EP0538556B1 - Accélerateur électromagnétique avec des bobines en configuration plane - Google Patents

Accélerateur électromagnétique avec des bobines en configuration plane Download PDF

Info

Publication number
EP0538556B1
EP0538556B1 EP92111110A EP92111110A EP0538556B1 EP 0538556 B1 EP0538556 B1 EP 0538556B1 EP 92111110 A EP92111110 A EP 92111110A EP 92111110 A EP92111110 A EP 92111110A EP 0538556 B1 EP0538556 B1 EP 0538556B1
Authority
EP
European Patent Office
Prior art keywords
coil
coils
projectile
fact
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92111110A
Other languages
German (de)
English (en)
Other versions
EP0538556A1 (fr
Inventor
Herbert Prof. Dr.-Ing. Weh
Hardo May
Markus Dr. Löffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Industrie AG
Original Assignee
Rheinmetall Industrie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Industrie AG filed Critical Rheinmetall Industrie AG
Publication of EP0538556A1 publication Critical patent/EP0538556A1/fr
Application granted granted Critical
Publication of EP0538556B1 publication Critical patent/EP0538556B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers

Definitions

  • Electromagnetic accelerators can be classified into the group of linear drives with very short operating times. Compared to the conventional design of linear motors, e.g. for traffic applications, extraordinarily high force densities can be achieved with short-term loads.
  • the basic concept consists of a coil arrangement for the stationary part and a translator that also has one or more coils. The energy supply and its supply to the coils must take into account the translator's respective state of motion (position and speed). The electrical power required depends on the mechanically determined target data of the acceleration process, i.e. on mass, top speed and acceleration distance.
  • a flat coil accelerator for accelerating projectiles with a stationary (primary) coil arrangement is already known from US Pat. No. 4,817,494.
  • the stationary coil arrangement consists of at least two flat coils that are spaced apart from one another in a gap. In the corresponding gap are either the floor itself or wing-shaped flat material parts attached to it.
  • the flat coils of the stationary coil arrangement induce an eddy current in the projectile or the wing-shaped material parts, the magnetic field of which interacts with the field of the flat coils of the stationary coil arrangement and leads to an acceleration of the projectile.
  • a disadvantage of these known acceleration devices is that an optimal field-current interaction cannot be achieved with minimal mechanical and thermal coil loading. In particular, when using flat acceleration surfaces, relatively high eddy current losses occur in these metal parts.
  • the aim of the accelerator form described here is thus an improved field-current interaction which, with minimal mechanical and thermal coil loading, allows a maximum thrust yield and thus a favorable ratio of electrical to mechanical power.
  • the coil topology of the accelerator arrangement has a great influence on the effectiveness of the energy conversion.
  • the ratio of electrically supplied energy to mechanical energy which is determined by 1 ⁇ 2 mv 2 , with m the translator mass and v the final speed, can be kept small by a favorable arrangement of the stator and translator coils.
  • the ideal case is a value that does not very much exceed the amount of mechanical energy.
  • the translator At the location of coil S2, the translator, they correspond to a magnetic induction of size B pointing vertically downward. It is characteristic that the symmetry of the stator in two layers and the assumption of equal currents mean that coil S2 has no B component in x Direction.
  • the field-current interaction in S2, which leads to the formation of force, is determined by the full B field of the primary coil arrangement (at the location of the secondary coil). A maximum value of the driving force is thus achieved for a given field.
  • the direction of the developed force of the translator coil points only in the direction of the movement.
  • the driving force components act equally on one coil side.
  • the primary coils experience opposing forces. If the translator coil moves to the right as a result of the force, force changes occur to the extent that the primary induction B and the current of the secondary coil change.
  • the change in B depends on the geometry (the ratio of h / w), with a gradual decrease from B to the center of the coil for practically relevant conditions. It is expedient to provide a coil arrangement for the primary part which interacts according to a multi-strand arrangement maintains the primary part as continuously as possible (not shown in the model in Fig. 1).
  • the translator coil S2 is located in a primary field B, which has both a radial and an axial component.
  • the propulsive force F x is only generated by the radial component of B.
  • the axial component B x forms an inward radial force F r . It puts pressure on the spool.
  • the outward radial force creates a tensile stress on the primary coil.
  • the inductive method is mainly used to generate the secondary current.
