EP0533823A1 - Behandlungsverfahren von aluminium- oder blechdosen zur erhöhung der korrosionsbeständigkeit und zur verringerung des reibungskoeffizienten und zusammensetzung der behandlungsflüssigkeit. - Google Patents
Behandlungsverfahren von aluminium- oder blechdosen zur erhöhung der korrosionsbeständigkeit und zur verringerung des reibungskoeffizienten und zusammensetzung der behandlungsflüssigkeit.Info
- Publication number
- EP0533823A1 EP0533823A1 EP91912131A EP91912131A EP0533823A1 EP 0533823 A1 EP0533823 A1 EP 0533823A1 EP 91912131 A EP91912131 A EP 91912131A EP 91912131 A EP91912131 A EP 91912131A EP 0533823 A1 EP0533823 A1 EP 0533823A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid composition
- component
- tin
- aluminum
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 107
- 239000007788 liquid Substances 0.000 title claims abstract description 101
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 49
- 238000005260 corrosion Methods 0.000 title claims abstract description 23
- 230000007797 corrosion Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 20
- 230000008569 process Effects 0.000 title claims description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title abstract description 10
- 239000004411 aluminium Substances 0.000 title 1
- 239000011347 resin Substances 0.000 claims abstract description 84
- 229920005989 resin Polymers 0.000 claims abstract description 84
- 239000007787 solid Substances 0.000 claims abstract description 26
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract 4
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract 4
- 239000001257 hydrogen Substances 0.000 claims abstract 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 238000001035 drying Methods 0.000 claims description 25
- 239000008399 tap water Substances 0.000 claims description 11
- 235000020679 tap water Nutrition 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 5
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 5
- 238000005238 degreasing Methods 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000010422 painting Methods 0.000 claims description 4
- -1 tripolyphosphate ions Chemical class 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims 9
- 239000011247 coating layer Substances 0.000 claims 1
- 238000007739 conversion coating Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 abstract description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 abstract 1
- 238000011282 treatment Methods 0.000 description 60
- 238000004381 surface treatment Methods 0.000 description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 51
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 50
- 235000011007 phosphoric acid Nutrition 0.000 description 25
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 24
- 239000007921 spray Substances 0.000 description 23
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 18
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 17
- 229940048086 sodium pyrophosphate Drugs 0.000 description 17
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 17
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 239000003973 paint Substances 0.000 description 12
- 235000019593 adhesiveness Nutrition 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 3
- 239000013527 degreasing agent Substances 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229940048084 pyrophosphate Drugs 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000005028 tinplate Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- KHEMNHQQEMAABL-UHFFFAOYSA-J dihydroxy(dioxo)chromium Chemical compound O[Cr](O)(=O)=O.O[Cr](O)(=O)=O KHEMNHQQEMAABL-UHFFFAOYSA-J 0.000 description 2
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000905957 Channa melasoma Species 0.000 description 1
- 230000010736 Chelating Activity Effects 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000006295 amino methylene group Chemical group [H]N(*)C([H])([H])* 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 1
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical group [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000002226 simultaneous effect Effects 0.000 description 1
- RBWSWDPRDBEWCR-RKJRWTFHSA-N sodium;(2r)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethanolate Chemical compound [Na+].[O-]C[C@@H](O)[C@H]1OC(=O)C(O)=C1O RBWSWDPRDBEWCR-RKJRWTFHSA-N 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- QUBMWJKTLKIJNN-UHFFFAOYSA-B tin(4+);tetraphosphate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QUBMWJKTLKIJNN-UHFFFAOYSA-B 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/23—Condensed phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
Definitions
- the present invention relates to a novel liquid compo ⁇ sition for treating the surface of tin-plated steel and/or aluminum and alloys that are predominantly aluminum (both the pure metal and alloys being denoted hereinafter by the word "aluminum” unless the context requires otherwise) , particularly the surfaces of drawn-and-ironed (hereinafter "DI") cans made from these materials.
