EP0546359B1 - Thermal spray coating process with cooling - Google Patents

Thermal spray coating process with cooling Download PDF

Info

Publication number
EP0546359B1
EP0546359B1 EP92119729A EP92119729A EP0546359B1 EP 0546359 B1 EP0546359 B1 EP 0546359B1 EP 92119729 A EP92119729 A EP 92119729A EP 92119729 A EP92119729 A EP 92119729A EP 0546359 B1 EP0546359 B1 EP 0546359B1
Authority
EP
European Patent Office
Prior art keywords
cooling
jet
carbon dioxide
expansion
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119729A
Other languages
German (de)
French (fr)
Other versions
EP0546359A1 (en
Inventor
Peter Dipl.-Ing. Heinrich (Fh)
Wolfgang Schmidtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0546359A1 publication Critical patent/EP0546359A1/en
Application granted granted Critical
Publication of EP0546359B1 publication Critical patent/EP0546359B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the invention relates to a method for coating a surface by means of a thermal spray method, for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying, a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.
  • a thermal spray method for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying
  • a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.
  • Such a method is known from DE-PS 26 15 022.
  • pure carbon dioxide (CO2) is used as a coolant, which is supplied to the nozzle generating the cooling jet in a liquid state.
  • CO2 carbon dioxide
  • a mixture of gaseous and solid CO2, ie CO2 snow particles is formed, which achieves a particularly high cooling performance when it hits a workpiece and is particularly advantageous in connection with the thermal application of layers.
  • gaseous instead of liquid carbonic acid (CO2) so there would be a significant reduced cooling effect, since the resulting cooling jet would have a lower coldness and in particular a considerably lower proportion of CO2 snow particles.
  • liquid carbon dioxide with CO2 being at ambient temperature and under the condensing pressure
  • a special form of CO2 supply must be guaranteed, namely one in which the carbon dioxide from the respective storage containers is in the liquid phase is applied.
  • the carbon dioxide which is in standard storage at 20 ° C with about 57 bar pressure in the associated storage tanks, can be discharged from them by means of a riser pipe or in another special way, ie the storage tanks must be provided with a liquid phase extraction.
  • the object of the present invention was therefore to provide a thermal spray process with CO2 cooling which avoids or eliminates the disadvantages described and in particular also enables the use of gaseous carbon dioxide.
  • the carbon dioxide fraction in the cooling jet is obtained from gaseous carbon dioxide which is at least under 45 bar pressure, and in such a way that the carbon dioxide gas is initially largely closed via a narrow slot nozzle or another slot-like opening in an expansion slot arranged around this expansion slot Expansion volume is expanded into it and, based on this expansion volume and its outlet opening, the cooling jet is formed and directed onto the surface to be cooled.
  • any special equipment of the CO2 storage container can be omitted.
  • a slight limitation arises from the fact that the CO2 pressure in these containers for carrying out the invention must not drop below 45 bar, since the cold for the cooling jet alone from the Expansion cooling of the CO2 gas is obtained and on the other hand no contribution from the "latent cold" of the liquid carbon dioxide is available. For this reason, the cold yield is too low below pressure values of 45 bar, which can easily occur under unfavorable conditions - e.g. when the storage bottles are stored outdoors and at low outside temperatures. However, if the standard pressure values of approx. 57 bar, as they occur at room temperature, are available, this results in an excellent function.
  • the type of expansion of the carbon dioxide gas according to the invention via a slot nozzle or the like into a closed expansion volume is essential for the function and effectiveness of the invention.
  • the slot nozzle with its elongated and, on the other hand, narrow cross-sectional opening namely generates an expansion gas jet with a surface which is substantially enlarged in comparison to an expansion gas jet originating from a round nozzle.
  • This enlarged surface area results in an increased interaction of the expansion gas jet with its surroundings, which - according to the further essential feature of the invention - is formed by an expansion volume in which, during operation, cold carbon dioxide gas is almost exclusively already expanded. Warmer ambient air therefore has no direct access to the expanded carbon dioxide.
  • DE-PS 36 24 787 shows a cooling and freezing probe for local cooling of human or animal body areas and - in a secondary aspect - also of electronic components, which is based on the principle described, but the cooling of the respective area from close proximity takes place and no long-range cooling gas jet, but a suitably guided cooling gas flow is formed.
  • the transfer, adaptation and modified application according to the present invention is not obvious.
  • a cooling jet following and / or preceding the spray jet primarily protects temperature-sensitive spray material or heat-sensitive workpieces from overheating. With thermal spray processes cooled in the manner described, however, an increase in performance is generally possible compared to uncooled spray processes.
  • the method according to the invention is advantageously carried out with an expansion nozzle, which has a connectable to a CO2 gas source inner tube 6 with a final slot nozzle, and has an outer tube 9 enveloping the inner tube at the end of the slot nozzle, projecting significantly beyond and forming the expansion volume.
  • an expansion nozzle With this expansion nozzle, a diameter to length ratio of 1 to 3 to 1 to 10, preferably 1 to 5, is maintained with regard to the cylindrical expansion volume formed with the outer tube.
  • a distance from the workpiece of at least approximately 3 cm is advantageously maintained in process operation in order to obtain a favorable process function.
  • the applicant has determined that an even higher and more advantageous cooling effect of the cooling jet formed as described can be obtained by starting from a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar.
  • a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar.
  • special precautions have to be taken, since - as described above - CO2 is only available at around 57 bar in standard storage tanks.
  • said higher pressures are produced by heating the gas storage device together with its contents and thus by generating a higher vapor pressure of the liquid CO2 or that the pressure increase is generated by a pump connected downstream of the storage device.
  • a storage container is particularly advantageously heated, for example, by arranging an electrical heating conductor in it.
  • Containers equipped with heating conductors are also available, since such heating devices are provided in any case when large amounts of CO2 gas are provided in the associated storage containers.
  • This circumstance therefore accommodates the "high-pressure variant" of the invention, and a suitably equipped storage tank with, for example, pressure-sensitive heating control can easily supply the pressures above 65 bar.
  • a particularly effective cooling jet is formed with this method variant, the effect of which lies in the relatively high proportion of snow in the jet.
  • FIG. 1 now shows a thermal spraying process, for example a flame spraying or high-speed flame spraying process operated with fuel gas and transport gas. Shown is a spray nozzle 1, as well as an expansion nozzle 2 and a workpiece 3. To apply the surface layer, the workpiece shown, namely a shaft 3, is rotated according to arrow 4 and the spray jet of the spray nozzle 1 is directed approximately perpendicularly onto its surface. For example, a wear-resistant layer containing tungsten carbide can be applied, the flame spray nozzle 1 and the coolant nozzle 2 being coupled, aligned in parallel, and advanced according to arrow 5 along a parallel to the workpiece surface.
  • the expansion nozzle follows the spray nozzle at a constant distance of approx.
  • the coolant used here is, in particular, pure carbon dioxide or - if a particularly high cooling capacity is required - mixtures of carbon dioxide together with helium and / or hydrogen according to EP-PS 0 263 469, the admixing gases preferably only directly in the area of impact of the coolant jet 2 ' be mixed on the workpiece.
  • FIG. 2 shows one of the possible expansion nozzles for carrying out the method according to the invention in section. This is composed of an inner tube 6 with a closing slot nozzle 7, and an outer tube 9 enveloping the end of the inner tube and forming the expansion volume 8, which is open at its end facing away from the expansion nozzle 7.
  • FIG. 3 shows a front view of the expansion nozzle shown in FIG. 2, likewise in a sectional view along the section line S in FIG Expansion channel 8 relaxed into it.
  • the relaxation process arise in particular due to a negative pressure formation behind the slot nozzle 7 CO2 cold gas and snow particles, and there is thus a mixture of cold gas and snow in the expansion volume 8, which leaves the expansion nozzle through the outlet opening 10 of the outer tube 9 and directed onto the workpiece becomes.
  • Such an expansion nozzle is to be dimensioned according to the desired throughput.
  • a coolant nozzle of the type shown which is suitable for common flame spraying processes, has e.g. an inner diameter D (see Figure 2) with respect to the outer tube 9 of 3 mm and thus - according to the length dimension to be maintained - a protruding length L of e.g. 15 mm.
  • Another size that is important in relation to the invention is the opening width of the slot nozzle of the inner tube. As a rule, this is advantageously between 0.1 and 0.4 mm. This opening width is based on the selection of the basic size of the expansion nozzle, i.e. after selection of the diameter for the inner or outer tube, in the narrower sense determining for the flow of CO2 gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a process for coating a surface by means of a thermal spray method, in which a spray jet of hot carrier gas and molten material particles is directed at the surface in question and at the same time cooling is effected adjacent to the spray jet by means of a cooling jet which consists of substantial proportions of carbon dioxide and contains cold gas and snow particles. Hitherto, such a process was carried out based on liquid carbon dioxide, in order to ensure that a useful cooling jet with correspondingly high snow particle fractions is obtained. According to the invention, the carbon dioxide fraction in the cooling jet is obtained from gaseous carbon dioxide which is at a pressure of at least 45 bar, specifically by the carbon dioxide gas first being expanded, via a slit nozzle or another slit-like orifice, into an expansion volume which is disposed about said expansion slit and is largely enclosed with respect to the environment, and starting from this expansion volume and its outlet orifice the cooling jet is formed and is directed at the region to be cooled. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Beschichten einer Oberfläche mittels einer thermischen Spritzmethode, beispielsweise dem Flamm- oder Hochgeschwindigkeitsflammspritzen, dem Lichtbogen- oder Plasmaspritzen oder dem Detonationsspritzen, wobei ein Strahl aus heißem Transportgas und geschmolzenen Materialpartikeln auf die betreffende Oberfläche gerichtet wird und dabei benachbart zum Spritzstrahl mit einem zu wesentlichen Teilen aus Kohlendioxid bestehenden Kühlstrahl enthaltend Kaltgas und Schneepartikel gekühlt wird.The invention relates to a method for coating a surface by means of a thermal spray method, for example flame or high-speed flame spraying, arc or plasma spraying or detonation spraying, a jet of hot transport gas and molten material particles being directed onto the surface in question and in the process adjacent to the spray jet is cooled with a cooling jet consisting essentially of carbon dioxide containing cold gas and snow particles.

