EP0543732A1 - Disjoncteur à vide muni de moyens d'autodiagnostic - Google Patents

Disjoncteur à vide muni de moyens d'autodiagnostic Download PDF

Info

Publication number
EP0543732A1
EP0543732A1 EP92403114A EP92403114A EP0543732A1 EP 0543732 A1 EP0543732 A1 EP 0543732A1 EP 92403114 A EP92403114 A EP 92403114A EP 92403114 A EP92403114 A EP 92403114A EP 0543732 A1 EP0543732 A1 EP 0543732A1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
fiber
scintillating
breaker according
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92403114A
Other languages
German (de)
English (en)
Inventor
Van Doan Pham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Holdings SA
Original Assignee
GEC Alsthom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom SA filed Critical GEC Alsthom SA
Publication of EP0543732A1 publication Critical patent/EP0543732A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/668Means for obtaining or monitoring the vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/26Means for detecting the presence of an arc or other discharge

Definitions

  • the present invention relates to a vacuum circuit breaker provided with self-digestion means.
  • Vacuum circuit breakers require perfect sealing, made in the factory once and for all; it is therefore impossible to create an additional vacuum. Their envelopes are often ceramic, therefore opaque, making it difficult to visually check the state of the circuit breaker.
  • the X-rays emitted at the opening or closing of the vacuum interrupters are of relatively low intensity.
  • Protective devices are provided to make them harmless.
  • scintillating optical fibers is also known for detecting the radiation of particles in high energy accelerators.
  • the scintillating fibers capture the radiations by their periphery and transform them into a light wave passing through the fiber.
  • the intensity of X-rays depends essentially on the applied voltage, the distance between the contacts, the material and the state of the contacts and the state of the vacuum.
  • the loss of vacuum greatly reduces the X-ray radiation.
  • the absence of X-rays, after a certain operating time of a circuit breaker, can be an indication of a loss of vacuum.
  • a change in the spectrum of the recorded radiation could mean that a change in operation in the inter-electrode space has occurred, for example an erosion of the contacts.
  • the subject of the invention is a vacuum circuit breaker comprising, for each phase, at least one vacuum interrupter housed inside a closed enclosure, characterized in that it comprises at least one scintillating fiber arranged in space between said enclosure and the outer surface of the vacuum interrupter, said fiber being connected, outside the circuit breaker, to an opto-electronic device.
  • the circuit breaker comprises at least one scintillating fiber per phase.
  • the scintillating fiber is common to the three phases.
  • the scintillating fiber is wound around the central part of the vacuum interrupter, one end being free, the other end leaving the enclosure.
  • the scintillating fiber is suspended inside the space between the enclosure and the vacuum interrupter.
  • the scintillating fiber is arranged so as to define around each vacuum interrupter a U-shaped loop.
  • the scintillating fiber is coated with a sheath making it opaque to visible radiation, and the circuit breaker further comprises a fluorescent optical fiber.
  • the scintillating fiber is then placed around the central part of the vacuum interrupter, the fluorescent fiber being wound at one end of the vacuum interrupter.
  • At least one of the fibers is arranged in a suspended manner.
  • the opto-electronic device is connected to the optical fiber of the circuit breaker by means of a plastic or silica optical fiber.
  • the opto-electronic device is a photo-diode.
  • the envelope is either of insulating material and the space between the envelope and the bulb is air, or of metal and the space between the envelope and the bulb is filled with a good gas.
  • dielectric properties such as sulfur hexafluoride.
  • the optical fiber used is cylindrical or in the form of a strip or film.
  • the vacuum interrupter is surrounded by a cylinder made of a scintilating film, a fiber fluorescent, connected to a photo-detector, being wound around said cylinder.
  • the circuit breaker comprises a plurality of scintillating fibers, arranged parallel to each other in a cylinder coaxial with the bulb, and a fluorescent fiber arranged in a hoop at one of the ends of said cylinder facing the ends of said scintillating fibers, one end of said fluorescent fiber being connected to a photo-detector.
  • said scintillating fibers are preferably bonded to a transparent tube.
  • circuit breakers in which the vacuum interrupter are placed in an enclosure made of insulating material, the space between the ampoules and the wall of the enclosure being air.
  • the invention also applies to circuit breakers in which the vacuum ampoules are placed inside a metal enclosure, the space between the ampoules and the wall of the enclosure being filled with a gas having good dielectric properties. such as sulfur hexafluoride.
  • the reference 10 designates an enclosure, made of insulating material such as molded epoxy resin, which contains and protects three identical vacuum bulbs 11, 21 and 31, constituting the three poles of a three-phase circuit breaker.
  • the three bulbs are identical and only the bulb 11 is described in detail.
  • the vacuum interrupter 11 comprises an envelope 12, for example made of ceramic. This envelope is closed at its two ends by metal flanges 13 and 14, and a vacuum is created inside the envelope.
  • the flange 13 is connected outside the envelope to a first socket 15 of the pole and, inside the envelope, to a fixed contact 16 of the vacuum interrupter.
  • the flange 14 is traversed in a sealed manner, by means of a metal bellows 17, to a movable rod 18 mechanically connected to a device for operating the circuit breaker, not shown, and electrically to a second socket outlet on the pole.
  • the rod 18 carries a movable contact 19.
  • An insulating cover 20 closes the enclosure.
  • the free and dark space 21 between the enclosure 10 and the envelope 12 of the bulb is filled with air at atmospheric pressure.