- the composition im ⁇ parts an excellent corrosion resistance and paint adhes- iveness to the surface of such a can after its formation by the drawing and ironing of metal sheet but before its painting or printing.
- This novel liquid composition also imparts the excellent mobility or slideability, i.e., low frictional resistance, which is required for the smooth conveyor transport of such a can.
- the composition also is relatively low in pollution potential, because it contains no deliberately introduced chromate or fluorine.
- the in ⁇ vention also relates to processes for using the composi ⁇ tion according to the invention. BACKGROUND ART
- This particular invention comprises a film-forming liquid composition for the treatment of met ⁇ al surfaces in which the liquid composition has a pH of 2 to 6 and contains 1 to 50 g/L of phosphate ions, 0.2 to 20.0 g/L of oxyacid ions, 0.01 to 5.0 g/L of tin ions, and 0.01 to 5.0 g/L of condensed phosphate ion.
- Treatment with this conversion treatment liquid composition lays down a strongly corrosion-resistant phosphate film on the surface of a tin-plated DI can.
- the treatment baths previously employed to treat the surface of aluminum and aluminum alloy of the aforemen- tioned type can be generally classified into chromate types and non-chromate types.
- the chromate types typically take the form of chromic acid chromate conversion treatments and phosphoric acid chromate conversion treatments. Chromic acid chromate conversion treatments entered into practical application in about 1950, and these are still widely used for heat exchanger fin material and the like.
- This type of conversion treatment bath is based on chromic acid (CrO ) and hydrofluoric acid (HF) and also contains an accelerat ⁇ or. It lays down a film which contains modest quantities of hexavalent chromium.
- CrO chromic acid
- H PO phosphoric acid
- HF hydrofluoric acid
- the invention disclosed in Japanese Patent Application Laid Open [Kokai or Unexamined] Number 52-131937 [131,937/ 77] is a typical prior art example within the realm of non- chromate types of treatments for aluminum.
- the application of this conversion treatment bath exemplary of the prior art to the surface of aluminum generates a conversion film whose principal component is zirconium oxide or titanium oxide.
- the high friction coefficient of the exterior can surface causes the can surface to have a poor slideability during conveyor transport of the can, which causes the can to tumble over sideways and thus impairs the transport operation.
- Can transportability is a particular issue with respect to transport to the printer in a high speed continuous manu ⁇ facturing plant. It is therefore important in the can man ⁇ ufacturing industry to reduce the static friction coeffi ⁇ cient of the exterior can surface without compromising the adhesiveness of any paint or lacquer to be coated on the can.
- the invention disclosed in (3) Japanese Patent Appli ⁇ cation Laid Open Number 64-85292 [85,292/89] is an example of a method for improving the slideability. This inven- tion concerns an agent for treating the surfaces of metal cans.
- This particular agent contains water-soluble organ ⁇ ic material selected from phosphate esters, alcohols, monovalent and polyvalent fatty acids, fatty acid deriva- tives, and mixtures of the preceding. DESCRIPTION OF THE INVENTION Problems to Be Solved by the Invention
- the above-described invention (1) does lead to the formation of a strongly corrosion-resistant phosphate film on conventional tin-plated DI can; however, the tin-plated DI can produced over the last few years has used smaller quantities of tin plating in response to economic pres ⁇ sures. This has necessitated surface treatments with a far better corrosion resistance than before, and this demand is not entirely satisfied by invention (1) .
- the other above described inventions do not always result in a satisfac ⁇ torily stable corrosion resistance with the tin-plated DI can produced over the last few years or with aluminum cans.
- the above-described invention (3) does in fact im- prove the slideability, but it sometimes does not improve the corrosion resistance or paint adhesiveness to an ade ⁇ quate degree.