Ein solches Verfahren ist aus der DE-PS 26 15 022 bekannt. Bei diesem wird reine Kohlensäure (CO₂) als Kühlmittel angewandt, wobei diese der den Kühlstrahl erzeugenden Düse in flüssigem Zustand zugeführt wird. Dabei bildet sich beim Austritt aus dieser ein Gemisch aus gasförmigem und festem CO₂, d.h. CO₂-Schneepartikeln, welches beim Auftreffen auf ein Werkstück eine besonders hohe und in Verbindung mit dem thermischen Auftragen von Schichten besonders vorteilhafte Kühlleistung erzielt. Würde bei der, in der DE-PS 26 15 022 gezeigten Weise, gasförmige statt flüssige Kohlensäure (CO₂) eingesetzt, so ergäbe sich eine erheblich verringerte Kühlwirkung, da der entstehende Kühlstrahl eine geringere Kälte und insbesondere einen erheblich niedrigeren Anteil an CO₂-Schneepartikeln aufweisen würde. Dies kommt erstens dadurch zustande, daß diejenige Kältemenge, die für den Phasenübergang flüssig gasförmig dem CO₂ zuzuführen ist, bei der reinen Gasexpansion nicht mehr vorhanden ist, und zum zweiten dadurch, daß bei der in der obengenannten DE-PS gezeigten Düse und anderen gängigen Runddüsen das CO₂ sofort nach dem Verlassen der Düse umgebende Luft ansaugt, folglich ein inniger Wärmeaustausch mit dieser stattfindet und sich in der Folge deutlich weniger Schnee als bei der Flüssig-CO₂- Expansion bildet. Dieser CO₂-Schnee trägt jedoch wesentlich zur bekannten Kühlwirkung bei und bildet quasi einen Latentkälte-Speicher, der das Werkstück unmittelbar kühlt. Die Folge wäre eine im Vergleich zum Verfahren gemäß der DE-PS erheblich verringerte Kühlwirkung auf einem beaufschlagten Werkstück.Such a method is known from DE-PS 26 15 022. In this pure carbon dioxide (CO₂) is used as a coolant, which is supplied to the nozzle generating the cooling jet in a liquid state. When it emerges from this, a mixture of gaseous and solid CO₂, ie CO₂ snow particles is formed, which achieves a particularly high cooling performance when it hits a workpiece and is particularly advantageous in connection with the thermal application of layers. Would be used in the manner shown in DE-PS 26 15 022, gaseous instead of liquid carbonic acid (CO₂), so there would be a significant reduced cooling effect, since the resulting cooling jet would have a lower coldness and in particular a considerably lower proportion of CO₂ snow particles. This is due firstly to the fact that the amount of cold that is to be supplied to the CO₂ in liquid gaseous form for the phase transition is no longer present in the pure gas expansion, and secondly to the fact that in the nozzle shown in the aforementioned DE-PS and other common round nozzles the CO₂ sucks in surrounding air immediately after leaving the nozzle, consequently an intimate heat exchange takes place with it and as a result significantly less snow forms than with the liquid CO₂ expansion. However, this CO₂ snow contributes significantly to the known cooling effect and forms a latent cold storage, which cools the workpiece directly. The result would be a significantly reduced cooling effect on a loaded workpiece compared to the method according to DE-PS.