  • the implementation of a coil arrangement in which S2 is enclosed by two symmetrical primary windings S1, S1 'and there are only small distances between the layers results in optimal conditions in this regard. Because of the lack of symmetry in FIG. 2, there are clearly less favorable conditions here.
  • the arrangement according to FIG. 2 also shows that the decrease in the force for larger coil spacings x is greater than in the case of FIG. 1.
  • the coil arrangement generally has a larger number of coils, which are activated depending on the x, position-dependent by the translator.
  • the primary coil system is supplied with the power as a function of the speed. If, for example, the same driving force is required at the end of the acceleration section as at the beginning, this means that the voltage increases proportionally to the speed given the same coil currents and the same number of turns of the coils. By reducing the number of turns towards the converter output, the required voltage can be made more uniform.
  • the translator coil S2 is surrounded by two layers of the primary coil arrangement S1 and S1 '. Since the translator coil S2 serves as a drive component for a payload to be accelerated in an aircraft or a projectile, configuration-related relationships between the coil S2 and the device to be driven must be taken into account.
  • 3a shows an obvious form for an overall flat-shaped projectile connected to the coil S2. The cross section of the missile is thus adapted to the geometry of the channel determined by the stator arrangement.
  • 3b and 3c indicate that lateral guiding surfaces are used to stabilize the flight of the projectile, for which a corresponding guide is provided in the channel.
  • the coil S2 causes compressive forces during acceleration which are exerted by the sides of the coil which run transverse to the movement. Force components acting outwards are exerted on the longitudinal sections of the coil sides. The coil must be supported against the deforming force components.
  • FIG. 4a shows an arrangement, in which the secondary coil arrangement connects on two sides to the fuselage of the aircraft and has a connection in its surface area. In this way, relatively favorable conditions for the introduction of force from the coil into the fuselage of the missile are achieved.
  • the power transmission can be carried out with controllable voltages.
  • Figure 4b shows the two layers of the primary coils, which have connections across the missile fuselage.
  • the coil arrangement is designed in accordance with the basic model of FIG. 1.
  • the arrangement in the fuselage area is divided to the extent that the secondary coil is guided on an arc. This means that there is a one-sided interaction on each half side, but due to the symmetry of its interaction intensity, it largely comes close to the optimal conditions.
  • FIG. 5a shows a solution in which there are also only short lever arms for the introduction of the coil forces into the fuselage.
  • the arrangement again corresponds to the basic idea that was also followed in FIG. 4.
  • Cross-sectional drawings of coils and stator structure are shown in FIGS. 5b and 5c.
  • the flat channel arrangement can be seen in the outer region in normal form and the circular arrangement with parallel flooding in the inner region.
  • the vertically attached outer coils allow, besides the favorable application of force (with a short lever arm), a compact design of the stator structure.
  • Fig. 5c is by a correspondingly cross-section-friendly design of S2 and slightly conical primary coils S1 and S1 ' The requirement for a sufficient cross-section for the power transmission to the fuselage was particularly met.
  • FIG. 6 A further variant of the embodiment of the coil arrangement according to the invention which serves to increase the force is shown in FIG. 6.
  • the stator coils are divided into three layers, namely S1, S1 'and S1''.
  • the current direction of all three layers is the same.
  • the translator coil is divided into S2 and S2 'and is located between the three coil layers of the stator.
  • the five layers now work together in the sense of an improved, ie higher, intensity of force generation.
  • the concept of the simple layer division flowing through in parallel is retained.
  • the advantages of the coil division are also lower forces on each coil side.
  • FIG. 7 shows in cross-section an arrangement of stator and translator coils with a large-area interaction cross-section and a limited outside diameter.
  • the stator has two kidney-shaped inner parts with these surrounding coils and in turn comprises a corresponding translator structure, the outer coils of which are cylindrical.
  • the three-layer arrangement of the coils S1, S2, S1 ' can be seen in the outer region, while in the inner region, similar to previous configurations, the double-layer arrangement S1, S2 is present.
  • Characteristic of the coil arrangements described is an effectively designed coil configuration outside the payload range of the device to be moved with a short lever arm and a suitable force transmission cross section.
  • the course of Primary and secondary coils are closely matched to achieve small effective distances.
  • the flight behavior is influenced by the elimination of the drive unit in a favorable sense.
  • the drive part can be reused after a targeted braking, e.g. when used for aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Claims (7)

