EP0548021B1 - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
EP0548021B1
EP0548021B1 EP92810982A EP92810982A EP0548021B1 EP 0548021 B1 EP0548021 B1 EP 0548021B1 EP 92810982 A EP92810982 A EP 92810982A EP 92810982 A EP92810982 A EP 92810982A EP 0548021 B1 EP0548021 B1 EP 0548021B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cooling device
intermediate layer
housing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810982A
Other languages
German (de)
French (fr)
Other versions
EP0548021A1 (en
Inventor
Martin Ganz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buss AG
Original Assignee
Buss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buss AG filed Critical Buss AG
Publication of EP0548021A1 publication Critical patent/EP0548021A1/en
Application granted granted Critical
Publication of EP0548021B1 publication Critical patent/EP0548021B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling

Definitions

  • the present invention relates to a cooling device according to the preamble of patent claim 1.
  • Such cooling devices are used, for example, in process engineering, in extruders or so-called “co-kneaders” for cooling the housing and thus the material to be processed.
  • a predetermined limit temperature of the housing and thus of the material processed therein is maintained.
  • the precise maintenance of this limit temperature is particularly associated with great effort and considerable difficulties if the material to be cooled has a temperature of 350 ° C - 500 ° C or even more. In this case, it is no longer possible to work with oil, which should circulate in cooling holes, as at lower temperatures, since oils can only be used economically up to around 350 ° C in continuous operation and without special precautions.
  • cooling medium which can be procured and used economically, ie inexpensively.
  • One such medium is water.
  • water as a cooling medium has the fundamental disadvantage that it evaporates at temperatures above 100 ° C, provided that it is not under pressure.
  • the devices to be cooled have temperatures that are in the range from 300 ° C. to 400 ° C. the water would have to be under such a high pressure (in order to remain in the liquid aggregate state) that it would no longer be economically viable.
  • Cooling bores which are incorporated in the devices to be cooled and in which the entire surface of the cooling medium is therefore in direct thermal connection with the object to be cooled, therefore use of water as the cooling medium is problematic from the above considerations.
  • a cooling device is known from US Pat. No. 3,730,262, in which a curved cooling pipe carrying cooling water is held on the outer circumference of a cylindrical housing to be cooled by means of a flexible metal band, so that the cooling pipe is in direct contact with the peripheral surface of the housing is pressed onto this.
  • the cooling tube has, for example, a triangular cross section in order to achieve the largest possible contact with the housing surface.
  • the housing has no cooling channel for receiving the cooling tube. Rather, it is provided to arrange several such cooling devices at selectable locations along the housing.
  • the cooling device described is therefore not suitable for uniform cooling of thick-walled housings and for use at high housing temperatures.
  • Cooling devices are also known, see DE-A-2 756 752 or DE-C-3 343 822, in which a cooling tube is arranged wound in a single annular channel.
  • the channel of these devices also has heating wire coils. The problem of heat transfer between the housing and the cooling medium is not addressed in this prior art.
  • the object of the invention is therefore to propose an arrangement in which a cooling medium, e.g. Water, can be used for a housing exposed to high temperatures, without the cooling medium being under high pressure and without the disadvantages described above, in particular the uneven cooling of the object to be cooled, with sufficient cooling performance.
  • a cooling medium e.g. Water
  • the cooling medium must circulate longer in the object to be cooled in order to be the same
  • the advantage is achieved that the housing is tempered uniformly and that a coolant that is harmless and inexpensive in every respect, for example water, can be used without having to be kept under high pressure.
  • a known cooling arrangement is generally designated 1 in FIG. It has a housing 2 which is provided with cooling channels 6. These are machined directly into the housing 2 as bores.
  • the housing 2 encloses a working space 4 in which a rotating and / or oscillating working element 3, e.g. a kneader shaft is arranged.
  • the cooling medium 5 circulates directly in the cooling channel 6 and is thus in direct thermal connection with its entire surface to the housing 2 to be cooled. This leads to the disadvantages mentioned at the beginning. If the cooling medium is injected only in pulses, it evaporates locally, which in turn causes uneven heat dissipation.
  • FIGS. 2, 2a and 2b A first example of a solution according to the invention can be seen in FIGS. 2, 2a and 2b.
  • the schematically drawn cooling device consists of a housing 10 shown only partially, which has a housing body 16 and a housing cover 17. Groove-shaped cooling channels 11 with a rectangular cross section are provided in the housing body 16 and serve to receive hollow bodies 12 or 12a, in which a cooling medium 15 circulates.
  • the hollow bodies 12 and 12a are preferably made of metal and have a round cross section in the example shown. However, it is also possible to use hollow bodies with an oval or polygonal cross section.
  • the outside diameter of the hollow body formed by a pipeline 12 is dimensioned such that it contacts the two opposite walls of the cooling channel 11. This results in narrow contact surfaces 14 for heat transfer. If a more intensive heat transfer is desired, a pipeline 12a is used according to FIG. 2b, which has flats 13 on both sides, from which larger contact surfaces 14a result.
  • FIG. 3 and 3a show a second exemplary embodiment of a cooling device, consisting of a housing 20 with a cooling channel 21, which is designed as a bore in this exemplary embodiment.
  • a hollow body 22 with the cooling medium 25 circulating therein is accommodated in the cooling channel 21.
  • An intermediate layer 23 in the form of a casing of the pipeline 22 is present between the cooling duct 21 and the hollow body 22. Due to the thickness a of the intermediate layer 23, the thermal coupling and thereby the heat transfer between the pipe 22 and the cooling channel 21, respectively. be influenced between the cooling medium 25 and the housing 20 to be cooled and thus the materials to be cooled. Due to the material used for the intermediate layer 23 (good to reduced thermal conductivity), the thermal coupling between the hollow body 22 and the cooling channel 21, respectively. between the cooling medium 25 and the housing 20 to be cooled and thus the materials to be cooled are also influenced. For example, quartz sand or a mixture between quartz sand and another material with a different thermal conductivity can be considered as material for the intermediate layer 23
  • a cooling device with a housing 30 and a cooling channel 31 is provided, which in this exemplary embodiment, as in FIG. 2, is designed as a groove.
  • a hollow body 32, in which the cooling medium 35 circulates, is accommodated in the cooling channel 31.
  • An intermediate layer 33 serves for insulation and fills the space between the hollow body 32 and the cooling channel 31 designed as a groove.
  • the material used for the intermediate layer 33 can cause the thermal coupling between the hollow body 32 and the cooling channel 31, which is designed as a groove.
  • the thermal coupling between the hollow body 32 and the as Groove-shaped cooling channel 31, respectively. between the cooling medium 35 and the housing 30 to be cooled and thus the materials to be cooled are in turn influenced.
  • FIG. 5 and 5a show a further variant of a cooling device, in which a hollow body 42 with an intermediate layer 43 is accommodated in a cartridge 44, which in turn is accommodated in the housing 40. It also applies to this exemplary embodiment that the thickness b of the intermediate layer 43 responds to the thermal coupling between the hollow body 42 and the cooling channel embedded in the form of a cartridge 41. influenced between the cooling medium 45 and the housing 40 to be cooled.
  • a hollow body 12, 22, 32, 42 for receiving the cooling medium 15, 25, 35, 45 is present in the cooling channels 11, 21, 31, 41 in the exemplary embodiments according to the invention.
  • the designs described also have a number of other significant advantages.
  • Various tests in practice have shown that even the devices with a temperature of more than 400 ° C can be effectively cooled with water as the cooling medium and that the pressure required to supply the cooling medium with water in a liquid state can be effectively cooled with the proposed designs hold just a few bars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Accessories For Mixers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