Gleiches gilt auch für die aus der EP-PS 0 263 469 bekannten Verfahren, bei denen ebenfalls ein aus Flüssig-CO₂ erzeugter, jedoch gemischter Kühlstrahl bestehend aus CO₂-Gas, CO₂-Schnee und weiteren Gasen, beispielsweise Helium und/oder Wasserstoff, zur Kühlung der thermisch gespritzten Oberflächen angewandt wird.The same applies to the processes known from EP-PS 0 263 469, in which also a cooling jet generated from liquid CO₂, but mixed, consisting of CO₂ gas, CO₂ snow and other gases, for example helium and / or hydrogen, for Cooling of the thermally sprayed surfaces is applied.

Die Anwendung flüssigen Kohlendioxids, wobei jeweils auf Umgebungstemperatur befindliches, unter dem Verflüssigungsdruck stehendes CO₂ angesprochen ist, bedeutet allerdings, daß eine spezielle Form der CO₂-Versorgung zu gewährleisten ist, nämlich eine solche, in der das Kohlendioxid aus den jeweiligen Speicherbehältern in der flüssigen Phase ausgebracht wird. Das heißt, daß das Kohlendioxid, das sich gemäß Standardspeicherung bei 20 °C mit etwa 57 bar Druck in den zugehörigen Speicherbehältern befindet, aus diesen mittels Steigrohr oder auf andere spezielle Weise auszubringen ist, d.h. daß die Speicherbehälter mit einer Flüssigphasenentnahme versehen sein müssen.However, the use of liquid carbon dioxide, with CO₂ being at ambient temperature and under the condensing pressure, means that a special form of CO₂ supply must be guaranteed, namely one in which the carbon dioxide from the respective storage containers is in the liquid phase is applied. This means that the carbon dioxide, which is in standard storage at 20 ° C with about 57 bar pressure in the associated storage tanks, can be discharged from them by means of a riser pipe or in another special way, ie the storage tanks must be provided with a liquid phase extraction.

Eine weitere Schwierigkeit bei der Anwendung von Kohlendioxid zu Kühlzwecken in Verbindung mit thermischen Spritzmethoden besteht darin, daß sich mit einem aus einer konventionellen Runddüse austretenden Kohlendioxidstrahl ein turbulenter, breit gefächerter Schnee-Gas-Mischstrahl ausbildet, der keine gezielte Einwirkung auf einen geeignet begrenzten Oberflächenbereich zuläßt. Bei der Anwendung eines solchen turbulenten und divergenten Kohlendioxidstrahls benachbart zu einem Spritzstrahl kann zudem eine nachteilige gegenseitige Beeinflussung des Spritzstrahls und des Kühlstrahls erfolgen.Another difficulty with the use of carbon dioxide for cooling purposes in connection with thermal spraying methods is that with a carbon dioxide jet emerging from a conventional round nozzle, a turbulent, widely diversified snow-gas mixed jet is formed which does not allow targeted action on a suitably limited surface area . When such a turbulent and divergent carbon dioxide jet is used adjacent to a spray jet, the spray jet and the cooling jet can also be adversely affected.

Die Aufgabenstellung der vorliegenden Erfindung bestand daher darin, ein thermisches Spritzverfahren mit CO₂-Kühlung anzugeben, das die beschriebenen Nachteile vermeidet oder beseitigt und insbesondere auch die Anwendung von gasförmigen Kohlendioxid ermöglicht.The object of the present invention was therefore to provide a thermal spray process with CO₂ cooling which avoids or eliminates the disadvantages described and in particular also enables the use of gaseous carbon dioxide.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Kohlendioxidanteil im Kühlstrahl aus gasförmigem, wenigstens unter 45 bar Druck stehendem Kohlendioxid gewonnen wird und zwar derart, daß das Kohlendioxidgas über eine enge Schlitzdüse oder eine sonstige schlitzartige Öffnung zunächst in ein um diesen Expansionsschlitz angeordnetes, weitgehend abgeschlossenes Expansionsvolumen hinein expandiert wird und ausgehend von diesem Expansionsvolumen und dessen Austrittsöffnung der Kühlstrahl gebildet und auf die zu kühlende Fläche gerichtet wird.This object is achieved in that the carbon dioxide fraction in the cooling jet is obtained from gaseous carbon dioxide which is at least under 45 bar pressure, and in such a way that the carbon dioxide gas is initially largely closed via a narrow slot nozzle or another slot-like opening in an expansion slot arranged around this expansion slot Expansion volume is expanded into it and, based on this expansion volume and its outlet opening, the cooling jet is formed and directed onto the surface to be cooled.

