EP0536596A1 - Schleifmittel - Google Patents

Schleifmittel Download PDF

Info

Publication number
EP0536596A1
EP0536596A1 EP92116325A EP92116325A EP0536596A1 EP 0536596 A1 EP0536596 A1 EP 0536596A1 EP 92116325 A EP92116325 A EP 92116325A EP 92116325 A EP92116325 A EP 92116325A EP 0536596 A1 EP0536596 A1 EP 0536596A1
Authority
EP
European Patent Office
Prior art keywords
weight
monomers
polysaccharides
binder
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92116325A
Other languages
English (en)
French (fr)
Other versions
EP0536596B1 (de
Inventor
Thomas Dr. Schwerzel
Kurt Dr. Wendel
Hermann Rockstroh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0536596A1 publication Critical patent/EP0536596A1/de
Application granted granted Critical
Publication of EP0536596B1 publication Critical patent/EP0536596B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic

Definitions

  • the present invention relates to abrasives based on finely divided abrasive particles bonded to one another and / or on a carrier by means of a binder, the binder being the solids content of an aqueous polymer dispersion which can be obtained by free-radically polymerizable unsaturated monomers in the presence of an aqueous phase
  • aqueous polymer dispersion which can be obtained by free-radically polymerizable unsaturated monomers in the presence of an aqueous phase
  • Monosaccharides, oligosaccharides, polysaccharides, oxidatively, hydrolytically and / or enzymatically degraded polysaccharides, chemically modified mono-, oligo- or polysaccharides or mixtures of the compounds mentioned are polymerized by the process of free-radical aqueous emulsion polymerization.
  • abrasives are known whose abrasive particles are bonded with a radiation-curable polymeric binder to achieve satisfactory properties.
  • the disadvantage of radiation curing is disadvantageous.
  • the object of the present invention was therefore to provide fully satisfactory abrasives based on polymeric binders which do not require radiation curing. Accordingly, the abrasives defined at the outset were found.
  • abrasive particles fused or sintered corundum, zirconium corundum, silicon carbide and emery.
  • Flexible substrates such as e.g. Paper, vulcanized fiber, woven fabrics, knitted fabrics, nonwovens based on natural and / or synthetic fibers, plastic films or metal foils.
  • Radically polymerizable monomers include, in particular, monoethylenically unsaturated monomers such as olefins, for example ethylene, vinylaromatic monomers such as styrene, ⁇ -methylstyrene, o-chlorostyrene or vinyltoluenes, vinyl and vinylidene halides such as vinyl and vinylidene chloride, esters of vinyl alcohol and 1 to 18 C Monocarboxylic acids containing atoms, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, Vinyl laurate and vinyl stearate, esters of preferably 3 to 6 carbon atoms have ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, such as in particular acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, with generally 1 to 12, preferably 1 to 8 and in particular Alkanols containing 1 to 4 carbon atoms, such as,
  • the monomers mentioned are essentially insoluble in an aqueous medium and generally form the main monomers which, based on the total amount of the monomers to be polymerized, normally account for more than 50% by weight.
  • Monomers which, when polymerized on their own, usually give homopolymers which have an increased solubility in water, are normally only used as modifying monomers in amounts, based on the total amount of the monomers to be polymerized, of less than 50% by weight, generally 0.5 up to 20, preferably 1 to 10 wt .-%, co-polymerized.
  • Examples of such monomers are ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids and their amides such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, acrylamide and methacrylamide, furthermore vinylsulfonic acid and its water-soluble salts and N- Vinyl pyrrolidone.
  • Monomers which usually increase the internal strength of the films of the aqueous polymer dispersion, are generally also copolymerized only in minor amounts, usually 0.5 to 10% by weight, based on the total amount of the monomers to be polymerized.
  • Such monomers normally have an epoxy, hydroxy, N-methylol, carbonyl or at least two non-conjugated ethylenically unsaturated double bonds.
  • these are N, alkylolamides of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids having 3 to 10 carbon atoms and their esters with alcohols having 1 to 4 carbon atoms, among which the N-methylolacrylamide and the N-methylolmethacrylamide are very particularly preferred, two monomers containing vinyl residues, two monomers having vinylidene residues and two alkenyl residues Monomers.
  • the di-esters of dihydric alcohol with ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic acids are particularly suitable, among which in turn acrylic and methacrylic acid are preferably used.
  • monomers having two non-conjugated ethylenically unsaturated double bonds are alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate as well as propylene glycol diacrylate, dicinylbenzene, allala methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate, methacrylate.
  • the following monomer compositions are of particular interest: 90 to 99% by weight of n-butyl acrylate and / or styrene 1 to 10 wt .-% acrylic acid and / or methacrylic acid.
  • the monomers mentioned are polymerized by the process of free-radical aqueous emulsion polymerization in the presence of polysaccharides, oligosaccharides, monosaccharides and / or their derivatives. They can be of vegetable or animal origin, soluble in water or only dispersible therein.
  • the so-called swelling starches are suitable, which are obtainable, for example, by hydrothermal treatment of native starch.
  • Thin-boiling starches are also suitable. These are starches that are slightly broken down with acids or enzymes or oxidized with mild oxidizing agents, which, even in higher concentrations, do not produce viscous paste but rather thin liquids when boiled with water.
  • acid-modified starches which are obtained by heating an aqueous starch suspension below the gelatinization temperature in the presence of small amounts of acid.
  • Oxidatively modified starches are also suitable.
  • Chromic acid, permanganate, hydrogen peroxide, nitrogen dioxide, hypochlorite or periodic acid can be used as the oxidizing agent.
  • all native starches such as cereal starches (e.g. corn, wheat, rice or millet), tuber and root starches (e.g. potatoes, tapioca roots or arrowroot) or sago starches are suitable as starting starches.
  • the use of roasted dextrins as described, for example, in EP-A 408 099 and in EP-A 334 515 is particularly advantageous.
  • dextrins can be obtained by heating moist, dry starch, usually in the presence of small amounts of acid.
  • Typical roasted dextrins are, for example, commercially available white and yellow dextrins; it also includes dextrins that are sold under the trademark Noredux® and Tackidex® are sold.
  • dextrin is used here generally for starch breakdown products.
  • radical emulsion polymerization in the presence of saccharified starches is recommended with particular advantage.
  • This is a starch degradation product obtainable by hydrolysis in the aqueous phase, which preferably has a weight-average molecular weight M w of 2500 to 25,000. More detailed information on the production of the starches and starch derivatives mentioned can be found in G. Tegge, Starch and Starch Derivatives, Behr's Verlag, Hamburg 1984.
  • the starches and starch derivatives mentioned can be used according to the invention in, for example, etherification or esterification in a chemically modified form.
  • This chemical modification can be carried out on the starch before it is broken down or afterwards. Esterifications are possible with both inorganic and organic acids, their ahydrides or chlorides. Phosphated and acetylated derivatives are of particular interest.
  • the most common etherification method is treatment with organic halogen compounds, epoxides or sulfates in aqueous alkaline solution.
  • Particularly suitable ethers are alkyl ethers, hydroxyalkyl ethers, carboxyalkyl ethers and allyl ethers. Cyanoalkylated derivatives and reaction products with 2,3-epoxypropyltrimethylammonium chloride are also suitable. Products that are not chemically modified are preferred.
  • mono- and oligosaccharides and cellulose degradation products for example cellobiose and its oligomers, are also suitable.
  • the saccharified starches of a weight average molecular weight of 2500 to 25,000 to be used with particular preference according to the invention are commercially available as such (for example the C * PUR products 01906, 01908, 01910, 01912, 01915, 01921, 01924, 01932 or 01934 from Cerestar GmbH , D-1150 Krefeld 12).
  • Such saccharified starches are chemically different from roasted dextrins in that hydrolytic degradation in an aqueous medium (usually suspensions or solutions), which is generally carried out at solids contents of 10 to 30% by weight and preferably acid or enzyme-catalyzed, is carried out
  • Possibility of recombination and branching essentially is not given, which is not least expressed in other molecular weight distributions.
  • saccharified starches which have a bimodal molecular weight distribution have proven to be particularly advantageous according to the invention.
  • the production of saccharified starches is generally known and, inter alia, in G. Tegge, Starch and Starch Derivatives, Behr's Verlag, Hamburg 1984, pp. 173 u. Pp. 220 ff and described in EP-A 441 197.
  • the saccharified starches to be used according to the invention are preferably those whose weight-average molecular weight M w is in the range from 4000 to 16,000, particularly preferably in the range from 6500 to 13,000.
  • the saccharified starches to be used according to the invention are normally completely soluble in water at room temperature, the solubility limit generally being above 50% by weight, which proves to be particularly advantageous for the preparation of the aqueous polymer dispersions according to the invention.
  • the saccharified starches to be used according to the invention have an unevenness U (defined as the ratio of weight-average molecular weight M w to number-average molecular weight M n ; U characterizes the molecular weight distribution) in the range from 6 to 12.
  • U is particularly advantageously 7 to 11 and a U of 8 to 10 is very particularly favorable.
  • the proportion by weight of the saccharified starches to be used according to the invention which has a molecular weight below 1000, is at least 10% by weight, but not more than 70% by weight.
  • This weight fraction is particularly preferably in the range from 20 to 40% by weight.
  • Such saccharified starches to be used according to the invention, whose dextrose equivalent DE is 5 to 40, preferably 10 to 30 and particularly preferably 10 to 20.
  • the DE value characterizes the reducing power in relation to the reducing power of anhydrous dextrose and is determined according to DIN 10308 edition 5.71, the standards committee for food and agricultural products (cf. also Günther Tegge, Starch and starch derivatives, Behr's Verlag, Hamburg 1984, p. 305).
  • aqueous polymer dispersions are obtained in their property profile when using saccharified starches to be used according to the invention
  • the 40 wt .-% aqueous solutions at 25 ° C and a shear rate of 75 s ⁇ 1 one after DIN 53 019 determined dynamic viscosity ⁇ 40 [Pa ⁇ s] from 0.01 to 0.06, preferably from 0.015 to 0.04 and particularly preferably from 0.02 to 0.035.