- the present inven ⁇ tion provides a liquid composition for treating the surface of tin-plated DI can, said liquid composition being char ⁇ acterized by a pH of 2.0 to 6.5 and containing 1 to 30 g/L of phosphate ions, 0.1 to 5 g/L of condensed phosphate ion if used on tin plated steel or 0.1 to 10 g/L of condensed phosphate ions if used on aluminum, and 0.1 to 20 g/L (as solids) of water-soluble resin with the following general formula:
- n is an integer within the range from 10 to 80 in ⁇ clusive; each of X and Y is independently selected from hy ⁇ drogen or a group "Z" with the formula given below, except that at leas 15 % of the total of all the X and Y groups in this component of the composition are Z rather than hy ⁇ drogen; and
- each of R and R independently is a C to C. _ alkyl and/or hydroxyalkyl group.
- a surface-treatment liquid composition according to the present invention provides an aluminum or a tin-plated DI can surface with an- excellent corrosion re ⁇ sistance and paint adhesiveness prior to its painting or printing and also generates the excellent slideability nec ⁇ essary for smooth conveyor transport of the can. Finally, because the treatment bath according to the present inven ⁇ tion does not contain chromium or fluorine, the waste water treatment load is substantially reduced compared to most prior treatment baths, especially for aluminum. Details of Preferred Embodiments of the Invention
- the surface-treatment liquid composition according to the present invention is an acidic treatment liquid compo ⁇ sition whose essential components are phosphate ions, con ⁇ densed phosphate ions, and water-soluble resin of a par ⁇ ticular type.
- the phosphate ions can be introduced into the treat ⁇ ment liquid composition using phosphoric acid (H_PO.) , sod ⁇ ium phosphate (Na_PO ) , and the like. Its content should fall within the range preferably of 1 to 30 g/L and more preferably of 5 to 15 " g/L. At below 1 g/L, the reactivity is relatively poor and film formation generally will not be satisfactory.
- the condensed phosphate ions are selected from pyro- phosphate ions, tripolyphosphate ions, and tetrapolyphos- phate ions.
- the acid or salt can be used to introduce the condensed phosphate ions.
- pyrophosphate ions when pyrophosphate ions are to be introduced, pyrophosphoric acid (H.P_0 ) , sodium pyrophosphate (Na.P 0_) , and the like can be used.
- This component should be present at 0.1 to 5 g/L for treating tin plated steel or at 0.1 to 10 g/L for treating aluminum, and the range of 0.4 to 1 g/L for tin plate or 1.0 to 4.0 g/L for aluminum is particularly preferred. At values less than 0.1 g/L, a satisfactory film will not be formed because of weak etching activity. However, the etching activity is undesirably high at values in excess of 5 g/L on tin plate or 10 g/L on aluminum, and the film- forming reaction is inhibited.
- the water-soluble resin used by the present invention comprises polymers with the general formula already given above.
- the molecular weight is too low at values of n in this formula below 10, so that little or no improvement in corrosion resistance will normally be observed.
- the aqueous solution has a reduced stability, which will normally generate problems in practi ⁇ cal applications.
- Functional groups R ⁇ or R 2 containing 11 or more carbons usually would reduce the stability of an aqueous solution containing them.
- the group Z is prefer ⁇ ably -CH 2 N(CH 3 ) 2 or -CH 2 N(CH 3 )CH 2 CH 2 OH. When less than 15 % of the total of all the X's and Y's in the resin are Z, there are usually stability problems with the compositions that would otherwise be according to the invention.
- the water soluble resin should be present at a concen ⁇ tration of from 0.1 to 20 g/L on a solids basis. At values less than 0.1 g/L, stable film formation on the can surface highly problematic. Values in excess of 20 g/L are uneco ⁇ nomical due to the increased cost of the treatment solu ⁇ tion.
- the pH of the treatment liquid composition must be from 2.0 to 6.5. Etching is heavy and film formation is impaired at pH values less than 2.0. At values in excess of 6.5, the liquid composition life is shortened because the resin tends to precipitate and sediment.
- the pH can be adjusted through the use of an acid, for example, phos ⁇ phoric acid, nitric acid, hydrochloric acid, hydrofluoric acid (if waste water contamination with fluoride is not a problem) , and the like, or through the use of a base, for example, sodium hydroxide, sodium carbonate, ammonium hy ⁇ droxide, and the like.