Aufgrund der Tatsache, daß erfindungsgemäß von gasförmigem und nicht flüssigem Kohlendioxid ausgegangen wird, kann zunächst jegliche Sonderausstattung der CO₂-Speicherbehälter entfallen. Eine geringfügige Einschränkung entsteht hierbei dadurch, daß der CO₂-Druck in diesen Behältern zur Durchführung der Erfindung nicht unter 45 bar abfallen darf,da die Kälte für den Kühlstrahl allein aus der Expansionsabkühlung des CO₂-Gases gewonnen wird und andererseits kein Beitrag aus der "latenten Kälte" des flüssigen Kohlendioxids mehr verfügbar ist. Aus diesem Grund ist unterhalb von Druckwerten von 45 bar, die bei ungünstigen Bedingungen - z.B. bei Lagerung der Speicherflaschen im Freien und tiefen Außentemperaturen - ohne weiteres auftreten können, die Kälteausbeute zu gering. Sind jedoch die Standarddruckwerte von ca. 57 bar, wie sie sich bei Raumtemperatur einstellen, verfügbar, so ergibt sich eine ausgezeichnete Funktion.Due to the fact that the invention is based on gaseous and non-liquid carbon dioxide, any special equipment of the CO₂ storage container can be omitted. A slight limitation arises from the fact that the CO₂ pressure in these containers for carrying out the invention must not drop below 45 bar, since the cold for the cooling jet alone from the Expansion cooling of the CO₂ gas is obtained and on the other hand no contribution from the "latent cold" of the liquid carbon dioxide is available. For this reason, the cold yield is too low below pressure values of 45 bar, which can easily occur under unfavorable conditions - e.g. when the storage bottles are stored outdoors and at low outside temperatures. However, if the standard pressure values of approx. 57 bar, as they occur at room temperature, are available, this results in an excellent function.

Dabei ist vor allem die erfindungsgemäße Art der Entspannung des Kohlendioxidgases über eine Schlitzdüse oder dergleichen in ein abgeschlossenes Expansionsvolumen hinein für die Funktion und Effektivität der Erfindung wesentlich. Die Schlitzdüse mit ihrer länglichen und andererseits schmalen Querschnittsöffnung erzeugt nämlich einen Expansionsgasstrahl mit einer im Vergleich zu einem aus einer Runddüse stammenden Expansionsgasstrahl wesentlich vergrößerten Oberfläche. Diese vergrößerte Oberfläche resultiert in einer verstärkten Wechselwirkung des Expansionsgasstrahls mit seiner Umgebung, die - nach dem weiteren wesentlichen Merkmal der Erfindung - von einem Expansionsvolumen gebildet wird, in dem sich im Betrieb fast ausschließlich bereits expandiertes, kaltes Kohlendioxidgas befindet. Wärmere Umgebungsluft besitzt also keinen unmittelbaren Zutritt zum expandierten Kohlendioxid. Daraus ergibt sich, daß zunächst nur wenig Wärme aus der Umgebung dem Kohlendioxid zufließen kann und deshalb im Expansionsvolumen - durch das dort quasi vorhandene Wärmedefizit - eine verstärkte Bildung von Kohlendioxid-Schneepartikeln stattfindet. Im Vergleich zu einer unabgeschirmten Expansion gasförmigen Kohlendioxids wird also ein deutlich erhöhter Anteil an Schneepartikeln erzeugt, welche vor allem den bei der Kühlung thermisch gespritzter Schichten erwünschten, starken Kühleffekt bewirken. Die im Expansionsraum entstandene Gas-Schnee-Mischung wird nun über den weiteren Verlauf des Expansionsvolumens zu einem Kühlstrahl ausgebildet und durch die Austrittsöffnung auf das Werkstück gelenkt. Mit einem auf diese Weise erzeugten Kühlstrahl ergibt sich eine effektive Kühlung des Werkstücks in seinem Anströmbereich, wobei bei Bedarf dem Kühlstrahl noch weitere, die Kühlwirkung erhöhende Gase zugemischt werden können.Above all, the type of expansion of the carbon dioxide gas according to the invention via a slot nozzle or the like into a closed expansion volume is essential for the function and effectiveness of the invention. The slot nozzle with its elongated and, on the other hand, narrow cross-sectional opening namely generates an expansion gas jet with a surface which is substantially enlarged in comparison to an expansion gas jet originating from a round nozzle. This enlarged surface area results in an increased interaction of the expansion gas jet with its surroundings, which - according to the further essential feature of the invention - is formed by an expansion volume in which, during operation, cold carbon dioxide gas is almost exclusively already expanded. Warmer ambient air therefore has no direct access to the expanded carbon dioxide. This means that initially only a little heat can flow from the environment to the carbon dioxide and therefore there is an increased formation of carbon dioxide snow particles in the expansion volume - due to the heat deficit there. Compared to an unshielded expansion of gaseous carbon dioxide, a significantly increased proportion of snow particles is generated, which above all provides the strong cooling effect desired when cooling thermally sprayed layers cause. The gas-snow mixture created in the expansion space is then formed into a cooling jet over the further course of the expansion volume and directed onto the workpiece through the outlet opening. With a cooling jet generated in this way, there is effective cooling of the workpiece in its inflow region, and if necessary, other gases which increase the cooling effect can be added to the cooling jet.

Grundsätzlich ist hinsichtlich der vorgeschlagenen Expansionsweise darauf hinzuweisen, daß diese bereits aus einem anderen technischen Fachgebiet, nämlich der Medizintechnik bekannt ist. Beispielsweise zeigt die DE-PS 36 24 787 eine Kühl- und Gefriersonde zum lokalen Abkühlen von menschlichen oder tierischen Körperbereichen und - in einem Nebenaspekt - auch von elektronischen Bauteilen, die auf dem beschriebene Prinzip beruht, wobei jedoch die Kühlung des jeweiligen Bereichs aus unmittelbarer Nähe erfolgt und kein weitreichender Kühlgasstrahl, sondern ein geeignet geführter Kühlgasstrom gebildet wird. Die Übertragung, Anpassung und abgewandelte Anwendung gemäß der vorliegenden Erfindung liegt jedoch nicht nahe.With regard to the proposed mode of expansion, it should be pointed out that it is already known from another technical field, namely medical technology. For example, DE-PS 36 24 787 shows a cooling and freezing probe for local cooling of human or animal body areas and - in a secondary aspect - also of electronic components, which is based on the principle described, but the cooling of the respective area from close proximity takes place and no long-range cooling gas jet, but a suitably guided cooling gas flow is formed. However, the transfer, adaptation and modified application according to the present invention is not obvious.

Bevorzugte Ausführungsvarianten der vorliegenden Erfindung sind nun in den Unteransprüchen 2 bis 5 angegeben.Preferred embodiments of the present invention are now specified in subclaims 2 to 5.