  • the mono-, oligo-, polysaccharides and / or their derivatives which are present according to the invention during the free radical aqueous emulsion polymerization can nevertheless be present as the only dispersants and also in a mixture with other surface-active substances. If they are used as the sole dispersant, they are normally present in the aqueous polymer dispersions according to the invention in amounts of 1 to 120% by weight, based on the amount of monomers to be polymerized.
  • the protective colloids and emulsifiers normally used as dispersants come into consideration as accompanying surface-active substances.
  • a detailed description of suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 411 to 420. Both anionic, cationic and nonionic emulsifiers are also considered.
  • only accompanying emulsifiers are used as accompanying surface-active substances, the relative molecular weights of which, in contrast to the protective colloids, are usually below 2000.
  • emulsifiers are, for example, ethoxylated fatty alcohols (EO degree: 3 to 50, alkyl radical: C8 to C36), ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C4 to C9), alkali metal salts of dialkyl esters of sulfosuccinic acid and alkali and ammonium salts of alkyl sulfates (alkyl radical: C8 to C12), of ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C12 to C18), of ethoxylated alkylphenols (EO degree: 3 to 50, Alkyl radical: C4 to C9), of alkyl sulfonic acids (alkyl radical: C12 to C18) and of alkylarylsulfonic acids (alkyl radical: C9 to C18).
  • EO degree: 3 to 50 alkyl radical: C8
  • emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Substances, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • Accompanying surface-active substances are usually in amounts of up to 5% by weight, based on the amount of the monomers to be polymerized, also used.
  • the emulsion polymerization temperature is usually 30 to 95, preferably 75 to 90 ° C.
  • the polymerization medium can consist only of water, as well as mixtures of water and thus miscible liquids such as methanol. Preferably only water is used.
  • the emulsion polymerization can be carried out either as a batch process or in the form of a feed process, including a step or gradient procedure.
  • the feed process in which part of the polymerization batch is introduced, heated to the polymerization temperature, polymerized and then the rest of the polymerization batch, usually via a plurality of spatially separate feeds, one or more of which contain the monomers in pure or in emulsified form , gradually or with superimposition of a concentration gradient while maintaining the polymerization of the polymerization zone.
  • the initial charge and / or the monomer feed contains small amounts of emulsifiers, based on the total amount of the monomers to be polymerized, as a rule less than 0.5% by weight, in order to reduce the surface tension of the dispersing medium and thus to stir it in facilitate.
  • the monomers are therefore frequently fed to the polymerization zone in a manner pre-emulsified with these auxiliary emulsifiers.
  • the total amount of the mono-, oligo-, polysaccharide and / or their derivatives to be used is advantageously contained in an aqueous receiver.
  • Free radical polymerization initiators are all those which are capable of initiating a free radical aqueous emulsion polymerization. Both peroxides, e.g. Alkali metal peroxidisulfates or H2O2, as well as azo compounds.
  • Combined systems which are composed of at least one organic reducing agent and at least one peroxide and / or hydroperoxide, for example tert-butyl hydroperoxide and the sodium metal salt of hydroxymethanesulfinic acid or hydrogen peroxide and ascorbic acid, are also suitable.
  • Combined systems are also suitable also contain a small amount of a metal compound soluble in the polymerization medium, the metallic component of which can occur in several valence stages, for example ascorbic acid / iron (II) sulfate / hydrogen peroxide, the sodium metal salt of hydroxymethanesulfinic acid, sodium sulfite, sodium hydrogen sulfite or sodium metal bisulfite and often instead of ascorbic acid of hydrogen peroxide, tert-butyl hydroperoxide or alkali metal peroxydisulfates and / or ammonium peroxydisulfates can be used.
  • a metal compound soluble in the polymerization medium the metallic component of which can occur in several valence stages
  • a metal compound soluble in the polymerization medium for example ascorbic acid / iron (II) sulfate / hydrogen peroxide, the sodium metal salt of hydroxymethanesulfinic acid, sodium sulfite, sodium hydrogen sulfite or
  • the amount of free-radical initiator systems used is 0.1 to 2% by weight, based on the total amount of the monomers to be polymerized.
  • Ammonium and / or alkali metal peroxydisulfates are particularly preferably used by themselves or as a component of combined systems as initiators.
  • Sodium peroxydisulfate is particularly preferably used.
  • the manner in which the free radical initiator system is added to the polymerization vessel in the course of the free radical aqueous emulsion polymerization according to the invention is of minor importance. It can either be completely introduced into the polymerization vessel or, depending on its consumption, can be used continuously or in stages in the course of the free-radical aqueous emulsion polymerization. Specifically, this depends on the chemical nature of the initiator system and on the polymerization temperature in a manner known per se to the person skilled in the art. A portion is preferably introduced and the remainder is fed to the polymerization zone in accordance with the consumption.
  • the free radical aqueous emulsion polymerization according to the invention can of course also be carried out under elevated or reduced pressure.
  • the aqueous polymer dispersions according to the invention are generally prepared with a total solids content of 15 to 65% by weight, with those from 10 to 75, very particularly preferably 20 to 60% by weight, based on those to be polymerized, being particularly preferred in terms of application technology Monomers containing mono-, oligo-, polysaccharides and / or their derivatives to be used according to the invention.
  • the binders for abrasive particles for the production of abrasives are very particularly advantageously aqueous polymer dispersions according to the invention, the polymers of which can be obtained by free-radical polymerization of monomer mixtures, the following monomer composition consisting of 39 to 69% by weight of at least one ester of ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids containing 3 to 6 carbon atoms and alkanols (monomers a) having 1 to 6 carbon atoms, 30 to 60% by weight of styrene (monomer b), 1 to 10 wt .-% of at least one monomer from the group comprising 3 to 6 carbon atoms containing ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, their amides and nitriles (monomers c) and 0 to 10% by weight of one or more monomers from the group comprising N-alkylolamides
  • the transfer of the abrasive particles into abrasives can e.g. in such a way that the finely divided abrasive particles are mixed with the aqueous polymer dispersions to be used according to the invention while adjusting the desired binder content, generally (calculated dry) 0.1 to 10% by weight, based on the amount of finely divided starting material, the mixture optionally forms after the addition of known aids, optionally compressed by applying pressure, and then hardens.
  • a so-called base binder layer is preferably first applied to a carrier, into which the abrasive particles are introduced when wet.
  • a second, so-called cover binder layer is usually applied for better embedding and fastening of the grain.
  • the base and cover binder layers can consist of different binders.
  • at least one of the two, preferably the top layer and particularly preferably both, consists of the aqueous polymer dispersions according to the invention.
  • the curing process does not necessarily require the use of elevated temperatures (normally 50 to 250 ° C.), but also left to harden at room temperature with satisfactory speed.
  • elevated temperatures normally 50 to 250 ° C.
  • through-hardening can also be achieved by exposing the mass to be hardened to the action of microwaves.
  • aqueous polymer dispersions according to the invention which are obtainable by free radical aqueous emulsion polymerization of mixtures of monomers a, b, c and d, the monomer composition of which is selected so that a polymer composed only of monomers a, b and c have a glass transition temperature, are particularly recommended would have in the range of 0 to 40 ° C.
  • the glass transition temperature of copolymers is a good approximation: where X1, X2, ..., X s are the mass fractions of the monomers 1, 2, ..., s and Tg1, Tg2, ..., Tg s are the glass transition temperatures of only one of the monomers 1, 2, .. ., s mean polymers in degrees Kelvin.
  • the glass transition temperatures of the monomers a, b and c are essentially known and are described, for example, in J. Brandrup, EH Immergut, Polymer Handbook 1 st Ed. J. Wiley, New York 1966, 2 nd Ed. J. Wiley, New York 1975.
  • aqueous polymer dispersions according to the invention meet these requirements in a completely satisfactory manner.
  • Hardening does not necessarily require elevated temperatures when used, but can be carried out at room temperature and particularly advantageously under the influence of microwaves. This is particularly gentle on the carrier material and avoids extreme water removal, making complicated regeneration of the carrier material in climate zones unnecessary.
  • the binders according to the invention are particularly characterized by increased heat resistance, so that the abrasive grains remain fixed in their position even under the elevated temperatures (150 ° C. and more) that occur during the grinding process. This prevents suppression of the abrasive grains (which reduces the grinding effect) or even chipping.
  • the base layer is applied in dry layer thicknesses of 10 to 100 ⁇ m and the top layer in dry layer thicknesses of 20 to 103 ⁇ m.
  • condensation products based on formaldehyde, melamine, phenol and / or urea for example Urecoll® 118.
  • the amounts to be used can be up to 250% by weight, based on the solids content, determined less the saccharified starch, of the aqueous polymer dispersions according to the invention.
  • the last-mentioned additives only have an advantageous effect in the manner described if curing takes place at elevated temperature, generally 100 to 250 ° C., or in the presence of acid.
  • the latter can be achieved in a simple manner by adjusting the pH of the dispersion medium of the aqueous polymer dispersions to be used according to the invention to 1 to 5, preferably 2 to 3. If heat resistance in the usual range is required, it is preferable to work without additives.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Colloid Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Schleifmittel auf der Basis von untereinander und/oder auf einem Träger mittels eines Bindemittels gebundenen feinteiligen Schleifpartikeln, wobei das Bindemittel der Feststoffanteil einer wäßrigen Polymerisatidispersion ist, die dadurch erhältlich ist, daß man radikalisch polymerisierbare ungesättigte Monomere in wäßriger Phase in Anwesenheit eines Monosaccharids, Oligosaccharids, Polysaccharids, oxidativ, hydrolytisch und/oder enzymatisch abgebauten Polysacchariden, chemisch modifizierten Mono-, Oligo- und Polysacchariden oder Mischungen der genannten Verbindungen nach dem Verfahren der radikalischen wäßrigen Emulsionspolymerisation polymerisiert.