  1. Missile et dispositif pour accélérer des missiles, avec un dispositif à bobines stationnaires, constitué d'au moins deux bobines primaires (S1, S1') réalisées sous forme de bobines planes, disposées parallèlement l'une à l'autre et parallèlement à la direction de déplacement du missile, de manière que l'espacement entre les deux bobines primaires ait une configuration en entrefer, de façon que le missile ou bien des parties fixées au missile puissent être accéléré dans cet entrefer et que les bobines primaires étant situées sur au moins deux côtés du missile, caractérisé en ce que sur le missile sont fixées latéralement, au moins sur chacun des deux côtés opposés, au moins une bobine secondaire (S2, S2') réalisée sous forme de bobine plane, bobine secondaire dont le plan est également disposé parallèlement par rapport à la direction du missile, et qui se trouve chaque fois dans l'entrefer existant entre les deux bobines primaires (S1, S1') lors de l'accélération du missile, et en ce que les bobines (S2, S2') sont reliées ensemble l'aide de liaisons électriques, les liaisons étant installées de manière que des espacements aussi petits que possible soient constitués vis-à-vis des bobines primaires ayant des formes correspondantes.
  2. Dispositif accélérateur à bobines selon la revendication 1, caractérisé en ce que les dispositifs à bobines (S1, S1'; S2, S2') réalisées selon le type décrit sont disposées de façon externe sur le missile et sont reliées électriquement ensemble, la liaison étant installée de manière que de petits espacements soient atteints par rapport aux bobines primaires à forme correspondante (figure 4a, 4b, 5a, 5b, 5c).
  3. Dispositif accélérateur à bobines selon les revendications précédentes, caractérisé en ce que les surfaces des bobines (S1, S1'; S2, S2') accolées sont de configuration cassée ou incurvée (figure 5, 6 et 7).
  4. Dispositif accélérateur à bobines selon les revendications précédentes, caractérisé en ce que le dispositif à bobines primaires (S1, S1') est subdivisé en un nombre de couches supérieur à deux et le dispositif à bobines secondaires (S2, S2') est disposé en un nombre de couches supérieur à un, de petits espacements étant respectés entre les différentes couches (figure 6).
  5. Dispositif accélérateur à bobines selon les revendications précédentes, caractérisé en ce que le dispositif à bobines mobile subit déjà une pré-excitation lorsqu'il se trouve à l'arrêt.
  6. Dispositif accélérateur à bobines selon les revendications précédentes, caractérisé en ce que le dispositif à enroulement fixe est réalisé dans le but de constituer un dispositif à bobines à plusieurs tronçons.
  7. Dispositif accélérateur à bobines selon les revendications précédentes, caractérisé en ce que le nombre des enroulements de chaque bobine du système fixe va en diminuant lorsque l'on progresse vers l'extrémité du convertisseur.
EP92111110A 1991-09-23 1992-07-01 Accélerateur électromagnétique avec des bobines en configuration plane Expired - Lifetime EP0538556B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4131595 1991-09-23
DE4131595A DE4131595C2 (de) 1991-09-23 1991-09-23 Elektromagnetischer Beschleuniger in Flachspulenanordnung

Publications (2)

Publication Number Publication Date
EP0538556A1 EP0538556A1 (fr) 1993-04-28
EP0538556B1 true EP0538556B1 (fr) 1996-09-11

Family

ID=6441248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111110A Expired - Lifetime EP0538556B1 (fr) 1991-09-23 1992-07-01 Accélerateur électromagnétique avec des bobines en configuration plane

Country Status (5)

Country Link
US (1) US5294850A (fr)
EP (1) EP0538556B1 (fr)
JP (1) JPH07117356B2 (fr)
DE (2) DE4131595C2 (fr)
IL (1) IL103165A (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808393A (en) * 1987-09-18 1989-02-28 Mineral Research And Development Corp. Process for manufacture of ferric nitrate
DE4122601A1 (de) * 1991-07-08 1993-01-14 Magnet Motor Gmbh Linearbeschleuniger
US5699779A (en) * 1995-08-25 1997-12-23 Tidman; Derek A. Method of and apparatus for moving a mass
US6074360A (en) * 1997-07-21 2000-06-13 Boehringer Mannheim Gmbh Electromagnetic transdermal injection device and methods related thereto
DE19818580A1 (de) * 1998-04-25 1999-10-28 Dynamit Nobel Ag Gasgenerator zur Erzeugung kurzzeitiger elektrischer Energieimpulse
US6142131A (en) * 1998-05-08 2000-11-07 The United States Of America As Represented By The Secretary Of The Army Electromagnetic launcher with pulse-shaping armature and divided rails
WO2002016085A1 (fr) 2000-08-25 2002-02-28 Barber John P Dispositif a chocs
AU2002229050A1 (en) * 2000-11-30 2002-06-11 Asylum Research Corporation Improved linear variable differential transformers for high precision position measurements
US6696775B2 (en) * 2002-01-22 2004-02-24 The Curators Of The University Of Missouri Apparatus for commutation of a helical coil launcher
US20040255767A1 (en) * 2002-12-30 2004-12-23 Frasca Joseph Franklin Electromagnetic Propulsion Devices
US7549365B2 (en) * 2003-08-01 2009-06-23 Lockheed Martin Corporation Electromagnetic missile launcher
US20070277668A1 (en) * 2003-12-24 2007-12-06 Frasca Joseph F Two Rail Electromagnetic Gun
US7607424B2 (en) * 2004-02-17 2009-10-27 Planet Eclipse Limited Electro-magnetically operated rotating projectile loader
US7459807B2 (en) * 2004-06-09 2008-12-02 The University Of Houston System Linear motor geometry for use with persistent current magnets
US7874237B2 (en) * 2004-07-26 2011-01-25 Lockheed Martin Corporation Electromagnetic missile launcher
US7703373B2 (en) * 2006-07-05 2010-04-27 Lockheed Martin Corporation Unitary electro magnetic coil launch tube
US7895931B2 (en) * 2006-09-26 2011-03-01 Lockheed Martin Corporation Electro magnetic countermeasure launcher
US8042447B2 (en) * 2006-09-26 2011-10-25 Lockheed Martin Corporation Electromagnetic initiator coil
DE102013010178A1 (de) 2013-06-19 2014-07-24 Deutsch Französisches Forschungsinstitut Saint Louis Elektromagnetischer koaxialer Spulenbeschleuniger
CN105071574B (zh) * 2015-08-17 2017-07-11 成都茂源科技有限公司 一种高速多相电励磁同步直线电机
US10933845B2 (en) * 2016-03-30 2021-03-02 Honda Motor Co., Ltd. Apparatus for enhancing vehicle performance along inclined surfaces, and methods of use and manufacture thereof
CN110057240A (zh) * 2019-05-27 2019-07-26 中国科学院电工研究所 线圈开放式电磁推挽发射装置
CN110631415B (zh) * 2019-10-25 2022-01-11 南京邮电大学 一种基于电压检测的电磁炮自动打靶控制系统
CN110686561B (zh) * 2019-11-18 2021-07-30 朱幕松 军舰导弹电磁炮