  • a scintillating optical fiber 25 is housed in the space 21.
  • the fiber 25 is preferably wound around the envelope of the vacuum interrupter, over its entire height, or at least on its central part, where the X-ray is most intense.
  • the fiber has a diameter of about 0.5 mm so that it easily finds its place in the annular space 21. It will be noted that the scale has not been respected in the drawing as regards the optical fiber to facilitate its review.
  • One end 26 of the fiber is free, the other end 27 passes through the cover 20 and is connected to an opto-electronic conversion device such as a photo-diode 28.
  • the signal emitted by the photo-diode is amplified and exploited by devices not shown.
  • the photo-diode is not necessarily placed at the immediate exit of the vacuum bulb.
  • a transparent plastic or silica optical fiber 29 can be used between the scintillating fiber and the photo-diode via the connector 30.
  • FIG. 2 represents an alternative embodiment of the invention which can be used when the intensity of the X-ray from the bulb is high. Only one pole of the circuit breaker has been shown.
  • the scintillating fiber 35 is suspended along the envelope of the bulb over the entire height thereof.
  • the free end 36 is close to the bottom of the space 21; the other end 37 passes through the cover 20 and is connected, optionally by means of a plastic or silica fiber 29, to a photo-diode 28.
  • the fiber 35 can be produced in the form of a strip a width of a few centimeters .
  • a special connector 30A makes it possible to connect it to fiber 29.
  • each phase In three-phase alternating current, the voltages of each phase are offset by 60 electrical degrees, which corresponds, at 50Hz, to a time shift of 3.3 milliseconds.
  • the radiation emitted by each of the poles for example when opening a three-phase circuit breaker, will have intensity peaks shifted in time by the same value. It is therefore seen that it is possible to use only one scintillating fiber and one photo-diode, the electronic signal processing device, in combination with other signal recording means, will be able to know to which bulb it is necessary to assign such peak of the signal.
  • a scintillating fiber 45 is used which penetrates into each of the poles and takes the form of a U around each bulb; one end 46 is free and is for example near the bulb 11; the other end 47 comes out of the pole containing the bulb 31 and is connected to a photo-diode 28 by means of a plastic or silica fiber 29. It will be observed that it is necessary to give the scintillating fiber sufficient levels of curvature to avoid weakening of the light wave.
  • Some vacuum bulbs have a side envelope made of transparent or translucent material, such as glass.
  • each pole will be equipped, as shown in FIG. 4, with a first fiber 55, of the scintillating fiber type, surrounding the central part of the envelope 12.
  • This fiber is surrounded by a plastic sheath opaque, for example black in color, to shield it from the action of visible spectrum radiation.
  • One end 56 of the fiber is free; the other end 57 is connected by a photo-diode 58, possibly via a plastic or silica fiber 59.
  • the pole is equipped with a second fiber 65, of the fluorescent fiber type, which surrounds the upper (or lower) part of the envelope; one of the ends 66 of the fiber 65 is free, the other end 67 is connected to a photo-diode 68, possibly via a plastic or silica fiber 69.
  • Fiber 65 is used to capture visible light from the arc during the opening or closing of the circuit breaker, possibly giving rise to multiple strikes. During multiple strikes, the arc duration, therefore the duration of the light emitted, is extremely short, of the order of a few microseconds for each strike. the fibers used, which have ultra-fast response times, of about ten nanoseconds for example, make it possible to easily detect these ignitions.
  • the circuit breaker thus equipped, making it possible to detect both the X-rays and the visible light emitted by the cutting arc, allows a good diagnosis of the operation of the device.
  • At least one of the fibers 55 and 65 can be arranged hanging along the bulb, when the corresponding radiation has sufficient intensity.
  • the vacuum interrupter 12 is surrounded by a scintillating film 70 which then constitutes a cylinder whose thickness is of the order of 0.5 mm.
  • a scintillating film 70 which then constitutes a cylinder whose thickness is of the order of 0.5 mm.
  • the scintillating film can alternatively be produced by means of scintillating fibers arranged in a cylinder surrounding the bulb; scintillating fibers can for example, the fibers sold by the company Optectron under the references S101A or S101D.
  • the film 70 is surrounded by a fluorescent plastic fiber 65, wrapped around the film.
  • the fluorescent plastic fiber is connected to a photo-detector 28, through a connector 30A and an optical fiber 29 if necessary.
  • the operation of the device is as follows: radiation exiting the bulb strikes the film 70 and emits light very close to blue light while passing through the film. Much of this light directly affects the fluorescent fiber 65 without attenuation because of the very thin film.
  • the fluorescent fiber preferably a green light fluorescent fiber, captures the light emitted by the film and in turn emits light which is transmitted to the photo-detector. Thanks to these provisions, a good sensitivity of the device is obtained even for low radiation.
  • FIG. 6 illustrates a variant embodiment, also usable for the detection of low radiation. Again, the elements common to Figures 2, 5 and 6 have been given the same reference numbers.
  • the film 70 is replaced by a cylinder 71, formed of scintillating fibers 73 bonded to a transparent plastic tube 74 covering the vacuum interrupter.
  • the fibers 73 are arranged in parallel along generatrices of the tube.
  • the upper part 75 of the cylinder formed from the fibers 73 is in contact with a hoop 76 consisting of a fluorescent fiber, one end of which is connected to a photo-detector 28.
  • Point radiation exiting the vacuum interrupter strikes a scintillating fiber 73 and emits light there which propagates to the end 75.
  • the fiber fluorescent 76 wound in a hoop captures this light and transmits to the photo-detector 28.