- metal ions e.g., tin, aluminum, or iron
- metal ions e.g., tin, aluminum, or iron
- a chelating agent in addition to the resin as specified above should preferably be added to the treatment liquid composition in such cases. While this chelating agent is not specifically restricted, chelating agents use ⁇ ful within this context are exemplified by tartaric acid, ethanolamine, gluconic acid, oxalic acid, and the like.
- the method for preparing the surface-treatment liquid composition according to the present invention can be briefly described as follows. Prescribed quantities of phosphate ions and condensed phosphate ions as described above are dissolved in water with thorough stirring. When the pH of this liquid composition is not already less than 7, it is adjusted to below 7 using the appropriate acid as noted above. The water-soluble resin specified by the present invention is then added and completely dissolved while stirring, and the pH is adjusted if necessary as dis ⁇ cussed above.
- the film which is formed by means of the present in ⁇ vention's surface-treatment liquid composition is believed to be an organic and inorganic composite film which is com- posed primarily of the resin and phosphate salts (the main component is believed to be tin phosphate when tin plated substrates are treated) .
- the substrate is etched by the phosphate ions and condensed phosphate ions, the pH at this time is locally increased at the interface, and phosphate salt is deposited on the surface.
- the amino group in the resin has a chelating activity, and it may form a type of coordination compound with the fresh surface of the substrate generated by etching.
- the simul- taneous presence of the condensed phosphate ions is thought to promote formation of resin/metal coordination compounds, and this may make possible the stable formation of the com ⁇ posite film on the surface over a broad pH range.
- a process according to the invention for treating tin- plated DI can using a surface-treatment liquid composition of the present invention will now be considered.
- the pres ⁇ ent invention's treatment liquid composition can be applied by the following process sequence, which is a preferred se ⁇ quence for a process according to this invention.
- Surface cleaning degreasing (a weakly alkaline cleaner is typically used on tin-plated DI can, while an alkaline, acidic, or solvent based degreaser may be effectively used on aluminum cans.)
- Treatment temperature ambient to 80 ° C treatment method: spray treatment time: 2 to 60 seconds
- a surface-treatment liquid composition according to the present invention can conveniently be used at treatment temperatures from room temperature up to 80 ° C; however, it is generally preferably used at 40 to 60 ° C.
- the spray time preferably should be 2 to 60 seconds. At less than 2 seconds, a highly corrosion-resistant film will not usually be formed. No improvement in performance is observed for treatment times in excess of 60 seconds, but the cost is increased. Accordingly, the preferable treatment time will fall in the range from 2 to 60 seconds.
- the corrosion resistance of treated tin plated cans was evaluated using the iron exposure value ("IEV") , which was measured in accordance with the teaching of United States Patent No. 4,332,646. The corrosion resistance is better at lower IEV values, and a score below 150 is gener ⁇ ally regarded as excellent.
- the paint adhesiveness was evaluated based on the peel strength as follows: The surface of the treated can was coated with an epoxy/urea can paint to a film thickness of 5 to 7 micrometers; this was baked at 215 ° C for 4 min ⁇ utes; the can was then cut into a 5 x 150 mm strip; a test specimen was prepared by hot-press adhesion with polyamide film; and this was peeled by the 180 ° peel test method. Accordingly, the paint adhesiveness improves as the peel strength increases, and values in excess of 1.5 kilograms of force per 5 millimeters of width (hereinafter "kgf/5 mm-width") on tin plate or in excess of 4.0 kgf/5 mm-width on aluminum are generally regarded as excellent.
- kgf/5 mm-width 1.5 kilograms of force per 5 millimeters of width
- Tin-plated DI cans were prepared by drawing and iron ⁇ ing tin-plated steel sheet. They were cleaned with a 1% hot aqueous solution of a weakly alkaline degreaser (FINE CLEANER 4361A, registered brand name of Nihon Parkerizing Company, Limited) , then sprayed with a surface-treatment liquid composition according to the invention as described below for each specific example.