The invention provides an apparatus for mixing and/or kneading materials comprising a housing defining a mixing and kneading chamber, a mixing and kneading member located in the interior of the mixing and kneading chamber, means for driving the mixing and kneading member in a rotating and/or oscillating motion, and means for cooling the housing and, thereby, the materials processed in the mixing and kneading chamber. The means for cooling the housing comprise cooling channels provided in the housing and a cooling medium circulating through the cooling channels. The cooling channels are provided with hollow pipe- or tube-like inserts containing the cooling medium circulating through said cooling channels, and only a part of the outer surface of the pipe- or tube-like inserts is in direct thermal contact with the walls limiting the cooling channels. Alternatively, there is provided an intermediate layer by means of which the outer surface of the pipe- or tube-like inserts is in thermal contact with the walls limiting the cooling channels.

Description

Die vorliegende Erfindung bezieht sich auf eine Kühlvorrichtung nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a cooling device according to the preamble of patent claim 1.

Solche Kühlvorrichtungen werden beispielsweise in der Verfahrenstechnik, in Extrudern oder sogenannten "Ko-Knetern" zum Kühlen des Gehäuses und damit des zu verarbeitenden Materials eingesetzt. Während des Arbeitsvorganges ist meistens Bedingung, dass eine vorbestimmte Grenztemperatur des Gehäuses und damit des darin verarbeiteten Materials eingehalten wird. Die präzise Einhaltung dieser Grenztemperatur ist insbesondere dann mit grossem Aufwand und erheblichen Schwierigkeiten verbunden, wenn das zu kühlende Material eine Temperatur von 350°C - 500°C oder noch mehr aufweist. In diesem Fall kann nicht mehr, wie bei tieferen Temperaturen, mit Öl, das in Kühlbohrungen zirkulieren sollte, gearbeitet werden, da Öle im Dauerbetrieb und ohne besondere Vorkehrungen wirtschaftlich nur bis etwa 350°C einsetzbar sind.Such cooling devices are used, for example, in process engineering, in extruders or so-called "co-kneaders" for cooling the housing and thus the material to be processed. During the working process it is usually a condition that a predetermined limit temperature of the housing and thus of the material processed therein is maintained. The precise maintenance of this limit temperature is particularly associated with great effort and considerable difficulties if the material to be cooled has a temperature of 350 ° C - 500 ° C or even more. In this case, it is no longer possible to work with oil, which should circulate in cooling holes, as at lower temperatures, since oils can only be used economically up to around 350 ° C in continuous operation and without special precautions.