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disjoncteur à vide comprenant, pour chaque phase, au moins une ampoule à vide logée à l'intérieur d'une enceinte fermée, caractérisé en ce qu'il comprend au moins une fibre scintillante (25) disposée dans l'espace (21) compris entre ladite enceinte (10) et la surface extérieure de l'ampoule à vide (11), ladite fibre étant reliée, à l'extérieur du disjoncteur, à un dispositif opto-électronique. <IMAGE>

Description

  • La présente invention concerne un disjoncteur à vide muni de moyens d'autodigestions.
  • Dans le brevet français N° 90 13 049, il a été signalé l'utilisation des fibres optiques plastiques fluorescentes pour détecter les durées d'arc des disjoncteurs à gaz, en particulier à hexafluorure de souffre (SF6).
  • La connaissance des durées d'arc permet d'apprécier l'évolution de l'état de l'appareil et de prévoir les interventions de maintenance.
  • Les disjoncteurs à vide nécessitent une étanchéité parfaite, réalisée en usine une fois pour toutes; il est donc impossible de faire le vide complémentaire. Leurs enveloppes sont souvent en céramique, donc opaques, rendant difficile le contrôle visuel de l'état du disjoncteur.
  • Pour vérifier l'état interne d'un disjoncteur, il est connu de mesurer son seuil d'ionisation ou d'émission d'électrons en lui appliquant une tension suffisante, parfois par l'intermédiaire d'un champ magnétique externe.
  • Ce genre de contrôle se fait en pratique en période d'entretien programmé.
  • Il n'y a donc pas de surveillance d'état en continu.
  • Il est bien connu que le disjoncteur à vide sous tension suffisante émet des rayons X pendant sa fermeture ou pendant son ouverture.
  • A cet égard, on peut se référer à l'article "Limiting X-radiation from a high voltage vacuum interrupter at the prebreakdown stage", par W. GORCZEWSKI, rapport 34-01, 7ème International Symposium on High Voltage Engineering, DRESDEN, Août 1991.
  • Les rayonnements X émis à l'ouverture ou à la fermeture des ampoules à vide sont d'intensité relativement faibles. Des dispositifs de protection sont prévus pour les rendre inoffensifs.
  • On connaît aussi l'utilisation des fibres optiques scintillantes pour détecter les rayonnements des particules dans les accélérateurs à haute énergie.
  • On se référera par exemple à l'article " Organic Scintillators with large stokes shifts", The Journal of Physical Chemistry, vol. 82, N°4, 1978, ou l'article "Plastic fibers in high energy physics" de M. BLUMENFELD, NIM, 257 (1987).
  • Les fibres scintillantes captent les rayonnements par leur périphérie et les transforment en une onde lumineuse transitant dans la fibre.
  • L'intensité des rayonnements X dépend essentiellement de la tension appliquée, de la distance entre les contacts, du matériau et de l'état des contacts et de l'état du vide. La perte de vide réduit fortement le rayonnement X. Par suite l'absence de rayons X, après une certaine durée de fonctionnement d'un disjoncteur, peut être l'indice d'une perte de vide. De même, une modification du spectre du rayonnement enregistré pourrait signifier qu'un changement de fonctionnement dans l'espace inter-électrodes est intervenu, par exemple une érosion des contacts.
  • C'est le mérite du Demandeur d'avoir pensé à utiliser, comme il va être montré maintenant, les fibres scintillantes pour obtenir une surveillance effective et continue d'un disjoncteur comportant des ampoules à vide par une mesure du vide régnant dans les ampoules.
  • Cette utilisation permet de résoudre les problèmes spécifiques qui se posent et qui sont les suivants:
    • les moyens de mesure utilisés doivent tenir la tension électrique qui existe netre les bornes des ampoules à vide (de 6 à 72 kV),
    • la mesure du vide doit pouvoir se faire sans démontage du disjoncteur,
    • les moyens de mesure utilisés doivent être de faible encombrement, pour pouvoir être logés aussi près que possible de l'ampoule à vide, car le rayonnement X d'une ampoule à vide est de faible intensité,
    • le temps de réponse doit être rapide,
    • les moyens de mesure doivent être de faible coût et en particulier doivent permettre l'utilisation de composants bon marché tels que des photo-diodes.
  • Ces objectifs ne peuvent être atteints par le dispositif décrit dans le document EPO-A- 0 309 852 qui préconise l'emploi d'un compteur de Geiger-Müller.
  • L'invention a pour objet un disjoncteur à vide comprenant, pour chaque phase, au moins une ampoule à vide logée à l'intérieur d'une enceinte fermée, caractérisé en ce qu'il comprend au moins une fibre scintillante disposée dans l'espace compris entre ladite enceinte et la surface extérieure de l'ampoule à vide, ladite fibre étant reliée, à l'extérieur du disjoncteur, à un dispositif opto-électronique.
  • Dans un premier mode de réalisation de l'invention, le disjoncteur comprend au moins une fibre scintillante par phase.
  • Selon un autre mode de réalisation de l'invention, la fibre scintillante est commune aux trois phases.
  • Pour les disjoncteurs dans lesquels le rayonnement X est d'intensité suffisante, la fibre scintillante est enroulée autour de la partie centrale de l'ampoule à vide, une première extrémité étant libre, l'autre extrémité sortant de l'enceinte.
  • Pour les disjoncteurs où l'intensité du rayonnement X est importante, la fibre scintillante est suspendue à l'intérieur de l'espace compris entre l'enceinte et l'ampoule à vide.
  • Dans le cas où la fibre scintillante est commune aux diverses phases du disjoncteur, la fibre scintillante est disposée de manière à définir autour de chaque ampoule à vide une boucle en forme de U.
  • Dans le cas où l'enveloppe des ampoules à vide est réalisée en matériau transparent ou translucide, la fibre scintillante est revêtue d'une gaine la rendant opaque au rayonnement visible, et le disjoncteur comprend en outre une fibre optique fluorescente.
  • La fibre scintillante est alors disposée autour de la partie centrale de l'ampoule à vide, la fibre fluorescente étant enroulée à l'une des extrémités de l'ampoule à vide.
  • En variante, au moins l'une des fibres est disposée de manière suspendue.
  • Avantageusement, le dispositif opto-électronique est relié à la fibre optique du disjoncteur par l'intermédiaire d'une fibre optique plastique ou à silice.
  • De préférence, le dispositif opto-électronique est une photo-diode.