Description

  • Die vorliegende Erfindung betrifft Schleifmittel auf der Basis von untereinander und/oder auf einem Träger mittels eines Bindemittels gebundenen feinteiligen Schleifpartikeln, wobei das Bindemittel der Feststoffanteil einer wäßrigen Polymerisatdispersion ist, die dadurch erhältlich ist, daß man radikalisch polymerisierbare ungesättigte Monomere in wäßriger Phase in Anwesenheit eines Monosaccharids, Oligosaccharids, Polysaccharids, oxidativ, hydrolytisch und/oder enzymatisch abgebauten Polysacchariden, chemisch modifizierten Mono-, Oligo- oder Polysacchariden oder Mischungen der genannten Verbindungen nach dem Verfahren der radikalischen wäßrigen Emulsionspolymerisation polymerisiert.
  • Aus der EP-A 261 098 sind Schleifmittel bekannt, deren Schleifpartikel zum Erzielen befriedigender Eigenschaften mit einem strahlungshärtbaren polymeren Bindemittel gebunden sind. Nachteilig ist die Erfordernis der Strahlungshärtung.
  • Aufgabe der vorliegenden Erfindung war daher, voll befriedigende Schleifmittel auf der Basis von polymeren Bindemitteln zur Verfügung zu stellen, die der Strahlungshärtung nicht bedürfen. Demgemäß wurden die eingangs definierten Schleifmittel gefunden.
  • Als feinteilige Schleifpartikel kommen insbesondere in Betracht: Schmelz- oder Sinter-Korund, Zirkonkorund, Siliciumcarbid und Schmirgel. Als Trägermaterial eignen sich unter anderem flexible Unterlagen wie z.B. Papier, Vulkanfiber, Gewebe, Gewirke, Vliesstoffe auf Basis natürlicher und/oder synthetischer Fasern, Kunststoffolien oder Metallfolien.
  • Als radikalisch polymerisierbare Monomere kommen unter anderen insbesondere monoethylenisch ungesättigte Monomere wie Olefine, z.B. Ethylen, vinylaromatische Monomere wie Styrol, α-Methylstyrol, o-Chlorstyrol oder Vinyltoluole, Vinyl- und Vinylidenhalogenide wie Vinyl- und Vinylidenchlorid, Ester aus Vinylalkohol und 1 bis 18 C-Atome aufweisenden Monocarbonsäuren wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat und Vinylstearat, Ester aus vorzugsweise 3 bis 6 C-Atome aufweisen α,β-monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, mit im allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alkanolen wie besonders Acrylsäure- und Methacrylsäuremthyl-, -ethyl, -n-butyl, -iso-butyl und -2-ethlyhexylester, Maleinsäuredimethylester oder Maleinsäure-n-butylester, Nitrile α,β-monoethylenisch ungesättigter Carbonsäuren wie Acrylnitril sowie C₄₋₈ konjugierte Diene wie 1,3-Butadien und Isopren in Betracht. Die genannten Monomeren sind im wesentlichen in wäßrigem Medium nicht löslich und bilden in der Regel die Hauptmonomeren, die, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren, normalerweise einen Anteil von mehr als 50 Gew.-% auf sich vereinen. Monomere, die für sich polymerisiert üblicherweise Homopolymerisate ergeben, die eine erhöhte Wasserlöslichkeit aufweisen, werden im Normalfall lediglich als modifizierende Monomere in Mengen, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren, von weniger als 50 Gew.-%, in der Regel 0,5 bis 20,vorzugsweise 1 bis 10 Gew.-%, miteinpolymerisiert.
  • Beispiele für derartige Monomere sind 3 bis 6 C-Atome aufweisende α,β-monoethylenisch ungesättigte Mono- und Dicarbonsäuren und deren Amide wie z.B. Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Acrylamid und Methacrylamid, ferner Vinylsulfonsäure und deren wasserlösliche Salze sowie N-Vinylpyrrolidon. Monomere, die üblicherweise die innere Festigkeit der Verfilmungen der wäßrigen Polymerisatdispersion erhöhen, werden in der Regel ebenfalls nur in untergeordneten Mengen, meist 0,5 bis 10 Gew.-% bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren, miteinpolymerisiert. Normalerweise weisen derartige Monomere eine Epoxy-, Hydroxy-, N-Methylol-, Carbonyl- oder wenigstens zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen auf. Beispiele hierfür sind N-Alkylolamide von 3 bis 10 C-Atome aufweisende α,β-monoethylenisch ungesättigten Carbonsäuren sowie deren Ester mit 1 bis 4 C-Atome aufweisenden Alkoholen, unter denen das N-Methylolacrylamid und das N-Methylolmethacrylamid ganz besonders bevorzugt sind, zwei Vinylreste aufweisende Monomere, zwei Vinylidenreste aufweisende Monomere sowie zwei Alkenylreste aufweisende Monomere. Besonders geeignet sind dabei die Di-Ester zweiwertiger Alkohle mit α,β-monoethylenisch ungesättigten Monocarbonsäuren unter denen wiederum die Acryl- und Methacrylsäure vorzugsweise eingesetzt werden. Beispiele für derartige zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen aufweisende Monomere sind Alkylenglycoldiacrylate- und -dimethacrylate wie Ethylenglycoldiacrylat, 1,3-Butylenglycoldiacrylat, 1,4-Butylenglycoldiacrylat sowie Propylenglycoldiacrylat, Divinylbenzol, Vinylmethacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat oder Methylenbisacrylamid. Neben ungesättigte Doppelbindungen aufweisenden Monomeren können in untergeordneten Mengen, üblicherweise 0,01 bis 4 Gew.-% bezogen auf die zu polymerisierenden Monomeren, das Molekulargewicht regelnde Substanzen wie tert.-Dodecylmercaptan miteinpolymerisiert werden. Vorzugsweise werden derartige Substanzen im Gemisch mit den zu polymerisierenden Monomeren der Polymerisationszone zugegeben.
  • Bevorzugte Klassen von erfindungsgemäß einzusetzenden wäßrigen Polymerisatdispersionen sind solche, deren Polymerisate durch radikalische Polymerisation von Monomerengemischen erhältlich sind, die
    • zu 50 bis 100 Gew.-% aus Estern der Acryl- und/oder Methacrylsäure mit 1 bis 12 C-Atome aufweisenden Alkanolen und/oder Styrol (Klasse I)
    oder
    • zu 70 bis 100 Gew.-% aus Styrol und/oder Butadien (Klasse II)
    oder
    • zu 70 bis 100 Gew.-% aus Vinylchlorid und/oder Vinylidenchlorid (Klasse III)
    zusammengesetzt sind, wobei die Klasse I besonders bevorzugt ist und vorzugsweise nachfolgende Monomerenzusammensetzungen umfaßt:
    90 bis 99 Gew.-%   aus Estern der Acryl- und/oder Methacrylsäure mit 1 bis 8 C-Atome aufweisenden Alkanolen und/oder Styrol und
    1 bis 10 Gew.-%   Acrylsäure, Methacrylsäure oder deren Gemisch.
  • Von ganz besonderem Interesse sind die nachfolgenden Monomerenzusammensetzungen:
    90 bis 99 Gew.-%   n-Butylacrylat und/oder Styrol
    1 bis 10 Gew.-%   Acrylsäure und/oder Methacrylsäure.
  • Die Polymerisation der genannten Monomeren erfolgt erfindungsgemäß nach dem Verfahren der radikalischen wäßrigen Emulsionspolymerisation in Anwesenheit von Polysacchariden, Oligosacchariden, Monosacchariden und/oder deren Derivaten. Sie können pflanzlichen oder tierischen Ursprungs, in Wasser löslich oder nur darin dispergierbar sein. Geeignet sind unter anderem die sogenannten Quellstärken, die beispielsweise durch hydrothermische Behandlung von nativer Stärke erhältlich sind. Ferner eignen sich dünnkochende Stärken. Es handelt sich dabei um mit Säuren oder Enzymen geringfügig abgebaute oder mit milden Oxidationsmitteln oxidierte Stärken, die auch in höheren Konzentrationen beim Kochen mit Wasser keine viskosen Kleister sondern relativ dünne Flüssigkeiten ergeben. Außerdem sind säuremodifizierte Stärken geeignet, die durch Erwärmen einer wäßrigen Stärkesuspension unterhalb der Verkleisterungstempertur in Gegenwart geringer Säuremengen gewonnen werden. Weiterhin kommen oxidativ modifizierte Stärken in Betracht. Als Oxidationsmittel können z.B. Chromsäure, Permanganat, Wasserstoffperoxid, Stickstoffdioxid, Hypochlorit oder Perjodsäure herangezogen werden. Als Ausgangsstärken sind prinzipell alle nativen Stärken wie Getreidestärken (z.B. Mais, Weizen, Reis oder Hirse), Knollen- und Wurzelstärken (z.B. Kartoffeln, Tapiokawurzeln oder Arrowroot) oder Sagostärken geeignet. Besonders vorteilhaft ist die Verwendung von Röstdextrinen, wie sie z.B. in der EP-A 408 099 sowie in der EP-A 334 515 beschrieben sind. Sie sind durch Erhitzen von feuchttrockener Stärke, meist in Anwesenheit geringer Mengen Säure, erhältlich. Typische Röstdextrine sind z.B. im Handel erhältliche Weiß- und Gelbdextrine; ferner zählen dazu Dextrine, die unter dem Warenzeichen Noredux® und Tackidex® vertrieben werden. Der Begriff Dextrin wird hier ganz generell für Stärkeabbauprodukte verwendet. Mit ganz besonderem Vorteil wird jedoch die radikalische Emulsionspolymerisation in Gegenwart von verzuckerten Stärken empfohlen. Hierbei handelt es sich um ein durch Hydrolyse in wäßriger Phase erhältliches Stärkeabbauprodukt, das vorzugsweise ein gewichtsmittleres Molekulargewicht Mw von 2500 bis 25 000 aufweist. Detailliertere Angaben zur Herstellung der genannten Stärken und Stärkederivate findet man in G. Tegge, Stärke und Stärkederivate, Behr's Verlag, Hamburg 1984. Selbstverstädlich können die genannten Stärken und Stärkederivate in z.B. durch Veretherung oder Veresterung chemisch modifizierter Form erfindungsgemäß angewendet werden.
  • Diese chemische Modifizierung kann bereits an der Ausgangsstärke vor deren Abbau oder danach durchgeführt werden. Veresterungen sind sowohl mit anorganischen als auch mit organischen Säuren, deren Ahydriden oder Chloriden möglich. Von besonderem Interesse sind phosphatierte und acetylierte Derivate. Die gängigste Methode zur Veretherung ist die Behandlung mit organischen Halogenverbindungen, Epoxiden oder Sulfaten in wäßriger alkalischer Lösung. Besonders geeignete Ether sind Alkylether, Hydroxyalkylether, Carboxyalkylether und Allylether. Ferner kommen cyanalkylierte Derivate sowie Umsetzungsprodukte mit 2,3-Epoxipropyltrimethylammoniumchlorid in Betracht. Chemisch nicht modifizierte Produkte sind bevorzugt. Selbstverständlich eignen sich auch Mono- und Oligosaccharide sowie Abbauprodukte der Cellulose, beispielsweise Cellobiose und ihre Oligomeren.
  • Die erfindungsgemäß ganz besonders bevorzugt anzuwendenden verzuckerten Stärken eines gewichtsmittleren Molekulargewichtes von 2500 bis 25 000 sind als solche im Handel erhältlich (z.B. die C* PUR Produkte 01906, 01908, 01910, 01912, 01915, 01921, 01924, 01932 oder 01934 der Cerestar Deutschland GmbH, D-1150 Krefeld 12). Derartige verzuckerte Stärken sind von Röstdextrinen u.a. dadurch chemisch verschieden, daß bei einem hydrolytischen Abbau in wäßrigem Medium (üblicherweise Suspensionen oder Lösungen), der in der Regel bei Feststoffgehalten von 10 bis 30 Gew.-% sowie vorzugsweise Säure- oder enzymkatalysiert vorgenommen wird, die Möglichkeit der Rekombination und Verzweigung im wesentlichen nicht gegeben ist, was sich nicht zuletzt auch in anderen Molekulargewichtsverteilungen äußert. So haben sich verzuckerte Stärken, die eine bimodale Molekulargewichtsverteilung aufweisen, erfindungsgemäß als besonders vorteilhaft erwiesen. Die Herstellung verzuckerter Stärken ist allgemein bekannt und u.a. in G. Tegge, Stärke und Stärkederivate, Behr's Verlag, Hamburg 1984, S. 173 u. S. 220 ff sowie in der EP-A 441 197 beschrieben. Vorzugsweise handelt es sich bei den erfindungsgemäß zu verwendenden verzuckerten Stärken um solche, deren gewichtsmittleres Molekulargewicht Mw im Bereich von 4000 bis 16 000, besonders bevorzugt im Bereich von 6500 bis 13 000 liegt.
  • Die erfindungsgemäß zu verwendenden verzuckerten Stärken sind normalerweise bei Raumtemperatur in Wasser vollständig löslich, wobei die Löslichkeitsgrenze in der Regel oberhalb von 50 Gew.-% liegt, was sich für die Herstellung der erfindungsgemäßen wäßrigen Polymerisatdispersionen als besonders vorteilhaft erweist.
  • Es hat sich ferner als günstig erwiesen, wenn die erfindungsgemäß zu verwendenden verzuckerten Stärken eine Unheitlichkeit U (definiert als Verhältnis von gewichtsmittlerem Molekulargewicht Mw zu zahlenmittlerem Molekulargewicht Mn; U charakterisiert die Molekulargewichtsverteilung) im Bereich von 6 bis 12 aufweisen. Besonders vorteilhaft beträgt U 7 bis 11 und ganz besonders günstig ist ein U von 8 bis 10.