Wünschenswert wäre daher, ein Kühlmedium einzusetzen, welches wirtschaftlich, d.h. kostengünstig beschafft und eingesetzt werden kann. Ein solches Medium ist z.B. Wasser. Wasser als Kühlmedium hat jedoch den grundlegenden Nachteil, dass es bei Temperaturen von über 100°C verdampft, sofern es nicht unter Druck steht. Da die zu kühlenden Vorrichtungen aber Temperaturen aufweisen, die durchaus im Bereich von 300°C - 400°C liegen, müsste das Wasser (um im flüssigen Aggregatszustand zu bleiben) unter einem so hohen Druck stehen, dass es nicht mehr wirtschaftlich einsetzbar ist.It would therefore be desirable to use a cooling medium which can be procured and used economically, ie inexpensively. One such medium is water. However, water as a cooling medium has the fundamental disadvantage that it evaporates at temperatures above 100 ° C, provided that it is not under pressure. However, since the devices to be cooled have temperatures that are in the range from 300 ° C. to 400 ° C. the water would have to be under such a high pressure (in order to remain in the liquid aggregate state) that it would no longer be economically viable.

Bei den bis heute bekannten Anordnungen mit Kühlleitungen resp. Kühlbohrungen, welche in die zu kühlenden Vorrichtungen eingearbeitet sind und bei welchen das Kühlmedium daher mit seiner ganzen Oberfläche mit dem zu kühlenden Gegenstand in direkter thermischer Verbindung steht, ist der Einsatz von Wasser als Kühlmedium aus obigen Überlegungen deshalb problematisch.In the arrangements known to date with cooling lines, respectively. Cooling bores, which are incorporated in the devices to be cooled and in which the entire surface of the cooling medium is therefore in direct thermal connection with the object to be cooled, therefore use of water as the cooling medium is problematic from the above considerations.

Aus der US-A- 3 730 262 ist demgegenüber eine Kühlvorrichtung bekannt, bei der ein gebogenes, Kühlwasser führendes Kühlrohr mittels eines flexiblen Metallbandes am äusseren Umfang eines zu kühlenden zylindrisches Gehäuses gehalten ist, so dass das Kühlrohr in direktem Kontakt mit der Umfangsfläche des Gehäuses auf diese gepresst wird. Das Kühlrohr hat beispielsweise einen dreieckförmigen Querschnitt, um einen möglichst grossflächigen Kontakt mit der Gehäuseoberfläche zu erreichen. Das Gehäuse weist keinen Kühlkanal zur Aufnahme des Kühlrohres auf. Es ist vielmehr vorgesehen, mehrere derartige Kühlvorrichtungen an wählbaren Stellen längs des Gehäuses anzuordnen. Die beschriebene Kühlvorrichtung ist daher für eine gleichmässige Kühlung dickwandiger Gehäuse und für eine Anwendung bei hohen Gehäusetemperaturen nicht geeignet.On the other hand, a cooling device is known from US Pat. No. 3,730,262, in which a curved cooling pipe carrying cooling water is held on the outer circumference of a cylindrical housing to be cooled by means of a flexible metal band, so that the cooling pipe is in direct contact with the peripheral surface of the housing is pressed onto this. The cooling tube has, for example, a triangular cross section in order to achieve the largest possible contact with the housing surface. The housing has no cooling channel for receiving the cooling tube. Rather, it is provided to arrange several such cooling devices at selectable locations along the housing. The cooling device described is therefore not suitable for uniform cooling of thick-walled housings and for use at high housing temperatures.

Es sind auch Kühlvorrichtungen bekannt, siehe DE-A-2 756 752 oder DE-C-3 343 822, bei denen ein Kühlrohr in einem einzigen ringförmigen Kanal gewickelt angeordnet ist. Der Kanal dieser Vorrichtungen weist ferner noch Heizdrahtwendeln auf. Die Problematik der Wärmeübertragung zwischen Gehäuse und Kühlmedium wird in diesem Stand der Technik nicht angesprochen.Cooling devices are also known, see DE-A-2 756 752 or DE-C-3 343 822, in which a cooling tube is arranged wound in a single annular channel. The channel of these devices also has heating wire coils. The problem of heat transfer between the housing and the cooling medium is not addressed in this prior art.