  • L'enveloppe est, soit en matériau isolant et l'espace entre l'enveloppe et l'ampoule est de l'air, soit en métal et l'espace entre l'enveloppe et l'ampoule est rempli d'un gaz à bonnes propriétés diélectriques tel que l'hexafluorure de soufre.
  • La fibre optique utilisée est cylindrique ou sous forme de bande ou de film.
  • En variante, l'ampoule à vide est entourée d'un cylindre constitué d'un film scintilant, une fibre fluorescente, reliée à un photo-détecteur, étant enroulée autour dudit cylindre.
  • Selon une autre variante, le disjoncteur comprend une pluralité de fibres scintillantes, disposées parallèlement entre elles selon un cylindre coaxial à l'ampoule, et une fibre fluorescente disposée en cerceau à l'une des extrémités dudit cylindre en regard des extrémités desdites fibres scintillantes, une extrémité de ladite fibre fluorescente étant reliée à un photo-détecteur. Dans ce cas, lesdites fibres scintillantes sont de préférence collées sur un tube transparent.
  • L'invention sera bien comprise à la lecture de la description donnée ci-après de plusieurs modes de réalisation de l'invention, en référence au dessin annexé dans lequel:
    • la figure 1 est une vue schématique partielle en élévation partiellement coupée d'un disjoncteur à vide triphasé selon un premier mode de réalisation,
    • la figure 2 représente schématiquement en coupe axiale un pôle d'un disjoncteur à vide selon une variante de réalisation de l'invention,
    • la figure 3 représente schématiquement un disjoncteur triphasé selon une autre variante de réalisation de l'invention,
    • la figure 4 est une vue schématique partielle, en élévation et partiellement en coupe, d'un disjoncteur selon une autre variante de réalisation de l'invention,
    • la figure 5 est une vue schématique partielle, en élévation et partiellement en coupe, d'un disjoncteur selon une autre variante de réalisation de l'invention,
    • la figure 6 est une vue schématique partielle, en élévation et partiellement en coupe, d'un disjoncteur selon une autre variante de réalisation de l'invention.
  • Les exemples de réalisation décrits en référence aux figures 1 à 6 concernent des disjoncteurs dans lesquels les ampoule à vide sont placés dans une enceinte en matériau isolant, l'espace compris entre les ampoules et la paroi de l'enceinte étant de l'air. L'invention s'applique également aux disjoncteurs dans lesquels les ampoules à vide sont placés à l'intérieur d'une enceinte métallique, l'espace entre les ampoules et la paroi de l'enceinte étant rempli d'un gaz à bonnes propriétés diélectriques tel que l'hexafluorure de soufre.
  • Dans la figure 1, la référence 10 désigne une enceinte, en matériau isolant tel que la résine époxy moulée, qui contient et protège trois ampoules à vide 11, 21 et 31 identiques, constituant les trois pôles d'un disjoncteur triphasé. Les trois ampoules sont identiques et seule l'ampoule 11 est décrite en détail.
  • L'ampoule à vide 11 comprend une enveloppe 12 par exemple en céramique. Cette enveloppe est fermée à ses deux extrémités par des flasques métalliques 13 et 14, et le vide est pratiqué à l'intérieur de l'enveloppe.
  • Le flasque 13 est relié à l'extérieur de l'enveloppe à une première prise de courant 15 du pôle et, à l'intérieur de l'enveloppe, à un contact fixe 16 de l'ampoule à vide.
  • Le flasque 14 est traversé de manière étanche, grâce à un soufflet métallique 17, à une tige mobile 18 reliée mécaniquement à un dispositif de manoeuvre du disjoncteur non représenté et électriquement à une seconde prise de courant du pôle. Intérieurement à l'enveloppe, la tige 18 porte un contact mobile 19.
  • Le fonctionnement d'une ampoule à vide est bien connu et il sera simplement rappelé que lorsque le disjoncteur est en position fermée, les contacts 16 et 17 sont appuyés l'un contre l'autre, le courant passant par la tige 18, le contact 19, le contact 16, le flasque 13 et la prise de courant 15.
  • A l'ouverture du disjoncteur, la tige mobile 18, avec les tiges homologues des autres pôles, est entraînée vers le bas de la figure.
  • L'arc qui se crée entre les contacts 16 et 19 s'éteint rapidement en raison du vide qui règne à l'intérieur de l'enveloppe.
  • Un couvercle isolant 20 ferme l'enceinte.
  • L'espace libre et obscur 21 entre l'enceinte 10 et l'enveloppe 12 de l'ampoule est rempli d'air à la pression atmosphérique.
  • Selon une caractéristique de l'invention, une fibre optique scintillante 25 est logée dans l'espace 21. En pratique, afin de donner au dispositif une sensibilité suffisante, il est nécessaire de donner à la fibre une longueur suffisante. Pour cette raison, la fibre 25 est de préférence enroulée autour de l'enveloppe de l'ampoule à vide, sur toute sa hauteur, ou au moins sur sa partie centrale, là où le rayonnement X est le plus intense.
  • La fibre a un diamètre d'environ 0, 5 mm de sorte qu'elle trouve aisément sa place dans l'espace annulaire 21. On notera que l'échelle n'a pas été respectée dans le dessin en ce qui concerne la fibre optique pour faciliter son examen.
  • Un extrémité 26 de la fibre est libre, l'autre extrémité 27 traverse le couvercle 20 et est relié à un dispositif de conversion opto-électronique tel qu'une photo-diode 28. Le signal émis par la photo-diode est amplifié et exploité par des dispositifs non représentés.
  • La photo-diode n'est pas nécessairement placée à la sortie immédiate de l'ampoule à vide. Pour éviter l'affaiblissement du signal de la fibre scintillante, une fibre optique plastique transparente ou à silice 29 peut être utilisée entre la fibre scintillante et la photo-diode par l'intermédiaire du connecteur 30.
  • La figure 2 représente une variante de réalisation de l'invention utilisable lorsque l'intensité du rayonnement X de l'ampoule est important. Un seul pôle du disjoncteur à été représenté.
  • La fibre scintillante 35, de diamètre par exemple voisin de 1mm, est suspendue le long de l'enveloppe de l'ampoule sur toute la hauteur de celle-ci. L'extrémité libre 36 est proche du fond de l'espace 21; l'autre extrémité 37 traverse le couvercle 20 et est reliée, éventuellement par l'intermédiaire d'une fibre plastique ou à silice 29, à une photo-diode 28. La fibre 35 peut être réalisée sous forme de bande de largeur de quelques centimètres. Un connecteur spécial 30A permet de la relier à la fibre 29.