  • Ferner ist es von Vorteil, wenn der Gewichtsanteil der erfindungsgemäß zu verwendenden verzuckerten Stärken, der ein Molekulargewicht unterhalb von 1000 aufweist, wenigstens 10 Gew.-%, jedoch nicht mehr als 70 Gew.-% beträgt. Besonders bevorzugt liegt dieser Gewichtsanteil im Bereich von 20 bis 40 Gew.-%.
  • Darüber hinaus ist es empfehlenswert, solche erfindungsgemäß zu verwendenden verzuckerten Stärken anzuwenden, deren Dextroseequivalent DE 5 bis 40, vorzugsweise 10 bis 30 und besonders bevorzugt 10 bis 20 beträgt. Der DE-Wert charakterisiert das Reduktionsvermögen bezogen auf das Reduktionsvermögen von wasserfreier Dextrose und wird nach DIN 10308 Ausgabe 5.71, des Normenausschusses Lebensmittel und landwirtschaftliche Produkte, bestimmt (vgl. auch Günther Tegge, Stärke und Stärkederivate, Behr's Verlag, Hamburg 1984, S. 305).
  • Außerdem hat es sich gezeigt, daß in ihrem Eigenschaftsprofil besonders günstige wäßrige Polymerisatdispersionen dann erhalten werden, wenn man erfindungsgemäß zu verwendende verzuckerte Stärken einsetzt, deren 40 gew.-%igen wäßrigen Lösungen bei 25°C und einem Schergefälle von 75 s⁻¹ eine nach DIN 53 019 bestimmte dynamische Viskosität η⁴⁰ [Pa·s] von 0,01 bis 0,06, vorzugsweise von 0,015 bis 0,04 und besonders bevorzugt von 0,02 bis 0,035 aufweisen.
  • An dieser Stelle sei festgehalten, daß in dieser Schrift, sofern nichts anderes erwähnt ist, Aussagen über das Molekulargewicht von erfindungsgemäß zu verwendenden Sacchariden und deren Derivaten auf Bestimmungen mittels der Gelpermeationschromatographie beruhen, wobei unter folgenden Bedingungen chromatographiert wurde:
  • Säulen:
    3 Stück 7.5 x 600 mm Stahl gefüllt mit TSK-Gel G 2000 PW; G 3000 PW u. G 4000 PW. Porenw. 5 µm
    Eluent:
    Wasser dest.
    Temp.:
    RT (Raumtemperatur)
    Detektion:
    Differentialrefraktometer (z.B. ERC 7511)
    Fluss:
    0.8 ml/min. Pumpe: (z.B. ERC 64.00)
    Injectv.:
    20 µl Ventil: (z.B. VICI 6-Wege-Ventil)
    Auswertung:
    Bruker Chromstar GPC-Software
    Eichung:
    Die Eichung erfolgte im niedermolekularen Bereich mit Glucose, Raffinose, Maltose und Maltopentose. Für den höhermolekularen Bereich wurden Pullulan-Standards mit einer Polydispersität < 1.2 verwendet.
  • Die erfindungsgemäß während der radikalischen wäßrigen Emulsionspolymerisation anwesenden Mono-, Oligo-, Polysaccaride und/oder deren Derivate können solwohl als einzige Dispergiermittel als auch im Gemisch mit anderen grenzflächenaktiven Substanzen anwesend sein. Werden sie als einzige Dispergiermittel eingestzt, sind sie in den erfindungsgemäßen wäßrigen Polymerisatdispersionen normalerweise in Mengen von, bezogen auf die Menge an zu polymerisierenden Monomeren, 1 bis 120 Gew.-% enthalten.
  • Als begleitende grenzflächenaktive Substanzen kommen prinzipiell die ansonsten als Dispergiermittel üblicherweise eingesetzten Schutzkolloide und Emulgatoren in Betracht. Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, S. 411 bis 420. Als begleitende Emulgatoren kommen sowohl anionische, kationische als auch nichtionische Emulgatoren in Betracht. Vorzugsweise werden als begleitende grenzflächenaktive Substanzen ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 2000 liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Vorzugsweise werden anionische und nichtionische Emulgatoren als begleitende grenzflächenaktive Substanzen verwendet. Gebräuchliche begleitende Emulgatoren sind z.B. ethoxylierte Fettalkohole (EO-Grad: 3 bis 50, Alkylrest: C₈ bis C₃₆), ethoxylierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C₄ bis C₉), Alkalimetallsalze von Dialkylestern der Sulfobernsteinsäure sowie Alkali- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C₈ bis C₁₂), von ethoxylierten Alkanolen (EO-Grad: 4 bis 30, Alkylrest: C₁₂ bis C₁₈), von ethoxylierten Alkylphenolen (EO-Grad: 3 bis 50, Alkylrest: C₄ bis C₉), von Alkylsulfonsäuren (Alkylrest: C₁₂ bis C₁₈) und von Alkylarylsulfonsäuren (Alkylrest: C₉ bis C₁₈). Weitere geeignete Emulgatoren finden sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961, Seiten 192 bis 208. Begleitende grenzflächenaktive Substanzen werden in der Regel in Mengen von bis zu 5 Gew.-%, bezogen auf die Menge der zu polymerisierenden Monomeren, mitverwendet.
  • Die Emulsionspolymerisationstemperatur beträgt in der Regel 30 bis 95, vorzugsweise 75 bis 90°C. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozeß als auch in Form eines Zulaufverfahrens, einschließlich Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zulaufverfahren, bei dem man einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich getrennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zuführt. In anwendungstechnisch vorteilhafter Weise enthält die Vorlage und/oder der Monomerenzulauf geringe Mengen an Emulgatoren, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren in der Regel weniger als 0,5 Gew.-%, um die Oberflächenspannung des Dispergiermediums zu reduzieren und so das Einrühren zu erleichtern. Häufig werden die Monomeren daher in mit diesen Hilfsemulgatoren voremulgierter Weise der Polymerisationszone zugeführt. Mit Vorteil ist die Gesamtmenge des zu vewendenden Mono-, Oligo-, Polysaccharids und/oder deren Derivate in einer wäßrigen Vorlage enthalten.
  • Als radikalische Polymerisationsinitiatoren kommen alle diejenigen in Betracht, die in der Lage sind, eine radikalische wäßrige Emulsionspolymerisation auszulösen. Es kann sich dabei sowohl um Peroxide, z.B. Alkalimetallperoxidisulfate oder H₂O₂, als auch um Azoverbindungen handeln.
  • Geeignet sind auch kombinierte Systeme, die aus wenigstens einem organischen Reduktionsmittel und wenistens einem Peroxid und/oder Hydroperoxid zusammengesetzt sind, z.B. tert.-Butylhydroperoxid und das Natriummetallsalz der Hydroxymethansulfinsäure oder Wasserstoffperoxid und Ascorbinsäure. Ferner eignen sich kombinierte Systme, die darüber hinaus eine geringe Menge einer im Polymerisationsmedium löslichen Metallverbindung, deren metallische Komponente in mehreren Wertigkeitsstufen auftreten kann, enthalten, z.B. Ascorbinsäure/Eisen(II)sulfat/Wasserstoffperoxid, wobei anstelle von Ascorbinsäure auch häufig das Natriummetallsalz der Hydroxymethansulfinsäure, Natriumsulfit, Natriumhydrogensulfit oder Natriummetallbisulfit und anstelle von Wasserstoffperoxid tert.-Butylhydroperoxid oder Alkalimetallperoxidisulfate und/oder Ammoniumperoxidisulfate angewendet werden. Bei den kombinierten Systemen ist es ferner zweckmäßig, die verzuckerten Stärken als reduzierende Komponente zu verwenden. In der Regel beträgt die Menge der eingesetzten radikalischen Initiatorsysteme, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren 0,1 bis 2 Gew.-%. Besonders bevorzugt werden Ammonium- und/oder Alkalimetallperoxidisulfate für sich oder als Bestandteil kombinierter Systeme als Initiatioren eingesetzt. Besonders bevorzugt wird Natriumperoxidisulfat verwendet.
  • Die Art und Weise, in der das radikalische Initiatorsystem im Verlauf der erfindungsgemäßen radikalischen wäßrigen Emulsionspolymerisation dem Polymerisationsgefäß zugegeben wird, ist eher von untergeordneter Bedeutung. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchs im Verlauf der radikalischen wäßrigen Emulsionspolymerisation kontinuierlich oder stufenweise eingesetzt werden. Im einzelnen hängt dies in an sich dem Durchschnittsfachmann bekannter Weise sowohl von der chemischen Natur des Initiatorsystems als auch von der Polymerisationstemperatur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zugeführt.
  • Selbstverständlich kann die erfindungsgemäße radikalische wäßrige Emulsionspolymerisation auch unter erhöhtem oder reduziertem Druck erfolgen.
  • Die erfindungsgemäßen wäßrigen Polymerisatdispersionen werden in der Regel mit Gesamtfeststoffgehalten von 15 bis 65 Gew.-% hergestellt, wobei diejenigen anwendungstechnisch besonders bevorzugt sind, die 10 bis 75, ganz besonders bevorzugt 20 bis 60 Gew.-%, bezogen auf die zu polymerisierenden Monomeren, erfindungsgemäß zu verwendende Mono-, Oligo-, Polysaccharide und/oder deren Derivate enthalten.
  • Als Bindemittel für Schleifpartikel zur Herstellung von Schleifmitteln eignen sich in ganz besonders vorteilhafter Weise erfindungsgemäße wäßrige Polymerisatdispersionen, deren Polymerisate durch radikalische Polymerisation von Monomerengemischen erhältlich sind, die nachfolgende Monomerenzusammensetzung bestehend aus
    39 bis 69 Gew.-%   wenigstens eines Esters aus 3 bis 6 C-Atome aufweisenden α,β-monoethylenisch ungesättigten Mono- und Dicarbonsäuren und 1 bis 6 C-Atome aufweisenden Alkanolen (Monomere a),
    30 bis 60 Gew.-%   Styrol (Monomeres b),
    1 bis 10 Gew.-%   wenigstens eines Monomeren aus der Gruppe umfassend 3 bis 6 C-Atome aufweisende α,β-monoethylenisch ungesättigte Carbonsäuren, deren Amide und Nitrile (Monomere c) und
    0 bis 10 Gew.-%   eines oder mehrerer Monomeren aus der Gruppe umfassend N-Alkylolamide von 3 bis 6 C Atome umfassenden α,β-monoethylenisch ungesättigte Carbonsäuren mit 1 bis 4 C-Atomen in der Alkylgruppe und bis zu 25 C-Atome enthaltende zwei nicht konjugierte ethylenisch umgesättigte Doppelbindungen aufweisende Monomere (Monomere d),
    aufweisen und die, bezogen auf die zu polymerisierenden Monomeren 1 bis 120, vorzugsweise 10 bis 65 und besonders bevorzugt 35 bis 55 Gew.-% Mono-, Oligo-, Polysaccharide und/oder deren Derivate enthalten. Selbstverständlich können die Monomeren d durch andere in dieser Schrift genannte vernetzend wirkende Monomere ganz oder teilweise ersetzt werden.
  • Die Überführung der Schleifpartikel in Schleifmittel kann z.B. so erfolgen, daß man die feinteiligen Schleifpartikel mit den erfindungsgemäß zu verwendenden wäßrigen Polymerisatdispersionen unter Einstellung des gewünschten Bindemittelgehalts, in der Regel (trocken gerechnet) 0,1 bis 10 Gew.-%, bezogen auf die Menge feinteiliges Ausgangsmaterial, mischt, die Mischung gegebenenfalls nach Zusatz an sich bekannter Hilfsmittel formt, durch Ausübung von Druck gegebenenfalls verdichtet, und anschließend härtet.
  • Vorzugsweise wird zur Herstellung erfindungsgemäßer Schleifmittel auf einen Träger zunächst eine sogenannte Grundbinderschicht aufgetragen, in die im nassen Zustand die Schleifpartikel eingetragen werden. Nach einer ersten Fixierung des Schleifkorns durch Trocknen (Härten) wird zwecks besserer Einbettung und Befestigung des Korns in der Regel eine zweite, sogenannte Deckbinderschicht aufgetragen. Prinzipiell können Grund- und Deckbinderschicht aus verschiedenen Bindemitteln bestehen. Erfindungsgemäß besteht wenigstens eine von beiden, bevorzugt die Deckschicht und besonders bevorzugt beide, aus den erfindungsgemäßen wäßrigen Polymerisatdispersionen.
  • Bemerkenswert ist, daß bei Verwendung der erfindungsgemäßen wäßrigen Polymerisatdispersionen, die üblicherweise für diesen Zweck mit einem Gesamtfeststoffgehalt von 40 bis 60 Gew.-% angewendet werden, der Härtungsprozeß nicht notwendigerweise die Anwendung erhöhter Temperaturen (normalerweise 50 bis 250°C) erfordert, sondern auch durch sich selbst überlassen bei Raumtemperatur mit befriedigender Geschwindigkelt ein Durchhärten erfolgt. In anwendungstechnisch besonders geschickter Weise kann das Durchhärten auch dadurch erzielt werden, daß man die auszuhärtende Masse der Einwirkung von Mikrowellen aussetzt. Mit besonderem Vorteil werden diesbezüglich erfindungsgemäße wäßrige Polymerisatdispersionen empfohlen, die durch radikalische wäßrige Emulsionspolymerisation von Gemischen aus Monomeren a, b, c und d erhältlich sind, deren Monomerenzusammensetzung so gewählt ist, daß ein nur aus den Monomeren a, b und c aufgebautes Polymerisat eine Glasübergangstemperatur im Bereich von 0 bis 40°C aufweisen würde.
  • Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1, 123 [1956]) gilt für die Glasübergangstemperatur von Mischpolymerisaten in guter Näherung:
    Figure imgb0001