Dabei ist zu bemerken, daß ein nachfolgend und/oder vorausgehend zum Spritzstrahl geführter Kühlstrahl vor allem temperaturempfindliches Spritzmaterial oder hitzeempfindliche Werkstücke insgesamt vor Überhitzung schützt. Mit in der beschriebenen Weise gekühlten thermischen Spritzvorgängen ist allerdings generell eine Leistungssteigerung gegenüber ungekühlten Spritzvorgängen möglich.It should be noted that a cooling jet following and / or preceding the spray jet primarily protects temperature-sensitive spray material or heat-sensitive workpieces from overheating. With thermal spray processes cooled in the manner described, however, an increase in performance is generally possible compared to uncooled spray processes.

Das erfindungsgemäße Verfahren wird schließlich in vorteilhafter Weise mit einer Expansionsdüse durchgeführt, welche ein an eine CO₂-Gasquelle anschließbares Innenrohr 6 mit abschließender Schlitzdüse besitzt, sowie ein das Innenrohr am Schlitzdüsenende umhüllendes, deutlich darüber hinaus ragendes und das Expansionsvolumen bildendes Außenrohr 9 aufweist. Bei dieser Expansionsdüse wird hinsichtlich des mit dem Außenrohr gebildeten, zylinderförmigen Expansionsvolumens ein Durchmesser zu Längenverhältnis von 1 zu 3 bis 1 zu 10, vorzugsweise 1 zu 5, eingehalten.Finally, the method according to the invention is advantageously carried out with an expansion nozzle, which has a connectable to a CO₂ gas source inner tube 6 with a final slot nozzle, and has an outer tube 9 enveloping the inner tube at the end of the slot nozzle, projecting significantly beyond and forming the expansion volume. With this expansion nozzle, a diameter to length ratio of 1 to 3 to 1 to 10, preferably 1 to 5, is maintained with regard to the cylindrical expansion volume formed with the outer tube.

Mit der erfindungsgemäßen Expansionsdüse wird im Verfahrensbetrieb mit Vorteil ein Abstand zum Werkstück von wenigstens ca. 3 cm eingehalten, um eine günstige Verfahrensfunktion zu erhalten.With the expansion nozzle according to the invention, a distance from the workpiece of at least approximately 3 cm is advantageously maintained in process operation in order to obtain a favorable process function.

Prinzipiell besteht mit dem erfindungsgemäßen Kühlstrahlen auch die Möglichkeit, aus dem Spritzbereich zurückprallende Spritzpartikel vom Werkstück weg zu befördern und so Beschichtungfehler zu vermeiden.In principle, with the cooling jets according to the invention there is also the possibility of conveying spray particles rebounding from the spray area away from the workpiece and thus avoiding coating errors.

Im folgenden wird anhand der Zeichnungen das erfindungsgemäße Verfahren sowie eine entsprechende Expansionsdüse beispielhaft näher erläutert. Es zeigt:

Figur 1
einen autogenen Flammspritzvorgang in schematischer Darstellung;
Figur 2
eine erfindungsgemäße CO₂-Expansionsdüse in Seitenansicht im Schnitt;
Figur 3
eine erfindungsgemäße CO₂-Expansionsdüse in Vorderansicht;
Zunächst sei von einer standardgemäßen CO2-Versorgung ausgegangen, d.h. z.B. von einem unter Umgebungstemperatur stehenden Mittel- oder Hochdrucktank für CO2. Dieser enthält im Normalfall im Gleichgewicht sowohl flüssiges als auch gasförmiges CO2 mit einem Druck von ca. 57 bar. Das unter diesem Druck stehende Kohlendioxidgas wird nun gemäß der Erfindung über eine sehr enge, schlitzartige, in ihrer Längsausdehnung im Bereich einiger Millimeter liegende Düse in ein abgegrenztes Expansionsvolumen hinein entspannt. Auf diese Weise entsteht ausgangsseitig des z.B. durch ein Röhrchen gebildeten Expansionsvolumens ein relativ eng begrenzter und wenig turbulenter Strahl aus kaltem CO2-Gas und Schnee, der sich insbesondere für die Kühlung bei thermischen Spritzvorgängen ausgezeichnet eignet.The method according to the invention and a corresponding expansion nozzle are explained in more detail by way of example below with reference to the drawings. It shows:
Figure 1
an autogenous flame spraying process in a schematic representation;
Figure 2
a CO₂ expansion nozzle according to the invention in side view in section;
Figure 3
a CO₂ expansion nozzle according to the invention in front view;
First of all, a standard CO2 supply is assumed, that is, for example, a medium or high-pressure tank for CO2 that is at ambient temperature. This normally contains both liquid and in equilibrium also gaseous CO2 with a pressure of approx. 57 bar. According to the invention, the carbon dioxide gas under this pressure is now expanded into a limited expansion volume via a very narrow, slit-like nozzle with a longitudinal extension of a few millimeters. In this way, on the output side of the expansion volume formed, for example, by a tube, a relatively narrow and less turbulent jet of cold CO2 gas and snow is created, which is particularly suitable for cooling during thermal spraying processes.