  • En courant alternatif triphasé, les tensions de chaque phase sont décalées de 60 degrés électriques, ce qui correspond, à 50Hz, à un décalage dans le temps de 3,3 millisecondes. Les radiations émises par chacun des pôles, par exemple lors de l'ouverture d'un disjoncteur triphasé, auront des pics d'intensité décalés dans le temps de la même valeur. On voit donc qu'il est possible de n'utiliser qu'une seule fibre scintillante et une seule photo-diode, le dispositif électronique de traitement du signal, en combinaison avec d'autres moyens d'enregistrement du signal, pourra savoir à quelle ampoule il faut attribuer tel pic du signal.
  • En pratique, comme il est indiqué dans la figure 3, on utilise une fibre scintillante 45 qui pénètre dans chacun des pôles et prend la forme d'un U autour de chaque ampoule; une extrémité 46 est libre et se trouve par exemple près de l'ampoule 11; l'autre extrémité 47 ressort du pôle contenant l'ampoule 31 et est relié à une photo-diode 28 par l'intermédiaire d'une fibre plastique ou à silice 29. On observera qu'il est nécessaire de donner à la fibre scintillante des niveaux de courbure suffisants pour éviter les affaiblissement de l'onde lumineuse.
  • L'enregistrement continu des signaux correspondants aux rayonnements X, leur intensité, leur durée, permettent d'apprécier l'évolution de l'état interne des ampoules à vide en fonction des manoeuvres successives. L'utilisation de photo-diodes appropriées couvrant le spectre d'onde de la radiation est plus commode et plus économique que l'emploi de photomultiplicateurs plus chers mais plus sensibles.
  • Certaines ampoules à vide ont une enveloppe latérale en matériau transparent ou translucide, comme par exemple le verre.
  • Dans ce type d'appareil, chaque pôle sera équipé, comme le montre la figure 4, d'une première fibre 55, du type fibre scintillante, entourant la partie centrale de l'enveloppe 12. Cette fibre est entourée d'une gaine plastique opaque, par exemple de couleur noire, pour la soustraire à l'action des rayonnements du spectre visible. Une extrémité 56 de la fibre est libre; l'autre extrémité 57 est reliée par à une photo-diode 58, par l'intermédiaire éventuel d'une fibre plastique ou à silice 59.
  • Le pôle est équipé d'une seconde fibre 65, du type fibre fluorescente, qui entoure la partie supérieure (ou inférieure de l'enveloppe; l'une des extrémités 66 de la fibre 65 est libre, l'autre extrémité 67 est reliée à une photo-diode 68, éventuellement par l'intermédiaire d'une fibre plastique ou à silice 69.
  • La fibre 65 est utilisée pour capter la lumière visible de l'arc pendant l'ouverture ou la fermeture du disjoncteur, pouvant donner lieu éventuellement à des réamorçages pouvant être multiples. Lors des réamorçages multiples, la durée d'arc, donc la durée de la lumière émise, est extrêmement courte, de l'ordre de quelques microsecondes pour chaque amorçage. les fibres utilisées, qui ont des temps de réponse ultra rapides, d'une dizaine de nanosecondes par exemple, permettent de détecter facilement ces amorçages.
  • Le disjoncteur ainsi équipé, permettant de détecter à la fois les rayons X et la lumière visible émise par l'arc de coupure, permet un bon diagnostic de fonctionnement de l'appareil.
  • On notera que, comme montré en référence à la figure 2, au moins l'une des fibres 55 et 65 peut être disposée pendante le long de l'ampoule, lorsque les rayonnement correspondant a une intensité suffisante.
  • Lorsque le rayonnement émis par l'ampoule à vide est faible, une longueur de la fibre scintillante trop importante réduit la sensibilité de la mesure, étant donné la forte atténuation du signal lumineux dans la fibre. Une solution à ce problème est donnée par le mode de réalisation décrit en regard de la figure 5, dans laquelle les éléments communs à cette figure et à la figure 2 ont reçu les mêmes numéros de référence.
  • Pour améliorer la détection du rayonnement, l'ampoule à vide 12 est entourée d'un film scintillant 70 qui constitue alors un cylindre dont l'épaisseur est de l'ordre de 0,5 mm. On peut par exemple utiliser un film scintillant commercialisé sous la référence NE102A par la société Nuclear Enterprise. Le film scintillant peut en variante, être réalisé au moyen de fibres scintillantes disposées selon un cylindre entourant l'ampoule; les fibres scintillantes peuvent être par exemple les fibres commercialisées par la société Optectron sous les références S101A ou S101D.
  • Le film 70 est entouré par une fibre plastique fluorescente 65, enroulée autour du film. La fibre plastique fluorescente est reliée à un photo-détecteur 28, à travers un connecteur 30A et une fibre optique 29 si nécessaire. Le fonctionnement du dispositif est le suivant: un rayonnement sortant de l'ampoule frappe le film 70 et émet de la lumière très proche de la lumière bleue en traversant le film. Une grande partie de cette lumière touche directement la fibre fluorescente 65 sans atténuation à cause de la très faible épaisseur du film. La fibre fluorescente, de préférence une fibre fluorescente à lumière verte, capte la lumière émise par le film et émet à son tour une lumière qui est transmise au photo-détecteur. Grâce à ces dispositions, on obtient une bonne sensibilité de l'appareil même pour des faibles rayonnements.
  • La figure 6 illustre une variante de réal isation, également utilisable pour la détection des faibles rayonnements. Là encore, les éléments communs aux figures 2 , 5 et 6 ont reçu les mêmes numéros de référence.
  • Le film 70 est remplacé par un cylindre 71, formé de fibres scintillantes 73 collées sur un tube transparent 74 en plastique couvrant l'ampoule à vide. Les fibres 73 sont disposées parallèlement selon des génératrices du tube. La partie supérieure 75 du cylindre formé des fibres 73 est en contact avec un cerceau 76 constitué d'une fibre fluorescente dont une extrémité 65 est reliée à un photo-détecteur 28.
  • Un rayonnement ponctuel sortant de l'ampoule à vide frappe une fibre scintillante 73 et y émet de la lumière qui se propage jusqu'à l'extrémité 75. La fibre fluorescente 76 enroulée en cerceau capte cette lumière et transmet au photo-détecteur 28.
  • L'invention n'est pas limitée aux exemples de réalisation qui n'ont été donnés que pour expliquer l'invention. On pourra, sans sortir du cadre de l'invention, remplacer certains moyens par des moyens équivalents.