Aufgabe der Erfindung ist es daher, eine Anordnung vorzuschlagen, bei welcher ein Kühlmedium, z.B. Wasser, für ein mit hohen Temperaturen beaufschlagtes Gehäuse eingesetzt werden kann, ohne dass dabei das Kühlmedium unter hohem Druck steht und ohne dass dabei die vorgängig geschilderten Nachteile, insbesondere die ungleichmassige Abkühlung des zu kühlenden Gegenstandes, bei genügender Kühlleistung, zum Tragen kommen.The object of the invention is therefore to propose an arrangement in which a cooling medium, e.g. Water, can be used for a housing exposed to high temperatures, without the cooling medium being under high pressure and without the disadvantages described above, in particular the uneven cooling of the object to be cooled, with sufficient cooling performance.

Diese Aufgabe wird durch eine Kühlvorrichtung gelöst, welche die im kennzeichnenden Teil des Patentanspruchs 1 beschriebenen Merkmale aufweist. Weitere alternative Merkmale der Erfindung und besondere Ausführungsformen sind in den abhängigen Ansprüchen 2 bis 13 beschrieben.This object is achieved by a cooling device which has the features described in the characterizing part of patent claim 1. Further alternative features of the invention and special embodiments are described in dependent claims 2 to 13.

Mit der erfindungsgemässen Ausführung muss das Kühlmedium zwar länger im zu kühlenden Gegenstand zirkulieren, um die gleiche Kühlleistung zu erzielen wie mit Kühlvorrichtungen, bei denen das Kühlmedium mit seiner ganzen Oberfläche mit dem zu kühlenden Körper in direkter thermischer Verbindung steht. Andererseits wird aber der Vorteil erreicht, dass eine gleichmässige Temperierung des Gehäuses erfolgt und dass ein in jeder Beziehung unbedenkliches und auch kostengünstiges Kühlmittel eingesetzt werden kann, z.B. Wasser, ohne dass es unter hohem Druck gehalten werden muss.With the embodiment according to the invention, the cooling medium must circulate longer in the object to be cooled in order to be the same To achieve cooling performance as with cooling devices in which the entire surface of the cooling medium is in direct thermal connection with the body to be cooled. On the other hand, the advantage is achieved that the housing is tempered uniformly and that a coolant that is harmless and inexpensive in every respect, for example water, can be used without having to be kept under high pressure.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der beiliegenden Zeichnungen erläutert. Es zeigen:

Fig.1
einen Querschnitt durch eine bekannte Kühlanordnung in schematischer Darstellung;
Fig.2
einen Teil-Querschnitt durch eine vorgeschlagene Kühlvorrichtung, in welcher eine erste Ausführungsform eines einzelnen Kühlkanals sichtbar ist;
Fig.2a
einen Längsschnitt zu Fig.2;
Fig.2b
eine Variante zu Fig. 2a;
Fig.3
einen Teil-Querschnitt durch die vorgeschlagene Kühlvorrichtung, in welcher eine zweite Ausführungsform eines einzelnen Kühlkanales sichtbar ist;
Fig.3a
einen Längsschnitt zu Fig.3;
Fig.4
einen Teil-Querschnitt durch die vorgeschlagene Kühlvorrichtung, in welcher eine dritte Ausführungsform eines einzelnen Kühlkanales sichtbar ist;
Fig.5
einen Teil-Querschnitt durch die vorgeschlagene Kühlvorrichtung, in welcher eine vierte Ausführungsform eines einzelnen Kühlkanales sichtbar ist; und
Fig.5a
einen Längsschnitt zu Fig.5.
Embodiments of the invention are explained below with reference to the accompanying drawings. Show it:
Fig. 1
a cross section through a known cooling arrangement in a schematic representation;
Fig. 2
a partial cross section through a proposed cooling device, in which a first embodiment of a single cooling channel is visible;
Fig.2a
a longitudinal section to Figure 2;
Fig.2b
a variant of Fig. 2a;
Fig. 3
a partial cross section through the proposed cooling device, in which a second embodiment of a single cooling channel is visible;
Fig.3a
a longitudinal section to Figure 3;
Fig. 4
a partial cross section through the proposed cooling device, in which a third embodiment of a single cooling channel is visible;
Fig. 5
a partial cross section through the proposed cooling device, in which a fourth embodiment of a single cooling channel is visible; and
Fig.5a
a longitudinal section to Fig.5.