Durch weitere Versuche hat die Anmelderin festgestellt, daß eine noch höhere und vorteilhaftere Kühlwirkung des wie geschildert gebildeten Kühlstrahls dadurch erhalten werden kann, daß von einem Kohlendioxidgas mit mehr als 65 bar Druck, vorzugsweise 70 bis 80 bar, ausgegangen wird. Dazu sind jedoch besondere Vorkehrungen zu treffen, da - wie oben beschrieben - CO₂ in Standardspeichern nur mit etwa 57 bar zur Verfügung steht. Erfindungsgemäß wird zur Lösung dieses Problems vorgeschlagen, daß die besagten höheren Drucke durch Aufheizen des Gasspeichers samt Inhalt und somit durch Erzeugen eines höheren Dampfdrucks des flüssigen CO₂'s hergestellt werden oder daß die Druckerhöhung durch eine dem Speicher nachgeschaltete Pumpe erzeugt wird. Besonders vorteilhaft wird ein Speicherbehälter z.B. dadurch beheizt, daß ein elektrischer Heizleiter in diesem angeordnet wird. Mit Heizleitern ausgestattete Behälter sind im übrigen verfügbar, da bei der Bereitstellung großer CO2-Gasmengen in den zugehörigen Speicherbehältern solche Heizeinrichtungen ohnehin vorgesehen sind. Dieser Umstand kommt also der "Hochdruckvariante" der Erfindung entgegen und ein entsprechend ausgerüsteter Speichertank mit z.B. drucksensitiver Heizungsregelung kann die besagten Drucke über 65 bar problemlos liefern. In jedem Falle jedoch, wird mit dieser Verfahrensvariante ein besonders effektiver Kühlstrahl ausgebildet, dessen Wirkung in dem relativ hohen Schneeanteil im Strahl begründet liegt.Through further tests, the applicant has determined that an even higher and more advantageous cooling effect of the cooling jet formed as described can be obtained by starting from a carbon dioxide gas with a pressure of more than 65 bar, preferably 70 to 80 bar. However, special precautions have to be taken, since - as described above - CO₂ is only available at around 57 bar in standard storage tanks. According to the invention it is proposed to solve this problem that said higher pressures are produced by heating the gas storage device together with its contents and thus by generating a higher vapor pressure of the liquid CO₂ or that the pressure increase is generated by a pump connected downstream of the storage device. A storage container is particularly advantageously heated, for example, by arranging an electrical heating conductor in it. Containers equipped with heating conductors are also available, since such heating devices are provided in any case when large amounts of CO2 gas are provided in the associated storage containers. This circumstance therefore accommodates the "high-pressure variant" of the invention, and a suitably equipped storage tank with, for example, pressure-sensitive heating control can easily supply the pressures above 65 bar. In any case, however, a particularly effective cooling jet is formed with this method variant, the effect of which lies in the relatively high proportion of snow in the jet.

Figur 1 zeigt nun einen thermischen Spritzvorgang,beispielsweise einen mit Brenngas und Transportgas betriebenen Flammspritz- oder Hochgeschwindigkeitsflammspritzvorgang. Gezeigt ist eine Spritzdüse 1, sowie eine Expansionsdüse 2 und ein Werkstück 3. Zum Auftrag der Oberflächenschicht wird das gezeigte Werkstück, nämlich eine Welle 3, gemäß Pfeil 4 in Rotation versetzt und der Spritzstrahl der Spritzdüse 1 etwa senkrecht auf deren Oberfläche gerichtet. Beispielsweise kann eine verschleißfeste, Wolframcarbid enthaltende Schicht aufgetragen werden, wobei die Flammspritzdüse 1 sowie die Kühlmitteldüse 2 gekoppelt, parallel ausgerichtet und gemäß Pfeil 5 entlang einer Parallele zur Werkstückoberfläche vorgeschoben werden. Die Expansionsdüse folgt der Spritzdüse in gleichbleibendem Abstand von ca. 5 bis 15 cm (Abstand bezüglich der beiden Düsenachsen). Es ist zu erkennen, daß die neu aufgebrachten Schichtbereiche nach Verlassen des Spritzbereichs unter den Einfluß des von der Expansionsdüse 2 ausgehenden Kühlmittelstrahls 2' gelangen und somit dieser Oberflächenbereich mit frisch aufgetragener Beschichtung abgekühlt und zudem auch die Ausbreitung der Wärme von der Spritzzone weg in bereits beschichtete Werkstückbereiche verhindert wird. Als Kühlmittel kommen hierbei insbesondere reines Kohlendioxid oder - bei Notwendigkeit einer besonders hohen Kühlleistung - auch Mischungen von Kohlendioxid zusammen mit Helium und/oder Wasserstoff gemäß EP-PS 0 263 469 zur Anwendung, wobei die Zumischgase mit Vorzug erst unmittelbar im Auftreffbereich des Kühlmittelstrahls 2'auf dem Werkstück zugemischt werden.FIG. 1 now shows a thermal spraying process, for example a flame spraying or high-speed flame spraying process operated with fuel gas and transport gas. Shown is a spray nozzle 1, as well as an expansion nozzle 2 and a workpiece 3. To apply the surface layer, the workpiece shown, namely a shaft 3, is rotated according to arrow 4 and the spray jet of the spray nozzle 1 is directed approximately perpendicularly onto its surface. For example, a wear-resistant layer containing tungsten carbide can be applied, the flame spray nozzle 1 and the coolant nozzle 2 being coupled, aligned in parallel, and advanced according to arrow 5 along a parallel to the workpiece surface. The expansion nozzle follows the spray nozzle at a constant distance of approx. 5 to 15 cm (distance with respect to the two nozzle axes). It can be seen that the newly applied layer areas, after leaving the spray area, come under the influence of the coolant jet 2 'emanating from the expansion nozzle 2 and thus this surface area is cooled with a freshly applied coating and also the spread of the heat away from the spray zone into the already coated area Workpiece areas is prevented. The coolant used here is, in particular, pure carbon dioxide or - if a particularly high cooling capacity is required - mixtures of carbon dioxide together with helium and / or hydrogen according to EP-PS 0 263 469, the admixing gases preferably only directly in the area of impact of the coolant jet 2 ' be mixed on the workpiece.

In Figur 2 ist eine der möglichen Expansionsdüsen für die Ausführung des erfindungsgemäßen Verfahrens im Schnitt gezeigt. Diese setzt sich zusammen aus einem Innenrohr 6 mit abschließender Schlitzdüse 7, sowie einem das Innenrohr endseitig umhüllenden, das Expansionsvolumen 8 bildenden Außenrohr 9, das an seinem der Expansionsdüse 7 abgewandten Ende offen ist.FIG. 2 shows one of the possible expansion nozzles for carrying out the method according to the invention in section. This is composed of an inner tube 6 with a closing slot nozzle 7, and an outer tube 9 enveloping the end of the inner tube and forming the expansion volume 8, which is open at its end facing away from the expansion nozzle 7.