Claims (17)

1/ Disjoncteur à vide comprenant, pour chaque phase, au moins une ampoule à vide logée à l'intérieur d'une enceinte fermée, caractérisé en ce qu'il comprend au moins une fibre scintillante (25) disposée dans l'espace (21) compris entre ladite enceinte (10) et la surface extérieure de l'ampoule à vide (11), ladite fibre étant reliée, à l'extérieur du disjoncteur, à un dispositif opto-électronique.
2/ Disjoncteur selon la revendication 1, caractérisé en ce qu'il comprend au moins une fibre scintillante (25) par phase.
3/ Disjoncteur selon la revendication 1, caractérisé en ce que la fibre scintillante (45) est commune aux trois phases.
4/ Disjoncteur selon l'une des revendications 1 et 2, caractérisé en ce que la fibre scintillante (25, 55) est enroulée autour de la partie centrale de l'ampoule à vide, une première extrémité (26, 56) étant libre, l'autre extrémité (27, 57) sortant de l'enceinte.
5/ Disjoncteur selon l'une des revendications 1 et 2, caractérisée en ce que la fibre scintillante (35, 45) est suspendue à l'intérieur de l'espace compris entre l'enceinte et l'ampoule à vide.
6/ Disjoncteur selon la revendication 2, caractérisé en ce que la fibre scintillante (45) est disposée de manière à définir autour de chaque ampoule à vide (11, 21, 31) une boucle en forme de U.
7/ Disjoncteur à vide selon l'une des revendications 1 à 6, caractérisé en ce que l'enveloppe des ampoules à vide étant réalisée en matériau transparent ou translucide, la fibre scintillante (55) est revêtue d'une gaine la rendant opaque au rayonnement visible, ledit disjoncteur comprenant en outre une fibre optique fluorescente (65).
8/ Disjoncteur selon la revendication 7, caractérisé en ce que la fibre scintillante (55) est disposée autour de la partie centrale de l'ampoule à vide, la fibre fluorescente (65) étant enroulée à l'une des extrémités de l'ampoule à vide.
9/ Disjoncteur selon la revendication 7, caractérisé en ce qu'au moins l'une des fibres (55, 65) est disposée de manière suspendue.
10/ Disjoncteur selon l'une des revendications 1 à 9, caractérisé en ce que le dispositif opto-électronique est relié à la fibre optique du disjoncteur par l'intermédiaire d'une fibre optique plastique ou à silice (29, 59, 69).
11/ Disjoncteur selon l'une des revendications 1 à 10, caractérisé en ce que le dispositif opto-électronique est une photo-diode.
12/ Disjoncteur selon l'une des revendications 1 à 11, caractérisé en ce que l'enveloppe (10) est en matériau isolant, l'espace (21) entre l'enveloppe et l'ampoule à vide étant rempli d'air.
13/ Disjoncteur selon l'une des revendications 1 à 11, caractérisé en ce que l'enveloppe est en métal, l'espace (21) entre l'enveloppe et l'ampoule à vide étant rempli d'un gaz à bonnes propriétés diélectriques tel que l'hexafluorure de soufre.
14/ Disjoncteur selon l'une des revendications 1 à 13, caractérisé en ce que la fibre est cylindrique ou sous forme de bande ou film.
15/ Disjoncteur à vide comprenant, pour chaque phase, au moins une ampoule à vide logée à l'intérieur d'une enceinte fermée, caractérisé en ce que l'ampoule à vide est entourée d'un cylindre (70) constitué d'un film scintilant, une fibre fluorescente (65), reliée à un photo-détecteur (28), étant enroulée autour dudit cylindre.
16/ Disjoncteur à vide comprenant, pour chaque phase, au moins une ampoule à vide logée à l'intérieur d'une enceinte fermée, caractérisé en ce qu'il comprend une pluralité de fibres scintillantes (73), disposées parallèlement entre elles selon un cylindre (71) coaxial à l'ampoule, et une fibre fluorescente (76) disposée en cerceau à l'une des extrémités dudit cylindre en regard des extrémités desdites fibres scintillantes, une extrémité (65) de ladite fibre fluorescente étant reliée à un photo-détecteur (28).
17/ Disjoncteur selon la revendication 16, caractérisée en ce que lesdites fibres scintillantes (75) sont collées sur un tube transparent (74).
EP92403114A 1991-11-22 1992-11-19 Disjoncteur à vide muni de moyens d'autodiagnostic Withdrawn EP0543732A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9114396 1991-11-22
FR9114396A FR2684232A1 (fr) 1991-11-22 1991-11-22 Disjoncteur a vide muni de moyens d'autodiagnostic.