Eine bekannte Kühlanordnung ist in der Fig.1 generell mit 1 bezeichnet. Sie besitzt ein Gehäuse 2, das mit Kühlkanälen 6 versehen ist. Diese sind als Bohrungen direkt in das Gehäuse 2 eingearbeitet. Das Gehäuse 2 umschliesst einen Arbeitsraum 4, in welchem ein rotierendes und/oder oszillierendes Arbeitsorgan 3, z.B. eine Kneterwelle, angeordet ist. Das Kühlmedium 5 zirkuliert direkt im Kühlkanal 6 und steht somit mit seiner ganzen Oberfläche mit dem zu kühlenden Gehäuse 2 in direkter, thermischer Verbindung. Dies führt zu den eingangs erwähnten Nachteilen. Wird das Kühlmedium nur impulsweise eingespritzt, so verdampft es örtlich, was wiederum eine ungleichmässige Wärmeabfuhr bewirkt.A known cooling arrangement is generally designated 1 in FIG. It has a housing 2 which is provided with cooling channels 6. These are machined directly into the housing 2 as bores. The housing 2 encloses a working space 4 in which a rotating and / or oscillating working element 3, e.g. a kneader shaft is arranged. The cooling medium 5 circulates directly in the cooling channel 6 and is thus in direct thermal connection with its entire surface to the housing 2 to be cooled. This leads to the disadvantages mentioned at the beginning. If the cooling medium is injected only in pulses, it evaporates locally, which in turn causes uneven heat dissipation.

Ein erstes Beispiel einer erfindungsgemässen Lösung geht aus den Fig. 2, 2a und 2b hervor. Die schematisch gezeichnete Kühlvorrichtung besteht aus einem nur teilweise dargestellten Gehäuse 10, welches einen Gehäusekörper 16 und einen Gehäusedeckel 17 aufweist. Im Gehäusekörper 16 sind nutenförmige Kühlkanäle 11 mit rechteckigem Querschnitt vorhanden, die zur Aufnahme von Hohlkörpern 12 bzw. 12a dienen, in welchen ein Kühlmedium 15 zirkuliert. Die Hohlkörper 12 bzw. 12a bestehen vorzugsweise aus Metall und haben im dargestellten Beispiel runden Querschnitt. Es ist aber auch möglich, Hohlkörper mit ovalem oder polygonalem Querschnitt zu verwenden.A first example of a solution according to the invention can be seen in FIGS. 2, 2a and 2b. The schematically drawn cooling device consists of a housing 10 shown only partially, which has a housing body 16 and a housing cover 17. Groove-shaped cooling channels 11 with a rectangular cross section are provided in the housing body 16 and serve to receive hollow bodies 12 or 12a, in which a cooling medium 15 circulates. The hollow bodies 12 and 12a are preferably made of metal and have a round cross section in the example shown. However, it is also possible to use hollow bodies with an oval or polygonal cross section.

Gemäss Fig.2 ist der Aussendurchmesser des durch eine Rohrleitung 12 gebildeten Hohlkörpers so bemessen, dass dieser die beiden gegenüberliegenden Wände des Kühlkanales 11 berührt. Daraus ergeben sich schmale Kontaktflächen 14 zur Wärmeübertragung. Ist eine intensivere Wärmeübertragung erwünscht, so wird gemäss Fig. 2b eine Rohrleitung 12a verwendet, welche beiderseits Abflachungen 13 besitzt, aus welchen sich grössere Kontaktflächen 14a ergeben.According to FIG. 2, the outside diameter of the hollow body formed by a pipeline 12 is dimensioned such that it contacts the two opposite walls of the cooling channel 11. This results in narrow contact surfaces 14 for heat transfer. If a more intensive heat transfer is desired, a pipeline 12a is used according to FIG. 2b, which has flats 13 on both sides, from which larger contact surfaces 14a result.

Die Fig. 3 und 3a zeigen ein zweites Ausführungsbeispiel einer Kühlvorrichtung, bestehend aus einem Gehäuse 20 mit einem Kühlkanal 21, der in diesem Ausführungsbeispiel als Bohrung ausgebildet ist. Im Kühlkanal 21 findet ein Hohlkörper 22 mit dem darin zirkulierenden Kühlmedium 25 Aufnahme. Zwischen dem Kühlkanal 21 und dem Hohlkörper 22 ist eine Zwischenschicht 23 in Form einer Ummantelung der Rohrleitung 22 vorhanden. Durch die Dicke a der Zwischenschicht 23 kann die thermische Kopplung und dadurch die Wärmeübertragung zwischen der Rohrleitung 22 und dem Kühlkanal 21 resp. zwischen dem Kühlmedium 25 und dem zu kühlenden Gehäuse 20 und damit den zu kühlenden Materialien beeinflusst werden. Durch das für die Zwischenschicht 23 verwendete Material (gute bis verminderte thermische Leitfähigkeit) kann die thermische Kopplung zwischen dem Hohlkörper 22 und dem Kühlkanal 21, resp. zwischen dem Kühlmedium 25 und dem zu kühlenden Gehäuse 20 und damit den zu kühlenden Materialien ebenfalls beeinflusst werden. Als Material für die Zwischenschicht 23 kommt z.B. Quarzsand oder eine Mischung zwischen Quarzsand und einem anderen Material mit anderer thermischer Leitfähigkeit in Frage.3 and 3a show a second exemplary embodiment of a cooling device, consisting of a housing 20 with a cooling channel 21, which is designed as a bore in this exemplary embodiment. A hollow body 22 with the cooling medium 25 circulating therein is accommodated in the cooling channel 21. An intermediate layer 23 in the form of a casing of the pipeline 22 is present between the cooling duct 21 and the hollow body 22. Due to the thickness a of the intermediate layer 23, the thermal coupling and thereby the heat transfer between the pipe 22 and the cooling channel 21, respectively. be influenced between the cooling medium 25 and the housing 20 to be cooled and thus the materials to be cooled. Due to the material used for the intermediate layer 23 (good to reduced thermal conductivity), the thermal coupling between the hollow body 22 and the cooling channel 21, respectively. between the cooling medium 25 and the housing 20 to be cooled and thus the materials to be cooled are also influenced. For example, quartz sand or a mixture between quartz sand and another material with a different thermal conductivity can be considered as material for the intermediate layer 23.