- FINE CLEANER 4361A registered brand name of Nihon Parkerizing Company, Limited
- Aluminum DI cans were prepared by drawing and ironing aluminum alloy (A3004) sheet. They were cleaned with a 3 % hot aqueous solution of an acidic degreaser (PARCLEANTM 400, commercially available from Nihon Parkerizing Company, Ltd.), then sprayed a with surface-treatment liquid compo ⁇ sition according to the invention as described below for each specific example.
- PARCLEANTM 400 commercially available from Nihon Parkerizing Company, Ltd.
- Example 1 A tin-plated DI can was cleaned as described above, then sprayed with surface-treatment liquid composition 1 as described below, heated to 60 ° C, for 30 seconds, then washed with tap water, sprayed with de-ionized water (with a specific resistance of at least 3,000,000 ohm*cm) for 10 seconds, and, finally, dried in a hot air-drying oven at 180 ° C for 3 minutes.
- Water-soluble resin 1 was synthesized as follows. CELLOSOLVE solvent in an amount of 100 grams (hereinafter "g") was introduced into a 1,000 milliliter (“ L") reaction flask equipped with a condenser, nitrogen inlet tube, over- head stirrer, and thermometer, and 60 g of poly ⁇ 4-vinyl- phenol ⁇ with a molecular weight of 5,000 was added and dis ⁇ solved. Then 40 g of 2-methylaminoethanol and 100 g of de ⁇ ionized water were added, and this was reacted by heating to 50 ° C.
- Example 2 Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 2, heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 3 heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 4 heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi- tions as in Example 1 and was then treated with a 30 sec ⁇ ond spray of surface-treatment liquid composition 5 heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 6 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 7 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi- tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 8 heated to
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 9 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Tin-plated DI can was cleaned using the same condi- tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 10 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Surface-treatment liquid composition 10 75% phosphoric acid (H 3 P0 ) : 10.0 g/L
- Tin-plated DI can was cleaned using the same condi ⁇ tions as in Example 1 and was then treated with a 30 second spray of surface-treatment liquid composition 11 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Water-soluble resin 4 had the chemical formula:
- n The average value of n was about 40.
- SO_ liquid sulfur trioxide
- An aluminum DI can was cleaned as described above, then sprayed with surface-treatment liquid composition 12 as described below, heated to 60 ° C, for 30 seconds, then washed with tap water, sprayed with de-ionized water (with a specific resistance of at least 3,000,000 ohm*cm) for 10 seconds, and, finally, dried in a hot air-drying oven at 180 ° C for 3 minutes.
- Surface-treatment liquid composition 12
- Example 9 An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 13, heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- An aluminum DI can was cleaned using the same condi- tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 14 heated to
- An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 15 heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Example 12
- An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 sec ⁇ ond spray of surface-treatment liquid composition 16 heated to 60 ° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Example 13 An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 17 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- An aluminum DI can was cleaned using the same condi- tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 18 heated to
- Water soluble resin 3 was made in the same way as in Example 7.
- An aluminum DI can was cleaned using the same condi- tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 19 heated to
- An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 21 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example l.
- Example 8 An aluminum DI can was cleaned using the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of surface-treatment liquid composition 22 heated to 60° C. This treatment was followed with a water wash and drying using the same conditions as in Example 1.
- Water-soluble resin 4 was the same as for Comparison Example 4 above. Comparison Example 5
- Example 8 An aluminum DI can was cleaned under the same condi ⁇ tions as in Example 8 and was then treated with a 30 second spray of a 2 % aqueous solution (heated to 50° C) of a com-bit .al non-chromate agent (PARCOAT_M K 3761, from Ni•hon Parkerizing Company, Ltd.). This treatment was followed by a water wash and drying under the same conditions as in Example 1.