Publications (1)

Publication Number Publication Date
EP0543732A1 true EP0543732A1 (fr) 1993-05-26

Family

ID=9419207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403114A Withdrawn EP0543732A1 (fr) 1991-11-22 1992-11-19 Disjoncteur à vide muni de moyens d'autodiagnostic

Country Status (4)

Country Link
US (1) US5286933A (fr)
EP (1) EP0543732A1 (fr)
JP (1) JPH0622091B2 (fr)
FR (1) FR2684232A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718883A1 (fr) * 1994-04-19 1995-10-20 Gec Alsthom T & D Sa Appareillage électrique à détection de pression intégrée.
FR2731520A1 (fr) * 1995-03-08 1996-09-13 Gec Alsthom T & D Sa Mesure de l'intensite electrique dans un appareil subissant un arc electrique
CN102110544A (zh) * 2009-12-25 2011-06-29 中国科学院沈阳科学仪器研制中心有限公司 一种运动部件位置的真空信号引出装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537858A (en) * 1994-05-18 1996-07-23 National Technical Systems, Inc. System for the nonintrusive monitoring of electrical circuit breaker vessel pressure
US6246556B1 (en) 1995-03-13 2001-06-12 Square D Company Electrical fault detection system
US6313642B1 (en) 1995-03-13 2001-11-06 Square D Company Apparatus and method for testing an arcing fault detection system
US5682101A (en) 1995-03-13 1997-10-28 Square D Company Arcing fault detection system
US6034611A (en) * 1997-02-04 2000-03-07 Square D Company Electrical isolation device
US6532424B1 (en) 1995-03-13 2003-03-11 Square D Company Electrical fault detection circuit with dual-mode power supply
US6242993B1 (en) 1995-03-13 2001-06-05 Square D Company Apparatus for use in arcing fault detection systems
US6313641B1 (en) 1995-03-13 2001-11-06 Square D Company Method and system for detecting arcing faults and testing such system
US6452767B1 (en) 1995-03-13 2002-09-17 Square D Company Arcing fault detection system for a secondary line of a current transformer
US5825598A (en) * 1997-02-11 1998-10-20 Square D Company Arcing fault detection system installed in a panelboard
US6259996B1 (en) 1998-02-19 2001-07-10 Square D Company Arc fault detection system
US6377427B1 (en) 1995-03-13 2002-04-23 Square D Company Arc fault protected electrical receptacle
US5834940A (en) * 1996-09-24 1998-11-10 Brooks; Stanley J. Arcing fault detector testing and demonstration system
US5946179A (en) * 1997-03-25 1999-08-31 Square D Company Electronically controlled circuit breaker with integrated latch tripping
US5847913A (en) * 1997-02-21 1998-12-08 Square D Company Trip indicators for circuit protection devices
US5839092A (en) * 1997-03-26 1998-11-17 Square D Company Arcing fault detection system using fluctuations in current peaks and waveforms
US6625550B1 (en) 1998-02-19 2003-09-23 Square D Company Arc fault detection for aircraft
US5986860A (en) * 1998-02-19 1999-11-16 Square D Company Zone arc fault detection
US6782329B2 (en) 1998-02-19 2004-08-24 Square D Company Detection of arcing faults using bifurcated wiring system
US6621669B1 (en) 1998-02-19 2003-09-16 Square D Company Arc fault receptacle with a feed-through connection
US6477021B1 (en) 1998-02-19 2002-11-05 Square D Company Blocking/inhibiting operation in an arc fault detection system
US6567250B1 (en) 1998-02-19 2003-05-20 Square D Company Arc fault protected device
US6275044B1 (en) 1998-07-15 2001-08-14 Square D Company Arcing fault detection system
US7151656B2 (en) 2001-10-17 2006-12-19 Square D Company Arc fault circuit interrupter system
US7136265B2 (en) * 2001-10-17 2006-11-14 Square D Company Load recognition and series arc detection using bandpass filter signatures
FR2868197B1 (fr) * 2004-03-25 2006-05-19 Areva T & D Sa Dispositif de commande pour l'actionnement coordonne d'au moins deux appareils de commutation dont un est a coupure dans le vide
US7802480B2 (en) * 2004-05-18 2010-09-28 Thomas And Betts International, Inc. Method and apparatus for the detection of high pressure conditions in a vacuum-type electrical device
US7313964B2 (en) * 2004-05-18 2008-01-01 Jennings Technology Method and apparatus for the detection of high pressure conditions in a vacuum-type electrical device
US7302854B2 (en) * 2004-05-18 2007-12-04 Jennings Technology Method and apparatus for the detection of high pressure conditions in a vacuum-type electrical device
US7225676B2 (en) * 2004-05-18 2007-06-05 Jennings Technology Method and apparatus for the detection of high pressure conditions in a vacuum switching device
US7383733B2 (en) * 2005-09-30 2008-06-10 Jennings Technology Method and apparatus for the sonic detection of high pressure conditions in a vacuum switching device
US7302036B2 (en) * 2005-12-09 2007-11-27 General Electrical Company Systems and methods for non-intrusive inspections of high-voltage circuit breakers
WO2009108729A1 (fr) * 2008-02-25 2009-09-03 Impact Power Inc. Interrupteur à vide amélioré pour des systèmes de distribution de courant
US8324521B2 (en) * 2010-11-15 2012-12-04 Eaton Corporation Bellows for use in vacuum interrupters
US8440929B2 (en) * 2011-08-01 2013-05-14 Eaton Corporation Vacuum switch including an insulating body having a number of transparent portions made of a single crystal alumina
MX2016014722A (es) 2014-05-12 2018-02-19 Cooper Technologies Co Deteccion de perdida de vacio.
CN107732875A (zh) 2016-08-12 2018-02-23 通用电气公司 固态断路器及电机驱动系统
CN109490934B (zh) * 2018-12-19 2022-11-25 上海平高天灵开关有限公司 一种真空灭弧室x射线检测平台
DE102021209975A1 (de) * 2021-09-09 2023-03-09 Siemens Aktiengesellschaft Vakuumschaltanordnung und Verfahren zum Erkennen eines Lichtbogens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309852A1 (fr) * 1987-09-30 1989-04-05 Siemens Aktiengesellschaft Procédé et appareil de contrôle du vide dans un interrupteur à vide
FR2640386A1 (fr) * 1988-12-09 1990-06-15 Alsthom Gec Dispositif pour la detection d'effluves visuels dans une enceinte fermee