Gemäss Fig. 4 ist eine Kühlvorrichtung mit einem Gehäuse 30 sowie einem Kühlkanal 31 vorgesehen, der in diesem Ausführungsbeispiel, wie bei Fig.2, als Nut ausgebildet ist. Im Kühlkanal 31 ist ein Hohlkörper 32 untergebracht, in welchem das Kühlmedium 35 zirkuliert. Zur Isolation dient eine Zwischenschicht 33, welche den Raum zwischen dem Hohlkörper 32 und dem als Nut ausgebildeten Kühlkanal 31 ausfüllt. Auch in diesem Fall kann durch das für die Zwischenschicht 33 verwendete Material (gute bis verminderte thermische Leitfähigkeit) die thermische Kopplung zwischen dem Hohlkörper 32 und dem als Nut ausgebildeten Kühlkanal 31, resp. zwischen dem Kühlmedium 35 und dem zu kühlenden Gehäuse 30 und damit den zu kühlenden Materialien, beeinflusst werden. Durch die Dicke der Zwischenschicht 33 kann die thermische Kopplung zwischen dem Hohlkörper 32 und dem als Nut ausgebildeten Kühlkanal 31 resp. zwischen dem Kühlmedium 35 und dem zu kühlenden Gehäuse 30 und damit den zu kühlenden Materialien wiederum beeinflusst werden.According to FIG. 4, a cooling device with a housing 30 and a cooling channel 31 is provided, which in this exemplary embodiment, as in FIG. 2, is designed as a groove. A hollow body 32, in which the cooling medium 35 circulates, is accommodated in the cooling channel 31. An intermediate layer 33 serves for insulation and fills the space between the hollow body 32 and the cooling channel 31 designed as a groove. In this case too, the material used for the intermediate layer 33 (good to reduced thermal conductivity) can cause the thermal coupling between the hollow body 32 and the cooling channel 31, which is designed as a groove. between the cooling medium 35 and the housing 30 to be cooled and thus the materials to be cooled. Due to the thickness of the intermediate layer 33, the thermal coupling between the hollow body 32 and the as Groove-shaped cooling channel 31, respectively. between the cooling medium 35 and the housing 30 to be cooled and thus the materials to be cooled are in turn influenced.

Fig. 5 und 5a zeigen eine weitere Variante einer Kühlvorrichtung, bei welcher ein Hohlkörper 42 mit Zwischenschicht 43 in einer Patrone 44 untergebracht ist, welche ihrerseits im Gehäuse 40 Aufnahme findet. Auch für dieses Ausführungsbeispiel gilt, dass die Dicke b der Zwischenschicht 43 die thermische Kopplung zwischen dem Hohlkörper 42 und dem in Form einer Patrone 41 eingelassenen Kühlkanal resp. zwischen dem Kühlmedium 45 und dem zu kühlenden Gehäuse 40 beeinflusst.5 and 5a show a further variant of a cooling device, in which a hollow body 42 with an intermediate layer 43 is accommodated in a cartridge 44, which in turn is accommodated in the housing 40. It also applies to this exemplary embodiment that the thickness b of the intermediate layer 43 responds to the thermal coupling between the hollow body 42 and the cooling channel embedded in the form of a cartridge 41. influenced between the cooling medium 45 and the housing 40 to be cooled.

Im Gegensatz zu den bekannten Kühlvorrichtungen sind bei den erfindungsgemässen Ausführungsbeispielen in den Kühlkanälen 11, 21, 31, 41 jeweils ein Hohlkörper 12, 22, 32, 42 zur Aufnahme des Kühlmediums 15, 25, 35, 45 vorhanden.In contrast to the known cooling devices, a hollow body 12, 22, 32, 42 for receiving the cooling medium 15, 25, 35, 45 is present in the cooling channels 11, 21, 31, 41 in the exemplary embodiments according to the invention.