    wobei X¹, X², ..., Xs die Massenbrüche der Monomeren 1, 2, ..., s und Tg¹, Tg², ..., Tgs die Glasübergangstemperaturen der jeweils nur aus einem der Monomeren 1, 2, ..., s aufgebauten Polymeren in Grad Kelvin bedeuten. Die Glasübergangstemperaturen der Monomeren a, b und c sind im wesentlichen bekannt und z.B. in J. Brandrup, E.H. Immergut, Polymer Handbook 1st Ed. J. Wiley, New York 1966 und 2nd Ed. J. Wiley, New York 1975, aufgeführt.
  • Typische Anforderungen, die an zur Herstellung von Schleifmitteln geeignete Bindemittel gestellt weren, sind beispielsweise
    • gute Haftung, sowohl auf der Unterlage als auch am Schleifpartikel
    • rasch und schonend härtbar
    • möglichst geringe Beanspruchung des Trägermaterials
    • hohe Wärmestandfestigkeit
    • erhöhte Fließfähigkeit beim Auftrag
    • gute mechanische Eigenschaften beim Schleifvorgang (harte, zähe Verfilmungen).
  • Diesen Anforderungen werden die erfindungsgemäßen wäßrigen Polymerisatdispersionen in voll befriedigender Weise gerecht. So erfordert das Härten bei ihrer Verwendung nicht notwendigerweise erhöhte Temperaturen, sondern kann bei Raumtemperatur und besonders vorteilhaft unter Mikrowelleneinwirkung erfolgen. Dies ist insbesondere schonend für das Trägermaterial und vermeidet einen extremen Wasserentzug, wodurch komplizierte Regenerierungen des Trägermaterials in Klimazonen entbehrlich sind.
  • Ihr günstiges Fließverhalten erweist sich insbesondere dann als vorteilhaft, wenn die erfindungsgemäßen wäßrigen Polymerisatdispersionen als Deckschicht verwendet werden, da es das Eindringen des Bindemittels in die Schleifkorn-Zwischenräume ermöglicht.
  • Darüberhinaus kennzeichnet die erfindungsgemäßen Binder vor allem eine erhöhte Wärmestandfestigkeit, so daß die Schleifkörner auch unter den beim Schleifvorgang auftretenden erhöhten Temperaturen (150°C und mehr) in ihrer Position fixiert bleiben. Ein Ausweichen der Schleifkörner (das die Schleifwirkung reduziert) oder gar ein Ausbrechen wird so unterdrückt. Üblicherweise werden die Grundschicht in Trockenschichtdicken von 10 bis 100 µm und die Deckschicht in Trockenschichtdicken von 20 bis 10³ µm aufgetragen.
  • Enthalten die Polymerisate Monomere d mit eingebaut, resultieren besonders hohe Wärmestandfestigkeiten. Darüber hinaus lassen sich die Wärmestandfestigkeiten weiter erhöhen, indem man vor Anwendung den erfindungsgemäß anzuwendenden wäßrigen Polymerisatdispersionen in Mengen von bis zu 20 Gew.-%, bezogen auf polymerisierte Monomere, gesättigte Dialdehyde, vorzugsweise solche der allgemeinen Formel I
    Figure imgb0002