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345153A (en) * 1980-07-30 1982-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low intensity X-ray and gamma-ray spectrometer
JPH02181668A (ja) * 1989-01-06 1990-07-16 Furukawa Electric Co Ltd:The ガス絶縁電気機器の異常検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309852A1 (fr) * 1987-09-30 1989-04-05 Siemens Aktiengesellschaft Procédé et appareil de contrôle du vide dans un interrupteur à vide
FR2640386A1 (fr) * 1988-12-09 1990-06-15 Alsthom Gec Dispositif pour la detection d'effluves visuels dans une enceinte fermee

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF LIGHTWAVE TECHNOLOGY. vol. 7, no. 7, Juillet 1989, NEW YORK US pages 1029 - 1032 KATSUTOSHI MUTO 'Electric-Discharge Sensor Utilizing Fluorescent Optical Fiber' *
NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH no. 257, 1987, AMSTERDAM, NL pages 603 - 606 BLUMENFELD ET AL 'PLASTIC FIBERS IN HIGH ENERGY PHYSICS' *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 230 (P-599)28 Juillet 1987 & JP-A-62 043 530 ( MEIDENSHA ) 25 Février 1987 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 413 (E-0974)6 Septembre 1990 & JP-A-02 158 028 ( MEIDENSHA ) 18 Juin 1990 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 413 (E-0974)6 Septembre 1990 & JP-A-02 158 029 ( MEIDENSHA ) 18 Juin 1990 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 452 (P-1112)(4395) 27 Septembre 1990 & JP-A-02 181 668 ( FURUKAWA ELECTRIC CO. ) 16 Juillet 1990 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718883A1 (fr) * 1994-04-19 1995-10-20 Gec Alsthom T & D Sa Appareillage électrique à détection de pression intégrée.
EP0678887A1 (fr) * 1994-04-19 1995-10-25 Gec Alsthom T Et D Sa Appareillage électrique à détection de pression intégrée
FR2731520A1 (fr) * 1995-03-08 1996-09-13 Gec Alsthom T & D Sa Mesure de l'intensite electrique dans un appareil subissant un arc electrique
CN102110544A (zh) * 2009-12-25 2011-06-29 中国科学院沈阳科学仪器研制中心有限公司 一种运动部件位置的真空信号引出装置
CN102110544B (zh) * 2009-12-25 2013-09-11 中国科学院沈阳科学仪器股份有限公司 一种运动部件位置的真空信号引出装置

Also Published As

Publication number Publication date
JPH0622091B2 (ja) 1994-03-23
FR2684232A1 (fr) 1993-05-28
US5286933A (en) 1994-02-15
JPH05225867A (ja) 1993-09-03

Similar Documents

Publication Publication Date Title
EP0543732A1 (fr) Disjoncteur à vide muni de moyens d&#39;autodiagnostic
CA2053811C (fr) Disjoncteur a detection d&#39;arc
EP0186225B1 (fr) Capteur d&#39;images pour caméra fonctionnant en mode &#34;jour-nuit&#34;
US4484818A (en) Apparatus and method for detecting the loss of vacuum
EP0537074B1 (fr) Disjoncteur à enveloppe en matériau composite équipé d&#39;un dispositif de surveillance
FR2466058A1 (fr) Installation d&#39;alarme auto-surveillante
EP0673098B1 (fr) Dispositif de contrÔle et de commande pour ligne de transport électrique blindée
CH681660A5 (en) Electrical discharger detector for sulphur hexa:fluoride enclosure
FR2681470A1 (fr) Disjoncteur a vide muni de moyens d&#39;autodiagnostic.
EP2224252B1 (fr) Dispositif capacitif de mesure de la tension d&#39;un élément haute tension
EP0836258A1 (fr) Dispositif de surveillance pour un câble à isolation gazeuse
EP0533534B1 (fr) Dispositif d&#39;émission ou d&#39;absorption de lumière pour le contrôle sans contact d&#39;objets
FR2461953A1 (fr) Capteur optique de vitesse et de reperage d&#39;un organe mobile de disjoncteur electrique haute tension
FR2703784A1 (fr) Procédé et dispositif de contrôle de la continuité d&#39;un cordon de colle.
FR2797961A1 (fr) Dispositif et procede de mesure d&#39;intensite lumineuse a l&#39;aide d&#39;un photomultiplicateur comportant une source de calibrage
FR2734646A1 (fr) Dispositif de surveillance pour mesurer la radioactivite d&#39;une surface
FR2478373A1 (fr) Tube convertisseur d&#39;image a contraste ameliore notamment pour intensificateurs d&#39;image a rayons x
EP0678887A1 (fr) Appareillage électrique à détection de pression intégrée
FR2649245A1 (fr) Disjoncteur a haute tension a dispositifs de detection de tension incorpores
EP0418965B1 (fr) Tube à rayons cathodiques muni d&#39;un photodeviateur
EP0788207A1 (fr) Dispositif de détection d&#39;arc interne pour câble électrique à isolation gazeuse
FR2572583A1 (fr) Dispositif photoelectrique pour la detection d&#39;evenements lumineux
CH439483A (fr) Appareil de détection d&#39;une condition électrique dans une région de potentiel élevé et de transmission d&#39;une indication de cette condition à une région de potentiel moins élevé
FR2609575A1 (fr) Photodetecteur
CH454273A (fr) Détecteur de tensions électriques alternatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19931004

17Q First examination report despatched

Effective date: 19950602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19951213