Die beschriebenen Ausführungen haben neben den bereits beschriebenen Eigenschaften noch einige weitere wesentliche Vorteile aufzuweisen. Diverse Versuche in der Praxis haben gezeigt, dass mit den vorgeschlagenen Ausführungen selbst Vorrichtungen, die eine Temperatur von mehr als 400°C aufweisen, mit Wasser als Kühlmedium wirkungsvoll gekühlt werden können und dass dabei der benötigte Druck, um das Kühlmedium Wasser in flüssigem Aggregatszustand zu halten, nur wenige Bar beträgt.In addition to the properties already described, the designs described also have a number of other significant advantages. Various tests in practice have shown that even the devices with a temperature of more than 400 ° C can be effectively cooled with water as the cooling medium and that the pressure required to supply the cooling medium with water in a liquid state can be effectively cooled with the proposed designs hold just a few bars.

Claims (13)

  1. Cooling device, which comprises a casing (2, 10, 10a) and a working chamber (4) enclosed by this casing for the processing of materials, having at least one rotating and/or oscillating working unit (3), the cooling taking place by means of a medium (5, 15) circulating through cooling ducts (6, 11, 11a) said cooling ducts being incorporated in the casing (2, 10, 10a), characterized in that arranged hollow parts (12, 12a) are present in the cooling ducts (11, 11a), in which the coolant medium (15) circulates and which are in direct thermal connection with not more than one part of their surface with the limiting balls of the cooling ducts (6, 11, 11a).
  2. Cooling device according to Claim 1, characterized in that the hollow parts (22, 32, 42) inserted in the cooling ducts (21, 31, 41) are in thermal connection only indirectly via an intermediate layer (23, 33, 43) with the limiting walls of the cooling ducts (21, 31, 41) and thus with the casing (20, 30, 40).
  3. Cooling device according to Claim 1, characterized in that the hollow parts (12, 12a) are thermally connected to the casing (10, 10a) only via contact surfaces (14, 14a) extending along their surfaces.
  4. Cooling device according to Claim 2 or 3, characterized in that the cooling ducts (11, 11a) have the shape of grooves.
  5. Cooling device according to one of Claims 2 - 4, characterized in that the cooling ducts (11, 11a) have rectangular cross-sections.
  6. Cooling device according to one of the preceding claims, characterized in that the hollow parts (12, 12a) are made of metal.
  7. Cooling device according to one of the preceding claims, characterized in that the hollow parts (12, 12a) have round, oval or polygonal cross-sections.
  8. Cooling device according to one of the preceding claims, characterized in that, in order to increase the contact surfaces (14a) between the hollow part (12a) and the cooling duct (11a) of the casing (10a), flattenings (13) (Fig. are present at the periphery of the hollow part (12a).
  9. Cooling device according to Claim 2, characterized in that the intermediate layer (23, 33, 43) is constructed as a sheathing of the hollow part (22, 32, 42).
  10. Cooling device according to Claim 2 or 9, characterized in that the intermediate layer (23, 33, 43) is made of materials with low thermal conductivity.
  11. Cooling device according to Claim 2 or 9, characterized in that the intermediate layer (23, 33, 43) is made up of various materials with various thermal conductivities.
  12. Cooling device according to Claim 10, characterized in that the intermediate layer (23, 33, 43) consists of quartz sand.
  13. Cooling device according to one of Claims 2 and 9-12, characterized in that the hollow part (42) is located together with the intermediate layer (43) in a cartridge (44).
EP92810982A 1991-12-14 1992-12-10 Cooling apparatus Expired - Lifetime EP0548021B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141329 1991-12-14
DE4141329A DE4141329C1 (en) 1991-12-14 1991-12-14

Publications (2)

Publication Number Publication Date
EP0548021A1 EP0548021A1 (en) 1993-06-23
EP0548021B1 true EP0548021B1 (en) 1996-01-24

Family

ID=6447097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810982A Expired - Lifetime EP0548021B1 (en) 1991-12-14 1992-12-10 Cooling apparatus

Country Status (4)