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1370200A (en) * 1921-03-01 fauchon-villeplee
US4577545A (en) * 1982-05-24 1986-03-25 Westinghouse Electric Corp. Parallel rail electromagnetic launcher with multiple current path armature
US4796511A (en) * 1985-08-21 1989-01-10 Wisconsin Alumni Research Foundation Electromagnetic projectile launching system
US4817494A (en) * 1987-04-06 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Magnetic reconnection launcher
US4858511A (en) * 1988-03-14 1989-08-22 The United States Of America As Represented By The Secretary Of The Army Superconductive levitated armatures for electromagnetic launchers

Also Published As

Publication number Publication date
JPH07117356B2 (ja) 1995-12-18
JPH05215496A (ja) 1993-08-24
EP0538556A1 (fr) 1993-04-28
DE59207105D1 (de) 1996-10-17
DE4131595A1 (de) 1993-04-01
IL103165A (en) 2000-06-29
DE4131595C2 (de) 1995-02-09
US5294850A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0538556B1 (fr) Accélerateur électromagnétique avec des bobines en configuration plane
DE3511282C1 (de) Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
DE3880681T2 (de) Elektronenbeschleuniger mit koaxialem hohlraum.
DE2420814C3 (de) Magnetlager mit einem Lagerelement zur Festlegung eines translatorischen Freiheitsgrades
DE69503521T3 (de) Synchronmotor mit dauermagneten
DE2658687A1 (de) Lagereinrichtung fuer eine lange welle, insbesondere fuer einen turbomaschinenlaeufer
EP0450288B1 (fr) Moteur électrique linéaire
EP1657107A1 (fr) Système avec au moins un moteur lineaire à stator allongé pour l'opération de véhicules maglev
WO2008064779A1 (fr) Onduleur planaire hélicoïdal
DE2250372A1 (de) Magnetsystem fuer die schwebefuehrung eines entlang einer fahrbahn bewegten fahrzeugs
EP2935066B1 (fr) Dispositif d'enroulement pour matériau à enrouler en forme de corde
DE3927454C2 (fr)
DE69505746T2 (de) Magnetlager
DE2355697A1 (de) Magnetsystem zur beruehrungsfreien fuehrung eines bewegten fahrzeugs
DE2438201A1 (de) Elektrischer asynchron-linearmotor
EP0593597B1 (fr) Accelerateur lineaire
EP4066354A1 (fr) Dispositif de transport
DE102014213276A1 (de) Linearantrieb mit hoher Kraftdichte
DE4007265A1 (de) Supraleitende magnetspulenanordnung
DE1006481B (de) Aus ein- oder mehrschichtigem dielektrischem Stoff bestehende Wellenfuehrung
DE602005002195T2 (de) Linear Betätiger mit direktem Antrieb
EP1444766B1 (fr) Entrainement lineaire comprenant une unite passive mobile de masse reduite
WO2004098029A1 (fr) Systeme d'entrainement electrodynamique
DE2934418A1 (de) Flugobjekt
DE2523888C2 (de) Magnetisches Führungssystem zur berührungsfreien Schwebeführung eines bewegten Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL INDUSTRIE GMBH

17Q First examination report despatched

Effective date: 19941223

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL INDUSTRIE AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960911

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960924

REF Corresponds to:

Ref document number: 59207105

Country of ref document: DE

Date of ref document: 19961017

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010702

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080722

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202