au-dessus du lit fluidisé dense.
5. Dispositif selon la revendication 4, dans lequel ladite unité de régénération (9') comprend un seul étage de régénération, caractérisé en ce que ledit gaz de désorption est injecté en amont de ladite unité dans un tronçon vertical (101) du conduit d'alimentation en catalyseur usé de ladite unité de régénération.
6. Dispositif selon la revendication 5, caractérisé en ce qu'il comprend une ligne (18) d'alimentation en second gaz de strippage connectée à la ligne (15') d'évacuation des gaz de combustion de l'unité de régénération (9').
7. Dispositif selon la revendication 4, dans lequel ladite unité de régénération (9a, 9b) comprend deux étages de régénération à flux ascendant (91a, 91b) ou à flux descendant (92a, 92b), caractérisé en ce que le gaz de désorption est injecté en amont de l'étage amont (91a, 91 b) de ladite unité, dans un tronçon vertical (10ta, 10tb) du conduit d'alimentation en catalyseur usé de ladite unité de régénération.
6. Dispositif selon la revendication 7, caractérisé en ce qu'il comprend une ligne (18a, 18b) d'alimentation en gaz de désorption, connectée à la ligne (20a, 20b) d'évacuation des gaz de combustion de l'étage amont (91a, 92b) et/ou de l'étage aval (91b, 92a) de ladite unité de régénération.
9. Dispositif selon l'une des revendications 4 à 8, caractérisé en ce qu'il comporte un élévateur (1') dont la partie réactionnelle a une hauteur comprise entre 1 et 30 mètres.
EP85402416A 1984-12-07 1985-12-04 Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d'hydrocarbures Expired EP0184517B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8418706 1984-12-07
FR8418706A FR2574422B1 (fr) 1984-12-07 1984-12-07 Perfectionnements aux procedes et dispositifs pour le craquage catalytique a l'etat fluide de charges d'hydrocarbures

Publications (2)

Publication Number Publication Date
EP0184517A1 EP0184517A1 (fr) 1986-06-11
EP0184517B1 true EP0184517B1 (fr) 1988-05-18

Family

ID=9310352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402416A Expired EP0184517B1 (fr) 1984-12-07 1985-12-04 Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d'hydrocarbures

Country Status (5)

Country Link
EP (1) EP0184517B1 (fr)
CN (1) CN1006895B (fr)
DE (1) DE3562780D1 (fr)
FR (1) FR2574422B1 (fr)
ZA (1) ZA859374B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057389A1 (fr) 2011-10-20 2013-04-25 IFP Energies Nouvelles Procédé de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
WO2014096602A1 (fr) 2012-12-18 2014-06-26 IFP Energies Nouvelles Procédé de raffinage d'une charge hydrocarbonée lourde mettant en oeuvre un des désasphaltage sélectif

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2624762B1 (fr) * 1987-12-21 1990-06-08 Total France Procede et dispositif de regeneration de catalyseur en lit fluidise
FR2624877B1 (fr) * 1987-12-22 1992-01-10 Inst Francais Du Petrole Procede et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
US5264115A (en) * 1987-12-30 1993-11-23 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for fluidized bed hydrocarbon conversion
FR2627187B1 (fr) * 1988-02-15 1993-01-22 Inst Francais Du Petrole Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
US4973398A (en) * 1988-05-25 1990-11-27 Mobil Oil Corp. Method of FCC spent catalyst stripping for improved efficiency and reduced hydrocarbon flow to regenerator
US5584986A (en) * 1993-03-19 1996-12-17 Bar-Co Processes Joint Venture Fluidized process for improved stripping and/or cooling of particulate spent solids, and reduction of sulfur oxide emissions
CN1056543C (zh) * 1996-08-20 2000-09-20 中国石油化工总公司 催化裂化提升管反应器
CN1109091C (zh) * 1997-12-23 2003-05-21 中国石油化工集团公司 重油流化催化裂化重叠式两段再生技术
CN1078492C (zh) * 1998-09-25 2002-01-30 清华大学 用于强放热反应过程密相循环流化床反应器
CN1087647C (zh) * 1998-12-25 2002-07-17 中国石油化工集团公司 液固移动床反应器
FR2791354B1 (fr) 1999-03-25 2003-06-13 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement
CN102276402B (zh) * 2010-06-11 2013-12-04 中国石油化工股份有限公司 生产低碳烯烃的组合反应装置
FR2983866B1 (fr) 2011-12-07 2015-01-16 Ifp Energies Now Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
FR3000098B1 (fr) 2012-12-20 2014-12-26 IFP Energies Nouvelles Procede avec separation de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
FR3000097B1 (fr) 2012-12-20 2014-12-26 Ifp Energies Now Procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
CN107271352B (zh) * 2017-06-30 2019-12-31 上海理工大学 一种颗粒温度和颗粒运动同步测量装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843460A (en) * 1953-04-07 1958-07-15 Standard Oil Dev Co Contacting of gases with fluidized solids
BE535572A (fr) * 1954-02-09
GB1293168A (en) * 1969-12-08 1972-10-18 Exxon Research Engineering Co Two-stage countercurrent catalyst regenerator
EP0078795A1 (fr) * 1981-05-13 1983-05-18 Ashland Oil, Inc. Extraction par entrainement d'hydrocarbures a partir d'un catalyseur avec gaz de combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057389A1 (fr) 2011-10-20 2013-04-25 IFP Energies Nouvelles Procédé de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
WO2014096602A1 (fr) 2012-12-18 2014-06-26 IFP Energies Nouvelles Procédé de raffinage d'une charge hydrocarbonée lourde mettant en oeuvre un des désasphaltage sélectif