Die Figur 3 zeigt hierzu eine Vorderansicht der in Figur 2 gezeigten Expansionsdüse ebenfalls in einer Schnittansicht gemäß der Schnittlinie S in Figur 2. Erfindungsgemäß wird nun dieser Düse und insbesondere dem darin befindlichen Innenrohr 6 gasförmiges Kohlendioxid mit vorzugsweise mehr als 65 bar Druck zugeführt und in den Expansionskanal 8 hinein entspannt. Beim Entspannungsprozeß entstehen insbesondere aufgrund einer Unterdruckbildung hinter der Schlitzdüse 7 CO₂-Kaltgas und anteilig Schneepartikel, und es ergibt sich so im Expansionsvolumen 8 ein Gemisch aus kaltem Gas und Schnee, das durch die Austrittsöffnung 10 des Außenrohres 9 die Expansionsdüse verläßt und auf das Werkstück gelenkt wird.3 shows a front view of the expansion nozzle shown in FIG. 2, likewise in a sectional view along the section line S in FIG Expansion channel 8 relaxed into it. In the relaxation process arise in particular due to a negative pressure formation behind the slot nozzle 7 CO₂ cold gas and snow particles, and there is thus a mixture of cold gas and snow in the expansion volume 8, which leaves the expansion nozzle through the outlet opening 10 of the outer tube 9 and directed onto the workpiece becomes.

Eine solche Expansionsdüse ist je nach gewünschtem Mengendurchsatz zu dimensionieren. Eine für gängige Flammspritzvorgänge geeignete Kühlmitteldüse der gezeigten Art weist z.B. einen Innendurchmesser D (siehe Figur 2) bezüglich des Außenrohres 9 von 3 mm und somit - gemäß der einzuhaltenden Längendimensionierung - eine überstehende Länge L von z.B. 15 mm auf. Eine weitere, erfindungsbezogen wichtige Größe stellt die Öffnungsweite der Schlitzdüse des Innenrohres dar. Diese beträgt im Regelfall und mit Vorteil zwischen 0,1 und 0,4 mm. Diese Öffnungsweite ist nach Auswahl der Grundgröße der Expansionsdüse, d.h. nach Auswahl des Durchmessers für das Innen- bzw.das Außenrohr, im engeren Sinne bestimmend für den Durchfluß an CO₂-Gas.Such an expansion nozzle is to be dimensioned according to the desired throughput. A coolant nozzle of the type shown, which is suitable for common flame spraying processes, has e.g. an inner diameter D (see Figure 2) with respect to the outer tube 9 of 3 mm and thus - according to the length dimension to be maintained - a protruding length L of e.g. 15 mm. Another size that is important in relation to the invention is the opening width of the slot nozzle of the inner tube. As a rule, this is advantageously between 0.1 and 0.4 mm. This opening width is based on the selection of the basic size of the expansion nozzle, i.e. after selection of the diameter for the inner or outer tube, in the narrower sense determining for the flow of CO₂ gas.

Mit der gezeigten Expansionsdüse und der dargestellten Erzeugung eines Kohlendioxid-Kühlstrahles aus gasförmigem Kohlendioxid wird also eine vorteilhafte Möglichkeit zum Kühlen bei thermischen Spritzmethoden zur Verfügung gestellt, wobei die wesentlichen Elemente in der Expansionsweise des CO₂'s und der zugehörigen Expansionsdüse zu finden sind.With the expansion nozzle shown and the generation of a carbon dioxide cooling jet from gaseous carbon dioxide shown, an advantageous possibility is provided for cooling in thermal spraying methods, the essential elements being found in the way of expansion of the CO₂ and the associated expansion nozzle.

Claims (12)

  1. Process for coating a surface by means of a thermal spraying method, in which a spraying jet of hot transporting gas and melted material particles is directed on to the surface concerned and cooling is effected in the vicinity of the spraying jet with a cooling jet consisting essentially of carbon dioxide and containing cold gas and snow particles, characterised in that the proportion of carbon dioxide in the cooling jet is obtained from gaseous carbon dioxide at a pressure of at least 45 bar in that the carbon dioxide gas is first expanded through a slotted nozzle or other slotted opening into an expansion volume disposed around this expansion slot and largely sealed from the environment, and the cooling jet is formed from this expansion volume and its outlet opening and directed on to the area to be cooled.
  2. Process according to claim 1, characterised in that the proportion of carbon dioxide in the cooling jet is formed of gaseous carbon dioxide at a pressure of at least 65 bar, preferably 70 to 80 bar.
  3. Process according to claim 2, characterised in that the raised pressure level of the carbon dioxide is produced by supplying heat to the associated storage container, producing temperatures of 25 to 35°C, preferably 30 to 32°C.
  4. Process according to claim 3, characterised in that the supply of heat to the storage container is effected with an electric heating conductor housed in the storage container.
  5. Process according to claim 2, characterised in that the raised pressure level is produced by means of or through the use of a compressor connected after the storage container.
  6. Process according to one of claims 1 to 5, characterised in that the expansion volume with its outlet opening forming the cooling jet is guided at a distance of 2 to 15 cm, preferably 3 to 8 cm, from the workpiece.
  7. Process according to one of claims 1 to 6, characterised in that the cooling with the cooling jet is effected in that the cooling jet is guided following the spraying jet.
  8. Process according to one of claims 1 to 7, characterised in that a cooling jet is guided preceding the spraying jet.
  9. Process according to one of claims 1 to 8, characterised in that more than one cooling jet is provided.
  10. Process according to one of claims 1 to 6, characterised in that the spraying jet is surrounded on all sides by a plurality of cooling jets or by one enveloping stream of cooling gas.
  11. Expansion nozzle for implementing the process according to one or more of claims 1 to 10, characterised by an inner pipe 6 provided with a terminating slotted nozzle 7 and connectable to a carbon dioxide source, and an outer pipe 9 surrounding the inner pipe at the slotted nozzle end and projecting beyond it and forming the expansion volume 8 and which at its end remote from the slotted nozzle 7 exhibits an outlet opening 10.
  12. Expansion nozzle according to claim 10, characterised in that a diameter to length ratio of 1 to 3 to 1 to 10, preferably approximately 1 to 5, is maintained as regards the cylindrical expansion volume 8 formed with the outer pipe.
EP92119729A 1991-12-12 1992-11-19 Thermal spray coating process with cooling Expired - Lifetime EP0546359B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141020A DE4141020A1 (en) 1991-12-12 1991-12-12 METHOD FOR COATING A SURFACE BY MEANS OF A THERMAL SPRAYING METHOD WITH A FOLLOWING COOLING
DE4141020 1991-12-12

Publications (2)

Publication Number Publication Date
EP0546359A1 EP0546359A1 (en) 1993-06-16
EP0546359B1 true EP0546359B1 (en) 1995-06-21