    zusetzt, wobei solche Dialdehyde der allgemeinen Formel I mit n = 0 bis 2 bevorzugt sind. Ferner kommen als die Wärmestandfestigkeit erhöhende Zusätze Kondensationsprodukte auf der Basis Formaldehyd, Melamin, Phenol und/oder Harnstoff, z.B. Urecoll® 118, in Betracht. Die zu verwendenden Mengen können sich dabei, bezogen auf den abzüglich der verzuckerten Stärke bestimmten Feststoffgehalt der erfindungsgemäßen wäßrigen Polymerisatdispersionen, auf bis zu 250 Gew.-% belaufen.
  • Die letztgenannten Zusätze wirken jedoch nur dann in der beschriebenen Weise vorteilhaft, wenn die Härtung bei erhöhter Temperatur, in der Regel 100 bis 250°C, oder in Anwesentheit von Säure erfolgt. Letzteres ist in einfacher Weise dadurch realisierbar, daß man den pH-Wert des Dispersionsmediums der erfindungsgemäß zu verwendenden wäßrigen Polymerisatdispersionen auf 1 bis 5, vorzugsweise auf 2 bis 3 einstellt. Werden Wärmestandfestigkeiten im üblichen Rahmen verlangt, arbeitet man vorzugsweise ohne Zusätze.
  • Beispiele
    • 1. Herstellung von erfindungsgemäß zu verwendenden wäßrigen Polymerisatdispersionen
      Ein Gemisch bestehend aus
      400 g Wasser
      200g verzuckerter Stärke C* PUR 01910
      71 g Zulauf 1 und
      10 g Zulauf 2
      wurde auf 85°C erhitzt und 15 min bei dieser Temperatur gehalten. Anschließend wurden unter Aufrechterhaltung der 85°C zeitgleich beginnend die Restmengen der Zuläufe 1 und 2 kontinuierlich (Zualuf 1 innerhalb 2,5 h, Zulauf 2 innerhalb von 3 h) der Polymerisationszone zugeführt. Dann wurde eine Stunde (85°C) nachpolymerisiert und auf Raumtemperatur abgekühlt. Der Gesamtfeststoffgehalt der resultierenden wäßrigen Polymerisatdispersion betrug ca. 50 Gew.-%.
      Zulauf 1:
      250 g n-Butylacrylat
      225 g Styrol
      25 g Acrylsäure
      voremulgiert in 204 g Wasser mittels 0,5 g der Na-Salzes der Dodecylbenzolsulfonsäure.
      Zulauf 2:
      2,5 g Natriumperoxidisulfat in 100 g Wasser gelöst.
    • 2. Schleifartikel auf der Basis von auf einem Träger mit einer erfindungsgemäßen wäßrigen Polymerisatdispersion gebundenen feinteiligen Schleifpartikeln
      100 g verschiedener erfindungsgemäßer wäßriger Polymerisatdispersionen, die wie Beispiel 1 hergestellt wurden und denen teilweise pro Gewichtsteil enthaltener verzuckerter Stärke 0,062 Gewichtsteile Glyoxal zugesetzt wurden, wurden mit 1 g Lumiten® (Benetzungsmittel) vermischt und mit einer Auftragsmasse von 20 g/m² (trocken) auf ein Trägerpapier aufgetragen. In die nasse Auftragsschicht wurde Halbedelkorund 60 eingestreut und das so beschichtete Papier 3 min bei 90°C getrocknet. Anschließend wurde dasselbe Bindemittel mit einer Auftragsmasse von 60 g/m² (trocken) als Deckbinder aufgebracht und ebenfalls getrocknet (30 min). Das so erhältliche Schleifpapier wurde mittels eines Abriebgerätes APG 100/20 (Fa. Maag & Schank, Gomaringen) geprüft. Als Prüfkörper wurden Körper der Abmessungen 40 mm x 20 mm x 5 mm aus Hart-PVC verwendet. Dabei wurde mit 500 Hüben (Belastung 1 kg) die Fläche von 20 mm x 5 mm abgeschliffen, wobei das Schleifpapier unter dem Prüfkörper auf einer Länge von 10,5 cm hin- und herbewegt wurde. Als Maß für die Qualität des Bindemittels dient der Abrieb, der wie folgt definiert ist:
      Figure imgb0003
  • Die Ergebnisse zeigt die Tabelle. Tabelle
    Bindemittel Glyoxal Trockentemperatur (°C) Deckschicht Abrieb [%]
    Bsp. 1 - 90 8,7
    Bsp. 1 + 90 10,7
    X + 150 7
    Y + 150 7,5

    X und Y hergestellt wie Bsp. 1, aber mit unterschiedlicher Monomerenzusammensetzung;
  • X:
    50 Gew.-% n-Butylacrylat,
    45 Gew.-% Styrol,
    5 Gew.-% Methacrylsäure;
    Y:
    50 Gew.-% n-Butylacrylat,
    40 Gew.-% Styrol,
    10 Gew.-% Acrylsäure;
    Bei Austausch von C*PUR 01910 gegen C*PUR 01906, 01908, 01912, 01915, 01921, 01924, 01932 oder 01934 wurden Ergebnisse derselben Größenordnung erhalten. C*PUR 01910 und 01915 erwiesen sich als besonders voreilhaft. Die genannten verzuckerten Stärken lassen sich wie folgt charakterisieren:
    Typ Mw U Gew.-% < 1000 DE η⁴⁰ [Pa·s]
    01906 20080 10,9 12,2 2-5 -
    01908 19290 10,0 15,9 8-10 0,056
    01910 10540-12640 8,5-9,9 24,7-26,4 11-14 0,030
    01915 6680-8350 6,8-8,4 32,9-34,7 17-19 0,021
    01921 6700 7,4 39,1 20-23 0,017
    01924 4730 6,8 53,6 26-30 0,014
    01932 4500 7,9 63,2 33-35 0,011
    01934 3000 6,0 68,4 36-39 0,009

    Bestimmungen von Mn mittels Dampfdruckosmose ergaben für die bevorzugten Typen 01910 und 01915 folgende Werte:
    1560 g/mol (1910)
    980 g/mol (1915)

Claims (2)

  1. Schleifmittel auf der Basis von untereinander und/oder auf einem Träger mittels eines Bindemittels gebundenen feinteiligen Schleifpartikeln, wobei das Bindemittel der Feststoffanteil einer wäßrigen Polymerisatidispersion ist, die dadurch erhältlich ist, daß man radikalisch polymerisierbare ungesättigte Monomere in wäßriger Phase in Anwesenheit eines Monosaccharids, Oligosaccharids, Polysaccharids, oxidativ, hydrolytisch und/oder enzymatisch abgebauten Polysacchariden, chemisch modifizierten Mono-, Oligo- oder Polysacchariden oder Mischungen der genannten Verbindungen nach dem Verfahren der radikalischen wäßrigen Emulsionspolymerisation polymerisiert.
  2. Schleifmittel nach Anspruch 1, deren Bindemittel durch radikalische Polymerisation von Monomerengemischen erhältlich sind, die nachfolgende Monomerenzusammensetzung bestehend aus
    39 bis 69 Gew.-%   wenigstens eines Esters aus 3 bis 6 C-Atome aufweisenden α,β-monoethylenisch ungesättigten Mono- und Dicarbonsäuren und 1 bis 6 C-Atome aufweisenden Alkanolen,
    30 bis 60 Gew.-%   Styrol,
    1 bis 10 Gew.-%   wenigstens eines Monomeren aus der Gruppe umfassend 3 bis 6 C-Atome aufweisende α,β-monoethylenisch ungesättigte Carbonsäuren, deren Amide und Nitrile und
    0 bis 10 Gew.-%   vernetzend wirkenden Monomeren.
EP92116325A 1991-10-07 1992-09-24 Schleifmittel Expired - Lifetime EP0536596B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4133191A DE4133191A1 (de) 1991-10-07 1991-10-07 Schleifmittel
DE4133191 1991-10-07

Publications (2)

Publication Number Publication Date
EP0536596A1 true EP0536596A1 (de) 1993-04-14
EP0536596B1 EP0536596B1 (de) 1995-09-06

Family

ID=6442195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92116325A Expired - Lifetime EP0536596B1 (de) 1991-10-07 1992-09-24 Schleifmittel

Country Status (7)

Country Link
US (1) US5221296A (de)
EP (1) EP0536596B1 (de)
JP (1) JPH05209167A (de)
CA (1) CA2079861A1 (de)
DE (2) DE4133191A1 (de)
DK (1) DK0536596T3 (de)
ES (1) ES2075991T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731551A1 (de) * 2004-02-24 2006-12-13 Institute of Chemistry, Chinese Academy of Science Verfahren zur veränderung der oberflächenbenetzbarkeit von polymermaterialien
US7544733B2 (en) 1996-09-06 2009-06-09 Orica Australia Pty Ltd. Stain resistant water-borne coating composition
EP2540445A1 (de) * 2011-06-29 2013-01-02 Hermes Schleifkörper GmbH Verfahren zur Herstellung eines Werkzeugs aus gebundenem Schleifmittel
WO2016005468A1 (de) * 2014-07-10 2016-01-14 Basf Se Verfahren zur herstellung gefrier-auftau-stabiler, waessriger dispersionen

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133193A1 (de) * 1991-10-07 1993-04-08 Basf Ag Waessrige polymerisatdispersionen
US5378252A (en) * 1993-09-03 1995-01-03 Minnesota Mining And Manufacturing Company Abrasive articles
CA2134156A1 (en) * 1993-11-22 1995-05-23 Thomas P. Klun Coatable compositions, abrasive articles made therefrom, and methods of making and using same
DE9419573U1 (de) * 1994-12-07 1995-02-02 Jöst, Peter, 69483 Wald-Michelbach Schleifmittel auf Unterlage
US5618876A (en) * 1995-06-05 1997-04-08 National Starch And Chemical Investment Holding Corporation Latex binders and coatings containing polymers derived from polymerizable saccharide monomers
US6197951B1 (en) * 1996-06-26 2001-03-06 Archer Daniels Midland Company Starch graft copolymer blast media
US5780619A (en) * 1996-06-26 1998-07-14 U.S. Technology Corporation Starch graft poly(meth)acrylate blast media
US6251353B1 (en) * 1996-08-26 2001-06-26 Bridgestone Corporation Production method of silicon carbide particles
US6162268A (en) * 1999-05-03 2000-12-19 Praxair S. T. Technology, Inc. Polishing slurry
US6569214B2 (en) * 2000-06-01 2003-05-27 U.S. Technology Corporation Composite polymer blast media
DE102007030102B4 (de) * 2007-06-28 2019-10-31 Schoeller Technocell Gmbh & Co. Kg Vorimprägnat
FR2983759B1 (fr) * 2011-12-13 2014-08-01 Saint Gobain Abrasives Inc Composition resinique aqueuse pour articles abrasifs et articles resultants.
FR2983758B1 (fr) * 2011-12-13 2015-11-27 Saint Gobain Abrasives Inc Composition resinique aqueuse pour articles abrasifs et articles resultants.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3046696A1 (de) * 1980-12-11 1982-07-15 Rex Patent Graf von Rex GmbH & Co KG, 7170 Schwäbisch Hall Verfahren zur herstellung von reibbelaegen sowie reibbelaege, insbesondere kupplungsbelaege
EP0261098A2 (de) * 1986-08-21 1988-03-23 Wagini, Helga Schleifmittel bzw. Schleifmittelzusammensetzung und Verfahren zu deren Herstellung
EP0134449B1 (de) * 1983-07-01 1989-02-01 Wacker-Chemie GmbH Verfahren zur Herstellung wässriger Polymerdispersionen und ihre Verwendung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690692A (en) * 1977-08-25 1987-09-01 Hoechst Aktiengesellschaft Synthetic resin binders and their use for the manufacture of abrasives
US4350498A (en) * 1980-12-24 1982-09-21 Norton Company Dampening agent for resin bonded grinding wheels
US4652274A (en) * 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
US4773920B1 (en) * 1985-12-16 1995-05-02 Minnesota Mining & Mfg Coated abrasive suitable for use as a lapping material.
US5055113A (en) * 1988-11-23 1991-10-08 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3046696A1 (de) * 1980-12-11 1982-07-15 Rex Patent Graf von Rex GmbH & Co KG, 7170 Schwäbisch Hall Verfahren zur herstellung von reibbelaegen sowie reibbelaege, insbesondere kupplungsbelaege
EP0134449B1 (de) * 1983-07-01 1989-02-01 Wacker-Chemie GmbH Verfahren zur Herstellung wässriger Polymerdispersionen und ihre Verwendung
EP0261098A2 (de) * 1986-08-21 1988-03-23 Wagini, Helga Schleifmittel bzw. Schleifmittelzusammensetzung und Verfahren zu deren Herstellung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544733B2 (en) 1996-09-06 2009-06-09 Orica Australia Pty Ltd. Stain resistant water-borne coating composition
EP1731551A1 (de) * 2004-02-24 2006-12-13 Institute of Chemistry, Chinese Academy of Science Verfahren zur veränderung der oberflächenbenetzbarkeit von polymermaterialien
EP1731551A4 (de) * 2004-02-24 2008-03-05 Chinese Acad Inst Chemistry Verfahren zur veränderung der oberflächenbenetzbarkeit von polymermaterialien
EP2540445A1 (de) * 2011-06-29 2013-01-02 Hermes Schleifkörper GmbH Verfahren zur Herstellung eines Werkzeugs aus gebundenem Schleifmittel
WO2016005468A1 (de) * 2014-07-10 2016-01-14 Basf Se Verfahren zur herstellung gefrier-auftau-stabiler, waessriger dispersionen

Also Published As

Publication number Publication date
DE4133191A1 (de) 1993-04-08
US5221296A (en) 1993-06-22
DE59203558D1 (de) 1995-10-12
CA2079861A1 (en) 1993-04-08
ES2075991T3 (es) 1995-10-16
DK0536596T3 (da) 1995-10-23
EP0536596B1 (de) 1995-09-06
JPH05209167A (ja) 1993-08-20

Similar Documents

Publication Publication Date Title
EP0536597B1 (de) Wässrige Polymerisatdispersionen
EP0536596B1 (de) Schleifmittel
DE69725511T2 (de) Druckempfindliche Klebmittel
EP0838509B1 (de) Pulverförmiger Klebstoff
EP0789724B1 (de) Wässrige polymerisatdispersion
EP0568831B1 (de) Wässrige Polymerisatdispersion
WO1994008085A1 (de) Wässrige polymerisatdispersionen für pflegeleichte veredlung von textilien
EP2595841B1 (de) Antidröhnmasse mit durch schutzkolloid stabilisiertem emulsionspolymerisat
EP0780401A1 (de) Verfahren zur Herstellung von Polymerisaten durch Emulsionspolymerisation
EP0568834A1 (de) Wässrige Polymerisatdispersion
DE3711681A1 (de) Verwendung von waessrigen kationischen kunststoffdispersionen zum impraegnieren und grundieren von saugfaehigen substraten
EP0536588A1 (de) Formkörper
EP3166978B1 (de) Verfahren zur herstellung gefrier-auftau-stabiler, waessriger dispersionen
EP0722477B1 (de) Wässrige polymerisatzubereitungen
EP0387664A2 (de) Wässrige Kunststoffdispersion, Verfahren zu ihrer Herstellung und Anwendung
DE69125040T2 (de) Verfahren zur Herstellung von Spanplatten und einem Bindemittel zur Behandlung der Holzspäne vor dem Pressen
EP0100892B1 (de) Wässrige Polyvinylester-Dispersion, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2820095C2 (de) Verfahren zur Herstellung einer wärmehärtbaren wäßrigen Polymeremulsion
WO2018086861A1 (de) Antidröhnmasse mit emulsionspolymerisat mit alkyleniminseitenketten
DE2808504A1 (de) Niederalkyl-wasserstoff-polysiloxan enthaltende, waessrige emulsionscopolymere
DE2843780A1 (de) Polymerdispersionen zur behandlung von leder
EP0591821B1 (de) Zur Kompostierung geeigneter Vliesstoff, gebunden mit einem Saccharidpfropfpolymerisat
EP0814096A1 (de) Verfahren zur Herstellung niedrigviskoser, wässriger Polymerisatdispersionen mit Polymervolumenkonzentrationen von wenigstens 50 vol.-%
EP0866811A1 (de) Verfahren zur herstellung niedrigviskoser, wässriger polymerisatdispersionen mit polymergehalten von wenigstens 50 vol-%
EP0086889A2 (de) Verfahren zur Herstellung von Emulsionscopolymerisaten, die nach dem Verfahren hergestellten Emulsionscopolymerisate und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19941205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 59203558

Country of ref document: DE

Date of ref document: 19951012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075991

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951108

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970814

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970815

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970825

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970909

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970915

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980924

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980925

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19980925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19980930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980924

EUG Se: european patent has lapsed

Ref document number: 92116325.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000401

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050922

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403