Country Link
US (1) US5271457A (en)
EP (1) EP0548021B1 (en)
AT (1) ATE133366T1 (en)
DE (2) DE4141329C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825405A1 (en) * 1996-08-12 1998-02-25 Buss Ag Method and arrangement for cooling and/or heating, in particular for machine or reactor housings
AT412605B (en) * 2003-08-04 2005-05-25 Koenig Maschinen Gmbh DEVICE AND METHOD FOR PIGEONALLY MANUFACTURING A POWDER STRIP
DE102007047726A1 (en) * 2007-10-05 2009-04-09 Rieter Automatik Gmbh Extrusion device for extruding molten synthetic material, has heating insert comprising elongated base, where external dimensions of base is formed in such manner that base is inserted into opening in starting valve in form-fit manner
CH706090A1 (en) * 2012-02-17 2013-08-30 Alstom Technology Ltd A method for manufacturing a near-surface cooling passage in a thermally highly stressed component and component with such a channel.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938377A (en) * 1930-05-31 1933-12-05 Farrel Birmingham Co Inc Mixing machine
US2175126A (en) * 1938-11-07 1939-10-03 Harry G Mccormick Fuel oil vaporizer
US3464220A (en) * 1968-02-12 1969-09-02 Louis A M Phelan Machine for making frozen confection
US3730262A (en) * 1971-08-06 1973-05-01 Emerson Electric Co Heating and cooling units
DE2535024C2 (en) * 1975-08-06 1984-08-02 Corning Glass Works, Corning, N.Y. Method for extruding honeycomb bodies
DE2740490C3 (en) * 1977-09-08 1980-07-03 Kraftwerk Union Ag, 4330 Muelheim Screw machine
DE2756752A1 (en) * 1977-12-20 1979-06-21 Werner & Pfleiderer Cooling or heating a screw-extruder barrel with interior recess - contg. a wearing inset, using a heat-exchanger coil for conveying tempering medium, and packing remaining space with low-melting metal alloy
DE3017559C2 (en) * 1980-05-08 1984-07-05 Gottfried Joos Maschinenfabrik GmbH & Co, 7293 Pfalzgrafenweiler Heating and cooling element
DE3320607A1 (en) * 1982-06-08 1983-12-08 Cincinnati Milacron Austria AG, 1232 Wien Screw for a plastic extruder
DE3343822C1 (en) * 1983-07-09 1985-02-28 Hotset Heizpatronen und Zubehör GmbH, 5880 Lüdenscheid Device for electrical heating and cooling for plastics injection moulding machines or plastics processing machines
CH675019A5 (en) * 1987-08-04 1990-08-15 Sulzer Ag
US5054932A (en) * 1990-12-17 1991-10-08 Kangas Waino J Segmented barrel extruder device

Also Published As

Publication number Publication date
EP0548021A1 (en) 1993-06-23
US5271457A (en) 1993-12-21
DE59205172D1 (en) 1996-03-07
DE4141329C1 (en) 1993-04-01
ATE133366T1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
EP0369172B1 (en) Heated or cooled cylinder
EP3489603B1 (en) Heat exchanger
EP2257235B1 (en) Cryosurgical instrument
EP0430367A2 (en) X-ray tube
DE2906973A1 (en) SCREW PRESS FOR THERMOPLASTIC FOAM
DE3324901A1 (en) DEVICE FOR ELECTRIC HEATING AND COOLING BY MEANS OF LIQUID MEDIA FOR PLASTIC SPRAYING MACHINES
DE2839552A1 (en) NOZZLE HEAD FOR PRODUCING PLASTIC GRANULES
DE2363063A1 (en) ROLLER
EP0548021B1 (en) Cooling apparatus
DE2311717C3 (en) Device for temperature control of an extruder screw
EP0548022A1 (en) Device for mixing and/or kneading of materials
WO2001088452A1 (en) Water cooled transport roller for a roller-hearth kiln
EP0144029B1 (en) Cooling tube for a cooling section for rapidly cooling steel wire rod or rod stock
EP1465285A1 (en) Coaxial line with forced cooling
DE2417067A1 (en) Heating/cooling jacket for plastics processing - esp for plasticizer cyli-nder of extruder has electrical heater elements and coolant pipes
EP0153687A2 (en) Apparatus for making propellant powder in a rod-like shape
EP3629450A1 (en) Electric motor with liquid cooling
EP3865215A1 (en) Temperature-controlled component and method for producing same
DE19507864A1 (en) Flake ice machine
DE2902605C2 (en) Temperature controlled laboratory device, in particular made of glass
DE2063812C3 (en) Vibrating mill for grinding processes that require a temperature difference to be maintained between the grinding chamber and the environment during operation
DE19507868B4 (en) Scherbeneisautomat
EP0670209A1 (en) Heating device, in particular for use in injection moulds for processing thermoplastic materials
DE2429996C3 (en) Die holder for dry drawing of wire
DE965458C (en) Support bearing for machines exposed to high temperatures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19930910

17Q First examination report despatched

Effective date: 19941115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960124

Ref country code: FR

Effective date: 19960124

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960124

Ref country code: DK

Effective date: 19960124

Ref country code: BE

Effective date: 19960124

REF Corresponds to:

Ref document number: 133366

Country of ref document: AT

Date of ref document: 19960215

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 67012

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960125

REF Corresponds to:

Ref document number: 59205172

Country of ref document: DE

Date of ref document: 19960307

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960424

Ref country code: PT

Effective date: 19960424

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 67012

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961231

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19970630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991117

Year of fee payment: 8

Ref country code: CH

Payment date: 19991117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991129

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051210