Family

ID=6446903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119729A Expired - Lifetime EP0546359B1 (en) 1991-12-12 1992-11-19 Thermal spray coating process with cooling

Country Status (5)

Country Link
EP (1) EP0546359B1 (en)
AT (1) ATE124095T1 (en)
CZ (1) CZ282673B6 (en)
DE (2) DE4141020A1 (en)
SK (1) SK282340B6 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043869A (en) * 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2008174784A (en) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd Method for forming amorphous coating by thermal spraying

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204896C2 (en) * 1992-02-19 1995-07-06 Tridelta Gmbh Process for producing a layered composite body
DE4326518A1 (en) * 1993-08-06 1995-02-09 Linde Ag Process for machining workpieces of plastic by chip removal
DE69510025T2 (en) * 1994-12-15 1999-12-09 Hughes Aircraft Co CO2 spray nozzle with multiple openings
DE19611735A1 (en) * 1996-03-25 1997-10-02 Air Liquide Gmbh Thermal treatment of substrates
FR2762667B1 (en) * 1997-04-28 1999-05-28 Air Liquide HEAT TREATMENT DEVICE AND METHOD
DE19947823A1 (en) 1999-10-05 2001-04-12 Linde Gas Ag Expansion cooling nozzle
FR2808808A1 (en) * 2000-05-10 2001-11-16 Air Liquide Thermal spraying of titanium on a medical prosthesis involves cooling at least part of the prosthesis with carbon dioxide or argon during the coating process
ES2441596T3 (en) * 2006-08-14 2014-02-05 Nakayama Amorphous Co., Ltd. Procedure and apparatus for forming an amorphous coating film
DE102007012084A1 (en) 2007-03-13 2008-09-18 Linde Ag Method for thermal separation and joining
DE102008006495A1 (en) 2008-01-29 2009-07-30 Behr-Hella Thermocontrol Gmbh Circuit carrier i.e. standard flame retardant four printed circuit board, for air-conditioning system of motor vehicle, has copper thick film increasing current feed properties and applied on copper thin film by thermal spraying of metal
DE102008009106B4 (en) 2008-02-14 2010-04-08 Behr-Hella Thermocontrol Gmbh Printed circuit board for electrical circuits
US8931429B2 (en) 2008-05-05 2015-01-13 United Technologies Corporation Impingement part cooling
DE102013107400B4 (en) * 2013-07-12 2017-08-10 Ks Huayu Alutech Gmbh Method for removing the overspray of a thermal spray burner
US20160325469A1 (en) 2015-05-04 2016-11-10 Matthew Hershkowitz Methods for improved spray cooling of plastics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2603299A (en) * 1952-07-15 Electrostatic charge protected
US2545951A (en) * 1946-04-24 1951-03-20 Specialties Dev Corp Discharging fire-extinguishing media
US3254506A (en) * 1964-03-02 1966-06-07 Johnson Co Gordon Carbon dioxide freezing apparatus and method
DE3844290C1 (en) * 1988-12-30 1989-12-21 Uranit Gmbh, 5170 Juelich, De

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043869A (en) * 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2008174784A (en) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd Method for forming amorphous coating by thermal spraying

Also Published As

Publication number Publication date
SK350392A3 (en) 1996-06-05
ATE124095T1 (en) 1995-07-15
CZ350392A3 (en) 1993-08-11
SK282340B6 (en) 2002-01-07
DE4141020A1 (en) 1993-06-17
DE59202611D1 (en) 1995-07-27
EP0546359A1 (en) 1993-06-16
CZ282673B6 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
EP0546359B1 (en) Thermal spray coating process with cooling
DE2850271C3 (en) Device for intensive mixing of liquids
DE2831199A1 (en) CRYOSURGICAL DEVICE
DE2817356C2 (en) Product gas cooling device on a generator for gasifying coal dust and producing synthesis gas
DE3728557C2 (en)
DE19913591A1 (en) Treatment of potato storage facilities with aerosols derived from solid isopropyl-N-chlorophenylcarbamate (CIPC) to inhibit sprout formation
DE4209162A1 (en) METHOD AND DEVICE FOR PRODUCING HYPERFINE, FROZEN PARTICLES
DE1949315A1 (en) Method and apparatus for cooling a cutting tool by mist
DE3430383A1 (en) PLASMA SPRAY BURNER FOR INTERNAL COATINGS
DE102006047101A1 (en) Method for feeding particles of a layer material into a thermal spraying process
EP1064509B1 (en) Method and device for producing slush from liquefied gas
EP0509132B1 (en) Method and device for the cleaning of surfaces, in particular delicate surfaces
EP0857561B1 (en) Method and apparatus for cooling hollow extruded profiles
EP0263469B1 (en) Method for thermally coating surfaces
EP1091181B1 (en) Expansion nozzle
DE2161453B2 (en) Process for the production of a friction lining on substrates, such as brakes or clutches, using a plasma jet
DE1501402B2 (en) Device for quenching hot gases
DE1552996C3 (en) Device for soldering side seams on can bodies
DE3230471A1 (en) METHOD AND DEVICE FOR PRODUCING AN ICE SLUDGE FOR CONCRETE COOLING IN THE PUMP PIPING
DE683828C (en) Spray gun
DE1473245A1 (en) Device for setting or regulating the temperature of a tightly sealed container
DE2428549C3 (en) Plasma heated chemical reactor for the treatment of disperse materials
AT408232B (en) METHOD FOR GRANULATING LIQUID SLAG AND DEVICE FOR CARRYING OUT THIS METHOD
DE2656439A1 (en) BURNER FOR LIQUID FUEL
DE1751844C3 (en) Method and device for producing artificial snow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL PT

17P Request for examination filed

Effective date: 19930525

17Q First examination report despatched

Effective date: 19941206

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950621

Ref country code: BE

Effective date: 19950621

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950621

REF Corresponds to:

Ref document number: 124095

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950623

REF Corresponds to:

Ref document number: 59202611

Country of ref document: DE

Date of ref document: 19950727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19950921

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991117

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LINDE AKTIENGESELLSCHAFT TRANSFER- LINDE TECHNISCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LINDE TECHNISCHE GASE GMBH TRANSFER- LINDE GAS AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011130

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071108

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101117

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202611

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202611

Country of ref document: DE