Also Published As

Publication number Publication date
CN1006895B (zh) 1990-02-21
DE3562780D1 (en) 1988-06-23
CN85108854A (zh) 1986-05-10
EP0184517A1 (fr) 1986-06-11
FR2574422B1 (fr) 1988-01-08
FR2574422A1 (fr) 1986-06-13
ZA859374B (en) 1986-09-24

Similar Documents

Publication Publication Date Title
EP0184517B1 (fr) Perfectionnement aux procédés et dispositifs pour le craquage catalytique de charges d'hydrocarbures
EP0208609B2 (fr) Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures, avec contrôle de la température de réaction
EP0322274B1 (fr) Procédé et dispositif de régénération de catalyseur en lit fluidisé
CA2052520C (fr) Procede et dispositif de craquage catalytique en lit fluide a courant descendant
EP0332536B1 (fr) Procédé et dispositif de régénération en lit fluidisé d'un catalyseur
EP0191695B1 (fr) Procédé et dispositif d'injection de catalyseur dans un procédé de craquage catalytique à l'état fluide, notamment de charges lourdes
CA1259577A (fr) Procede et appareil pour craquage catalytique en lit fluide
EP1170355B1 (fr) Procédé et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres réactionelles successives
EP0323297A1 (fr) Procédé de conversion d'hydrocarbures en lit fluidisé
EP0485259B1 (fr) Procédé et dispositif d'homogénéisation, à l'intérieur d'un réacteur tubulaire de craquage d'hydrocarbures à lit de particules solides fluidisées, du mélange de ces particules et des vapeurs d'hydrocarbures à traiter
FR2659346A1 (fr) Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents.
EP0489726B1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee
EP0874880B1 (fr) Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures
EP0663434A1 (fr) Procédé de craquage catalytique en lit fluidisé d'une charge d'hydrocarbures, notamment d'une charge à forte teneur en composés azotés basiques
EP0282371A1 (fr) Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures
EP2366760A1 (fr) Procédé de craquage catalytique avec contrôle fin de la teneur en coke résiduelle sur le catalyseur après régénération
EP0573316B1 (fr) Procédé et dispositif de craquage catalytique dans deux zones réactionnelles successives
EP0536054B1 (fr) Perfectionnements aux dispositifs de craquage catalytique à l'état fluide de charges d'hydrocarbures
CA2250342A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
EP0322276A1 (fr) Procédé et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
EP0265347A1 (fr) Procédé et dispositif pour le craquage catalytique en lit fluidisé d'une charge d'hydrocarbures
FR2658833A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures.
FR2617860A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
FR2629467A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
FR2633848A1 (fr) Procede et dispositif de regeneration d'un catalyseur use avec echange thermique en lit fluidise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19860929

17Q First examination report despatched

Effective date: 19870827

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 3562780

Country of ref document: DE

Date of ref document: 19880623

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMPAGNIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL F

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: COMPAGNIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL FRANCE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
BECN Be: change of holder's name

Effective date: 19880518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891115

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891206

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891222

Year of fee payment: 5

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901231

Ref country code: CH

Effective date: 19901231

Ref country code: BE

Effective date: 19901231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901231

Year of fee payment: 6

BERE Be: lapsed

Owner name: CIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL FRANCE

Effective date: 19901231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011228

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021204

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST