EP0535421B1 - Procédé et dispositif pour la fabrication de pièces de construction - Google Patents
Procédé et dispositif pour la fabrication de pièces de construction Download PDFInfo
- Publication number
- EP0535421B1 EP0535421B1 EP92115545A EP92115545A EP0535421B1 EP 0535421 B1 EP0535421 B1 EP 0535421B1 EP 92115545 A EP92115545 A EP 92115545A EP 92115545 A EP92115545 A EP 92115545A EP 0535421 B1 EP0535421 B1 EP 0535421B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mould
- filling
- melt
- filling chamber
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000011049 filling Methods 0.000 claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000007787 solid Substances 0.000 claims abstract description 10
- 239000000155 melt Substances 0.000 claims description 48
- 238000002844 melting Methods 0.000 claims description 40
- 230000008018 melting Effects 0.000 claims description 40
- 238000007711 solidification Methods 0.000 claims description 31
- 230000008023 solidification Effects 0.000 claims description 31
- 238000003825 pressing Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000009970 fire resistant effect Effects 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 4
- 239000000126 substance Substances 0.000 claims 3
- 239000002184 metal Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 22
- 238000005266 casting Methods 0.000 description 18
- 239000007789 gas Substances 0.000 description 10
- 238000004512 die casting Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000006735 deficit Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000289 melt material Substances 0.000 description 4
- 238000005429 filling process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000035508 accumulation Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/30—Accessories for supplying molten metal, e.g. in rations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/08—Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
- B22D17/12—Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with vertical press motion
Definitions
- the invention relates to a method and a device for producing components, in which liquid or partially liquid material is introduced into a mold cavity formed at least from two mold halves.
- the causes of defects are mainly the large number of manufacturing parameters, which usually come into effect at the same time in the shortest possible time, often with mutual influence, and thus largely elude both detection and regulation.
- the manufacturing process essentially consists of only two steps.
- the first step is the preparation of the shaping tool and the melting of the material batch.
- the melt is then transported from the separate furnace via distribution systems into the mold cavity, where it should solidify to the desired component under controlled thermal conditions and under sufficiently high supply pressure.
- the decisive second step leads to largely unsteady conditions, which lead to a wide range of parameters with serious effects on the product properties.
- the component quality is determined by the additional occurrence of structural porosity, which is caused by the separation of gases dissolved in the melt, e.g. Hydrogen, or the inclusion of gases in the mold cavity during solidification is reduced.
- the batch of alloy to be processed is melted in a separate premelting furnace and then transferred to the holding furnace on the die casting machine by means of transport pans. From there, the melt quantity required for a cast reaches the mostly horizontal shot chamber with a ladle or other metering device via a freely falling pouring jet, where the melt first forms a pool with a large surface area and cools down rapidly.
- the shot piston pushes the melt together in the shot chamber in accelerated movement, preferably avoiding splashes and air pockets, until it reaches the gate leading upwards into the mold cavity. From that point onwards the melt is sprayed at high speed into the mold cavity, which it fills in a fraction of a second.
- melts In vacuum die casting, process variants are known in which the melt is sucked out of the holding furnace into the shot chamber in connection with the evacuation of the mold cavity before the shot.
- additional melt formation occurs in the intake pipe due to the melt column falling back when the mold is opened, which leads to corresponding inclusions in the cast product.
- a vacuum application with certain melts (e.g. magnesium alloys) or alloy additives due to a higher vapor pressure can cause problems.
- the melt is pressed from below into the casting mold from the holding furnace by means of gas pressure via a riser pipe and is held in the mold under a slight excess pressure of maximum 1 bar until the solidification is complete.
- This process enables a small amount of circulation in the cast production, but requires special measures against oxide formation in the riser pipe and, due to its convection-related long cycle times, proves to be disadvantageous compared to other casting processes.
- the melt is poured from above with a freely falling pouring jet into an initially open die, the lower one Part of it completely or partially filled out.
- a stamp moves into the die from above and displaces the melt to completely fill all the shape contours.
- the solidification takes place under the further pressure of the punch, so that a workpiece with a dense structure can be obtained if sufficient ventilation of the mold cavity has been achieved. This process could not prevail in production technology because it is cumbersome and time-consuming and only supplies simple, thick-walled workpieces.
- the melt is conveyed from a swiveling casting unit from below into a die.
- Disadvantages also appear here: the necessary filling of the casting chamber swung out together with the piston and drive via the free-falling pouring jet by means of scoop dosing from a separate holding oven, the additional steps of pivoting back and coupling the casting unit to the mold, and the complex and expensive overall construction.
- US-A-4 436 140 a device is known which is suitable for carrying out the classic vertical cold chamber die casting method.
- This device consists of two mold halves, with a gate system being used for the mold filling, which is fed via a filling chamber located laterally below the mold, which has a stamp for expressing the melt.
- the filling chamber is filled via a funnel-shaped sprue cup with a free falling pouring stream.
- a second piston is inserted into it, which closes the pouring opening of the pouring cup and serves to maintain a pressure after the mold has been filled.
- the object of the present invention is to create a novel method and a novel device which enable the production of heavy-duty components, in particular also with large dimensions, complex shapes and multiple functions, in a compact system with tightest coupling and control of the production steps with simultaneous cycle shortening in a particularly efficient manner.
- the conditions for the processes during melting, mold filling and solidification are to be optimized, so that components with a particularly fine-grained and dense structure with a high degree of uniformity are obtained.
- the method according to the invention is distinguished by a number of considerable advantages.
- the charging bodies can be optimally matched to the component weight, so that the material expenditure which is considerable in the conventional working method is avoided. So there is the possibility that the plunger end face can be used as a molded wall part.
- the filling chamber is formed directly adjacent to the mold cavity, there are minimal transport or conveying paths for the melt, so that the disadvantages known from the prior art are avoided.
- First of all there are no disadvantageous temperature fluctuations, uncontrollable oxide formation and loss of burn-up.
- Due to the possibility of suitable Setting mold filling temperatures in the filling chamber with the appropriate heating can also process supercooled or partially solidified material.
- Due to the large filling cross-sections and short flow paths, a strongly calmed mold filling with a compact melt volume is achieved without spraying and swirling. Since there is no atomization of the melt during mold filling due to the low filling pressure and the possible large cross-sections compared to the die-casting process, lost cores can also be used in a similar way to gravity die casting.
- the present invention is furthermore suitable for introducing prefabricated solid bodies into the mold cavity which are to be connected to the melt material or to be integrated into the component.
- the solid bodies can consist, for example, of semi-finished profiles, which are then connected during the filling process by the melt, which then solidifies to form nodes.
- the possible melting of the profile ends to be connected ensures an optimal bond.
- prefabricated reinforcements made of high-strength materials can be fixed in a suitable manner in the mold cavity and integrated into a heavy-duty component by the melt after solidification. In a similar way, it is possible to include packing elements remaining in the component for the production of box-shaped structures with high structural strength.
- metallic coatings or layers, fire-resistant reinforcements of combustion chamber walls are further examples of the various problem-solving options provided by composite materials using the new process and in particular the simultaneous filling of a mold cavity with melts from different materials.
- the latter also offers particular advantages in the manufacture of components with particular local stress.
- the distribution of several filling chambers over larger areas allows the production of particularly large shapes for correspondingly larger components or for the production of several parts at the same time.
- the subdivision of the filling chamber into the melting and pressing chamber enables the use of different materials for these different functional areas, for example ceramics or cermets for the melting chamber and hot-work steel for the pressing chamber.
- ceramics or cermets for the melting chamber and hot-work steel for the pressing chamber.
- highly refractory, electrically non-conductive materials for the melting chamber wall when using induction heating advantages.
- the proposed complete closing of the mold immediately before the build-up of a higher pressure, as proposed at the end of the mold filling, also enables a free extraction for the gases which are present in the mold cavity or in contact of the melt with the mold wall size during the mold filling. These can escape before the melt flowing in compactly, so that the extremely disadvantageous gas inclusions occurring in known, similar processes in the component structure are prevented.
- the required enlargement of the mold space can be achieved, for example, by an elastic bulge that can be regulated via the mold wall thickness, caused by pressure increase in the filler material, and limited by pressure elements, which then also provide the provision.
- the pressure elements can also take on a cooling function and implement a solidification control by suitable timing of the activation.
- the melt located in the narrowing feed channels is moved. This can also be achieved with the help of the pressure elements in cooperation with the plunger by using pulsating pressure at a suitable frequency.
- the charging bodies with the aid of a feed device and the plunger - in the case of multiple melting chambers also directly - transported into the melting chambers, which had previously been flushed with protective gas together with the press chambers and the mold cavity.
- the plungers push the melt through the press chambers to fill the mold into the mold cavity. This is initially opened to the outside in the sense of an optimized mold filling without spraying and gas interlacing with sufficiently large ventilation channels or, depending on the particular component geometry, is not yet completely closed at the beginning and during the mold filling.
- the gases located in the mold cavity or additionally generated by the melt coming into contact with the mold release agent can completely escape upwards before the melt, which essentially flows in compactly from below, or can be suctioned off by applying negative pressure.
- the mold can only be fully closed during mold filling, for example by lowering a bale part or completely retracting core slides, these measures also improve mold ventilation and further increase the filling speed due to the additional displacement effect with short flow paths . Both increase the mold filling capacity of the melt in a special way, so that the feared cold running risk is eliminated.
- the mold is then completely closed, which in the case of use of ventilation channels by covering them takes place, for example, with the aid of slides, which can also stop any melt emerging.
- the plunger and other pressure elements installed in a suitable place in the mold walls, such as, for example, movable mold inserts, ejector pins or mold components a local elastic mold wall deformation to exert pressure, the cooling and solidifying component to compensate for the volume deficit caused by the solidification shrinkage under a corresponding pressing pressure.
- the melt volume required for the compensation is kept ready at the respective points of contact of the melt with the pressure elements by the enlargement of the mold space set there at the end of the mold filling.
- the pressure can be from all pressure elements simultaneously, for. B. jerky, exercised and maintained until the component completely solidifies.
- a pressing pressure pulsating with a suitable frequency can also prove to be particularly advantageous for the sealing supply of the structure in complex-shaped components with larger wall thickness differences and material accumulations.
- two pressure transmitters can correspond to one another over a suitable distance in such a way that the melt is reversibly displaced during the solidification within a feed channel connecting them, which significantly improves the feed conditions.
- pressure transmitters can be used in conjunction with mold cooling, for example the swell sequence cooling according to DE-PS 26 46 060, which has been used successfully in the mold casting process, a significant reduction in cycle times being achievable.
- the mold cavity is formed by an upper mold part 3 and a lower mold part 4.
- the upper mold part 3 is fastened to a clamping plate 15 and is arranged such that it can be displaced in height by means of a locking device 10 in the form of a toggle lever.
- the toggle lever is actuated via a hydraulic drive 16 which is attached to the machine frame 9b.
- the lower mold part 4 is carried by the machine frame 9a and has 3 openings 5 on its underside, via which the liquefied material is pressed into the mold cavity 1.
- Filling chambers 2 are connected to the openings 5 and penetrate the machine frame 9 and form two regions, namely an upper pressing chamber 23 and a lower melting chamber 24.
- a feed table 12 for feeding blanks 11 into the filling chambers 2.
- the blanks 11 are introduced into the melting chamber 24 with the aid of plungers 7, each plunger 2 being assigned a plunger 7.
- the plungers 7 are arranged on a plunger plate 18 which is displaced via a hydraulic drive 17 which is fastened to the machine frame 9c.
- the blanks 11 are, as shown in Fig. 1, pushed over the downward moving plunger and inserted into the melting chamber 24 via this. After the blanks have melted, the melt is moved upwards into the press chamber 23 by means of the plunger 7, whereupon the latter can exit into the mold cavity 1. Because of the large cross sections of the openings 5, this insertion can take place without great turbulence and with a relatively low pressure.
- the upper part of the mold is lifted slightly from the lower part of the mold, so that the air in the mold cavity can escape through the gap between the upper part 3 and the lower part 4.
- the upper part 3 is sealingly lowered onto the lower part 4, whereupon the melt solidifies with the application of the high pressure, for example by the plunger 7.
- the melting chamber 24 is advantageously heated via an induction heater 8, with the hollow cylinder consisting of high-strength steel having to pass through both areas in the case of a one-piece design of the filling chamber 2 as a pressing chamber and melting chamber.
- the blank 11 or the charging bolt is melted in a low-pressure melting furnace 13, with the blanks 11 being a Feed pipe 21 are introduced into the furnace 13.
- the feed pipe 21 is sealed by means of a seal 26 which is arranged between the blank 11 and the inner wall of the feed pipe 21.
- a riser pipe 14 which is provided with a level sensor 22, the melt is pressed into the filling chamber 6 via an opening 20.
- the plunger 7 is moved upward, the opening 20 being closed, so that no further material can flow into the filling chamber 6.
- the melt material 19 is then pressed through the openings 5 according to FIG. 1 into the mold cavity.
- the melting and dosing device according to FIG. 2 is also particularly suitable for the production of particularly large components with increased material requirements.
- the melt can be pressed from the melting furnace 13 through the metering gap 20 and the filling chamber 6 into the mold cavity, in which case the plunger 7 merely ends the mold filling and takes over the make-up - if necessary in conjunction with further pressure elements in the mold wall.
- these can be supplied with melt via branches or multiple arrangement of the filling tube 14.
- This embodiment differs from that of FIG. 1 essentially in that the filling chamber 2 is formed in two parts and is divided into a separate press chamber 23 and melting chamber 24.
- the melting chamber 24 can be displaced relative to the pressing chamber 23, so that the melting process of the blank 11 can take place elsewhere, wherein the individual melting chambers can, for example, also be arranged in a carousel.
- the inner sleeve of the melting chamber 24 can also be produced from an insulating material which then does not necessarily have to withstand high compressive forces. This sleeve made of insulating material 27 is then surrounded by the induction heater 8.
- the plunger 7 Since the plunger 7 is inserted into the movable melting chamber from below, either a displaceable base 28 must be inserted into the melting chamber, which prevents the melting material from escaping, or the heating device is arranged so that the lower area of the blank does not melt, so that the blank itself forms the bottom closure.
- An insulating ring 29 is arranged to hinder the flow of heat from the melting chamber 24 into the plate 9a.
- the upper mold part 3 is supported by a spring 33 with respect to the platen 15.
- This spring has the effect that, on the one hand, the upper mold part rests with sufficient pressure on the lower mold part 4 during mold filling, but on the other hand the openings 31 are not yet closed by the slide 32. After the openings 31 have been closed and during solidification under high pressure, the clamping plate 15 lies with the slide plate 41 frictionally on the upper mold part 3, so that the upper mold part and lower mold part are then pressed against one another with the desired pressure.
- the pressure maintained during the solidification process can be applied either by the plunger 7 or by a further plunger 30, whereby a reversible flow of the melt in the mold cavity 1 can also be obtained by the interaction of both pistons during the solidification process.
- This embodiment differs from that according to FIG. 3 in that the charging material is introduced into the melting chamber 24 in a cup 35 made of refractory material and is melted therein. Following this, the cup including all or part of the melted material is pushed into the press chamber 23 by means of the plunger 7. The actual introduction of the melt material into the mold cavity 1 then takes place by means of a plunger 34 which dips into the cup from above, the melt being displaced from this and reaching the mold cavity 1 between the piston wall and the cup inner wall.
- the exemplary embodiment according to FIG. 5 shows a wall section 36, for example of the upper or lower mold part, this wall section 36 being formed from a relatively thin material, so that it deforms during the filling process of the mold cavity 1.
- a plunger 37 Arranged behind this flexible wall section 36 is a plunger 37 which can be provided, for example, with bores 38 for a coolant or heating medium. During the solidification process the plunger 37 is pressed against the flexible wall section 36, so that the pressure in the material can be maintained even during the solidification process.
- the embodiment according to FIG. 6 likewise shows a flexible wall section 36, behind which a pressure chamber 39 is arranged.
- This wall section can also be deformed away from the mold space - to enlarge it - during the mold filling, this deformation then being reversed again during the solidification process due to a pressure medium introduced through a pipe 40, wherein a deformation of the wall section 36 towards the molding space is likewise obtained can.
- the pressure medium can also be used for cooling or heating the corresponding wall section 36.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Forging (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Nonmetallic Welding Materials (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Claims (37)
- Procédé pour la fabrication de pièces de construction, selon lequel on introduit un matériau liquide ou partiellement liquide dans une cavité de moule formée par au moins deux demi-moules, et selon lequel on amène le matériau situé dans au moins une chambre de remplissage disposée directement au-dessous de la cavité de moule, à prendre une consistance appropriée pour le remplissage du moule, puis on l'entraîne selon un déplacement montant pour l'introduire dans la cavité de moule non encore complètement fermée pour la désaération et on l'y maintient, après fermeture de la cavité de moule et pendant la solidification, à une pression réglable d'une manière différenciée localement.
- Procédé selon la revendication 1, caractérisé en ce que le matériau devant être rendu liquide est introduit sous forme solide dans la chambre de remplissage.
- Procédé selon la revendication 1, caractérisé en ce que le matériau est introduit sous forme liquide dans la chambre de remplissage.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'au début du processus de remplissage, on ouvre au moins partiellement des parties du moule et qu'on les ferme complètement vers la fin du remplissage du moule.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'au moins un demi-moule comporte des canaux de désaération, que l'on ferme à la fin du remplissage du moule.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on augmente le volume de la cavité de moule au plus tard vers la fin du remplissage du moule, par rapport au volume de la pièce de construction solidifiée et que lors de la solidification, on réduit le volume.
- Procédé selon l'une des revendications 1 à 6, caractérisé en ce que pour l'alimentation compacte de la structure de la pièce de construction on modifie de façon pulsatoire la pression de refoulement pendant la solidification.
- Procédé selon la revendication 7, caractérisé en ce que dans le cas de l'utilisation de plusieurs éléments de pression, les impulsions de pression de ces éléments sont accordées les unes sur les autres de telle sorte que la masse fondue se retrouvant pendant la solidification dans les canaux d'alimentation, est déplacée en va-et-vient.
- Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on refroidit les demi-moules.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'on active plusieurs zones de refroidissement dans les demi-moules, selon le principe du refroidissement selon une séquence à seuils.
- Procédé selon la revendication 10, caractérisé en ce qu'on active les zones de refroidissement dans le moule d'une manière concordant avec les éléments de pression montés dans la paroi des demi-moules.
- Procédé selon l'une des revendications 10 ou 11, caractérisé en ce que les éléments de refroidissement et les éléments de pression sont réunis pour former une unité fonctionnelle.
- Procédé selon l'une des revendications 1 à 12, caractérisé en ce que dans le cas de l'utilisation de plusieurs chambres de remplissage, on charge ces dernières avec différents matériaux.
- Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'on introduit dans la chambre de remplissage le matériau devant être fondu ou la masse fondue dans une enceinte en forme de pot réalisée en un matériau réfractaire et qu'à partir de là on refoule le matériau ou la masse fondue au moyen d'un piston de refoulement qui se déplace vers le bas à partir de ou avec la partie supérieure du moule, pour le remplissage du moule.
- Procédé selon la revendication 14, caractérisé en ce qu'un pot rempli est repoussé dans la chambre de remplissage, par un piston de compression constituant une butée lors du processus de pression.
- Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la chambre de remplissage est subdivisée en une partie de fusion et une partie de mise en pression.
- Procédé selon l'une des revendications 14 à 16, caractérisé en ce que l'entraînement du pot est réalisé au moyen du piston de compression.
- Procédé selon l'une des revendications 1 à 17, caractérisé en ce qu'on insère des corps solides dans la cavité de moule, on les fixe et on les relie entre eux par l'introduction d'une masse fondue ou on les intègre dans la pièce de construction.
- Procédé selon l'une des revendications 1 à 18, caractérisé en ce que lors de la fusion dans la chambre de remplissage, des corps de charge restent à l'état solide dans la zone de leur face frontale inférieure.
- Procédé selon l'une des revendications 1 à 18, caractérisé en ce que le dosage de la masse fondue dans la chambre de remplissage est exécuté à l'aide d'une régulation de la pression de gaz au-dessus de la surface de la masse fondue dans le four ainsi qu'au-dessus du volume de l'insert formant corps de charge, en liaison avec un détecteur de niveau.
- Dispositif pour fabriquer des pièces de construction, notamment selon le procédé suivant l'une des revendications 1 à 20, comprenant une cavité de moule (1) qui est formée au moins par une partie supérieure de moule (3), une partie inférieure de moule (4), la partie inférieure de moule (4) comportant, dans son fond, au moins une ouverture (5) reliée directement à une chambre de remplissage (6) pouvant être remplie par un matériau de charge et dont le contenu peut être refoulé par un piston de compression (7), et qui est équipé d'un dispositif de chauffage (8), et dans lequel le matériau contenu dans la cavité de moule (1) peut être chargé par l'intermédiaire de plusieurs éléments de pression (17,7;30;36,37;34), et le dispositif est équipé d'une ouverture de désaération (3,4,31) pouvant être fermée.
- Dispositif selon la revendication 21, caractérisé en ce qu'un piston de compression (7) peut être inséré verticalement à partir du bas dans la chambre de remplissage (6).
- Dispositif selon la revendication 21 ou 22, caractérisé en ce que plusieurs ouvertures (5) reliées chacune à une chambre de remplissage (6) sont formées dans la partie inférieure (4) du moule.
- Dispositif selon l'une des revendications 21 à 23, caractérisé en ce que la partie inférieure (4) du moule est reliée à la plaque fixe de serrage (9) du dispositif, tandis que la partie supérieure (3) du moule est disposée de manière déplaçable verticalement sur la plaque de serrage (15) et est équipée d'un dispositif de fermeture (10).
- Dispositif selon l'une des revendications 21 à 24, caractérisé en ce que la chambre de remplissage (6) comporte un dispositif de chauffage par induction (8).
- Dispositif selon l'une des revendications 21 à 25, caractérisé en ce que la chambre de remplissage (6) est formée en plusieurs éléments (partie de fusion et partie de compression) et éventuellement en des matériaux différents.
- Dispositif selon l'une des revendications 21 à 26, caractérisé en ce qu'un corps de charge fixe (11) peut être amené à l'aide d'un dispositif d'amenée à la chambre de remplissage (6).
- Dispositif selon la revendication 27, caractérisé en ce que le dispositif d'amenée est relié à un magasin et comprend une table d'amenée (12).
- Dispositif selon l'une des revendications 21 à 28, caractérisé en ce qu'à l'un des pistons de compression (7) sont associées, en tant que parties des chambres de remplissage (6), plusieurs chambres mobiles (24) pour la masse fondue, comportant chacun un dispositif de chauffage (8).
- Dispositif selon l'une des revendications 21 à 29, caractérisé en ce que le piston de compression (7) est déplaçable, conjointement avec une chambre de fusion (24), entre une plaque de serrage (9a) et une plaque (18) du piston de compression.
- Dispositif selon la revendication 29 ou 30, caractérisé en ce que la chambre de remplissage (6,24) est équipée d'un fond déplaçable (28).
- Dispositif selon l'une des revendications 21 à 26, caractérisé en ce que la masse fondue (19) peut être introduite dans la chambre de remplissage à l'aide d'un tube de remplissage (14) partant d'un four de fusion (13), qui est alimenté par un matériau de charge solide (11) par l'intermédiaire d'un tube d'amenée (21) pourvu d'une garniture d'étanchéité (26).
- Dispositif selon l'une des revendications 21 à 32, caractérisé en ce que la face frontale du piston de compression (7) est dans sa position finale, une surface, de forme de la cavité de moule (1).
- Dispositif selon l'une des revendications 21 à 33, caractérisé en ce que la cavité de moule (1) est pourvue d'ouvertures de désaération (31), qui peuvent être fermées à la fin du remplissage du moule avec des éléments de fermeture coulissants (32).
- Dispositif selon l'une des revendications 21 à 34, caractérisé en ce qu'au moins une partie de la paroi de moule (36) est flexible et que le côté situé à l'opposé de la cavité de moule (1) peut être sollicité au moyen d'éléments de pression (30,37,39,40).
- Dispositif selon la revendication 35, caractérisé en ce que les éléments de pression (30,37,39,40) sont pourvus d'un système de refroidissement et/ou d'un système de chauffage (38,39,40).
- Dispositif selon l'une des revendications 21 à 36, caractérisé en ce que des vibrateurs sont disposés sur la paroi du moule pour améliorer le remplissage du moule.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4132732A DE4132732A1 (de) | 1991-10-01 | 1991-10-01 | Verfahren und vorrichtung zur erzeugung von bauteilen |
DE4132732 | 1991-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0535421A1 EP0535421A1 (fr) | 1993-04-07 |
EP0535421B1 true EP0535421B1 (fr) | 1997-03-12 |
Family
ID=6441939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92115545A Expired - Lifetime EP0535421B1 (fr) | 1991-10-01 | 1992-09-11 | Procédé et dispositif pour la fabrication de pièces de construction |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0535421B1 (fr) |
AT (1) | ATE149894T1 (fr) |
DE (2) | DE4132732A1 (fr) |
ES (1) | ES2099777T3 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19950037C2 (de) | 1999-10-16 | 2001-12-13 | Drm Druckgus Gmbh | Verfahren und Vorrichtung zum Urformen eines Werkstoffes |
DE10012787B4 (de) * | 2000-03-16 | 2008-04-10 | Volkswagen Ag | Verfahren zur Herstellung von Leichtmetallgussteilen mit eingegossenen Buchsen |
DE10043717A1 (de) * | 2000-09-04 | 2002-03-14 | Buehler Druckguss Ag Uzwil | Verfahren und Vorrichtung zum Druckumformen von metallischen Werkstoffen |
DE10047735A1 (de) * | 2000-09-27 | 2002-04-11 | Rauch Fertigungstech Gmbh | Verfahren zum Druckgiessen und Füllbüchse hierfür sowie Druckgiessmaschine |
JP4175602B2 (ja) | 2001-07-02 | 2008-11-05 | 徹一 茂木 | 鋳造用注湯装置 |
DE10256834A1 (de) * | 2002-12-04 | 2004-07-08 | Drm Druckguss Gmbh | Verfahren und Vorrichtung zur Herstellung großflächiger Werkstücke im Druckgießverfahren |
DE102004008157A1 (de) * | 2004-02-12 | 2005-09-01 | Klein, Friedrich, Prof. Dr. Dr. h.c. | Gießmaschine zur Herstellung von Gussteilen |
DE102007062436B4 (de) | 2007-12-20 | 2010-11-11 | Gottfried Wilhelm Leibniz Universität Hannover | Verfahren zur Herstellung eines Gussteils |
AT517860B1 (de) * | 2015-10-27 | 2020-02-15 | Christian Platzer | Verfahren und Vorrichtung zur Herstellung zumindest eines Formteils |
DE102016107572B3 (de) | 2016-04-22 | 2017-05-18 | Stefan Argirov | Vorrichtung zur Herstellung von Gussteilen, wie Alumiumguss, im Niederdruckgießverfahren |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2128425A1 (de) * | 1970-08-21 | 1973-01-04 | Friedhelm Dipl Ing Kahn | Giessverfahren mit druckanwendung und einrichtung zur durchfuehrung des verfahrens |
DE2646060A1 (de) * | 1976-10-13 | 1978-04-20 | Friedhelm Prof Dr Ing Kahn | Verfahren und vorrichtungen zur steuerung des waermehaushalts von giessformen |
JPS5843177B2 (ja) * | 1979-01-26 | 1983-09-26 | 本田技研工業株式会社 | 縦型ダイカストマシンにおける溶湯の充填方法 |
CA1149579A (fr) * | 1979-07-26 | 1983-07-12 | Toyoaki Ueno | Machine de coulee en moule vertical |
-
1991
- 1991-10-01 DE DE4132732A patent/DE4132732A1/de not_active Withdrawn
-
1992
- 1992-09-11 EP EP92115545A patent/EP0535421B1/fr not_active Expired - Lifetime
- 1992-09-11 AT AT92115545T patent/ATE149894T1/de not_active IP Right Cessation
- 1992-09-11 ES ES92115545T patent/ES2099777T3/es not_active Expired - Lifetime
- 1992-09-11 DE DE59208164T patent/DE59208164D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2099777T3 (es) | 1997-06-01 |
ATE149894T1 (de) | 1997-03-15 |
DE4132732A1 (de) | 1993-04-08 |
EP0535421A1 (fr) | 1993-04-07 |
DE59208164D1 (de) | 1997-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006036369B4 (de) | Verfahren und Vorrichtung zur Herstellung von Bauteilen durch integriertes Schmelzen, Gießen und Umformen | |
EP2848333A1 (fr) | Procédé et dispositif de fabrication d'un composant métallique au moyen d'un outil de coulage et de formage | |
DE7532061U (de) | Einrichtung fuer den mechanisierten niederdruckguss | |
DE102016123491B4 (de) | Gießvorrichtung, Presse und Verfahren zum Gießen eines Bauteils | |
EP0535421B1 (fr) | Procédé et dispositif pour la fabrication de pièces de construction | |
EP0872295B1 (fr) | Moule de coulage et procédé de fabrication de pièces coulées creuses et pièces coulées creuses | |
DE69405588T2 (de) | Verfahren und vorrichtung zum ausgleichen von schrumpf beim metallgiessen | |
EP1940573A1 (fr) | Procédé de coulée sous pression et dispositif de coulée sous pression | |
EP1786576B1 (fr) | Procede et dispositif de coulee de metal en fusion | |
WO2015155170A1 (fr) | Machine de coulée sous pression et procédé de coulée sous pression pour la production de pièces de fonte | |
DE69124681T2 (de) | Horizontale Stranggiessvorrichtung mit verstellbarer Kokille | |
AT412763B (de) | Verfahren und vorrichtung zur herstellung von leichtmetallgusserzeugnissen, insbesondere von teilen aus magnesium bzw. magnesiumlegierungen | |
DE2028855A1 (de) | Verfahren und Vorrichtung zur Herstellung von Gußteilen einheitlicher Dichte | |
EP0912276A1 (fr) | Dispositif de thixoformage | |
DE10210259A1 (de) | Gießvorrichtung mit einer Formpositioniereinrichtung | |
DE112010004915T5 (de) | Druckguss-Giessvorrichtung und Druckguss-Giessverfahren. | |
DE69610550T2 (de) | Verfahren und vorrichtung zum pressgissen | |
DE3873994T2 (de) | Verfahren und vorrichtung zum metallgiessen. | |
DE112006003535B4 (de) | Vorrichtung zum Gießen mit verlorener Gießform bei einer Kristallisation unter Druck | |
DE19621945C1 (de) | Verfahren zum Schwerkraftgießen von Leichtmetall-Gußteilen im Kokillen-Gießverfahren | |
DE102008055506A1 (de) | Druckgiessverfahren und Vorrichtung zum Druckgiessen | |
DE3812740C2 (fr) | ||
DE102012203039B4 (de) | Verfahren zum Betreiben einer Druckgussmaschine mit einer Schmelzetransportvorrichtung | |
DE60205168T2 (de) | Verfahren und Vorrichtung zum vertikal Giessen von Rohblöcken und so hergestellter Rohblock | |
WO1994029050A2 (fr) | Procede et dispositifs permettant de couler des elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19930423 |
|
17Q | First examination report despatched |
Effective date: 19950314 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 149894 Country of ref document: AT Date of ref document: 19970315 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALTSBUREAU BOSSHARD UND LUCHS Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970319 |
|
REF | Corresponds to: |
Ref document number: 59208164 Country of ref document: DE Date of ref document: 19970417 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2099777 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980814 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990929 |
|
EUG | Se: european patent has lapsed |
Ref document number: 92115545.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000906 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000929 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010828 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010925 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020925 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030911 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061117 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080401 |