- PARCOAT_M K 3761 com-bit .al non-chromate agent
- Treatment of tin-plated or aluminum DI cans using a surface-treatment liquid composition with the composition given above imparts an excellent corrosion resistance and painting or printing. In addition, it also produces a film which has the excellent slideability necessary for smooth conveyor transport of the can.
- the condensed phosphate ions comprises at least one selection from pyrophosphate ions, tripoly- phosphate ions, and tetrapolyphosphate ions and when:
- the treatment solution according to this invention is substantially free from chromium and fluoride and therefore has relatively low pollution potential.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
- Lubricants (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP160443/90 | 1990-06-19 | ||
JP16044390A JPH0450272A (ja) | 1990-06-19 | 1990-06-19 | ぶりきdi缶の表面処理液 |
JP179271/90 | 1990-07-06 | ||
JP17927190A JPH0466671A (ja) | 1990-07-06 | 1990-07-06 | アルミニウム及びアルミニウム合金用表面処理液 |
PCT/US1991/004250 WO1991019828A1 (en) | 1990-06-19 | 1991-06-13 | Liquid composition and process for treating aluminium or tin cans to impart corrosion resistance and reduced friction coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0533823A1 true EP0533823A1 (de) | 1993-03-31 |
EP0533823B1 EP0533823B1 (de) | 1995-01-04 |
Family
ID=26486959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91912131A Expired - Lifetime EP0533823B1 (de) | 1990-06-19 | 1991-06-13 | Behandlungsverfahren von aluminium- oder blechdosen zur erhöhung der korrosionsbeständigkeit und zur verringerung des reibungskoeffizienten und zusammensetzung der behandlungsflüssigkeit |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0533823B1 (de) |
AT (1) | ATE116694T1 (de) |
AU (1) | AU647498B2 (de) |
BR (1) | BR9106572A (de) |
CA (1) | CA2085489C (de) |
DE (1) | DE69106510T2 (de) |
ES (1) | ES2067942T3 (de) |
WO (1) | WO1991019828A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04187782A (ja) * | 1990-11-21 | 1992-07-06 | Nippon Parkerizing Co Ltd | ぶりきdi缶用表面処理液 |
JP2771110B2 (ja) * | 1994-04-15 | 1998-07-02 | 日本パーカライジング株式会社 | アルミニウム含有金属材料用表面処理組成物および表面処理方法 |
CA2226524A1 (en) * | 1995-07-10 | 1997-01-30 | Toshiaki Shimakura | Metal surface treatment agent and method and metallic materials treated with the same |
JP3620893B2 (ja) * | 1995-07-21 | 2005-02-16 | 日本パーカライジング株式会社 | アルミニウム含有金属用表面処理組成物及び表面処理方法 |
US6059896A (en) * | 1995-07-21 | 2000-05-09 | Henkel Corporation | Composition and process for treating the surface of aluminiferous metals |
JP3544761B2 (ja) * | 1995-10-13 | 2004-07-21 | 日本パーカライジング株式会社 | アルミニウム含有金属材料用表面処理組成物および表面処理方法 |
GB9625652D0 (en) * | 1996-12-11 | 1997-01-29 | Novamax Technologies Limited | The treatment of aluminium surfaces |
AU4695799A (en) * | 1998-06-19 | 2000-01-05 | Alcoa Inc. | Method for inhibiting stains on aluminum product surfaces |
EP1221497A3 (de) * | 1998-06-19 | 2003-12-03 | Alcoa Inc. | Verfahren zur Inhibierung von Flecken auf Aluminiumoberflächen |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4376000A (en) * | 1980-11-28 | 1983-03-08 | Occidental Chemical Corporation | Composition for and method of after-treatment of phosphatized metal surfaces |
US4433015A (en) * | 1982-04-07 | 1984-02-21 | Parker Chemical Company | Treatment of metal with derivative of poly-4-vinylphenol |
US4457790A (en) * | 1983-05-09 | 1984-07-03 | Parker Chemical Company | Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol |
GB8523572D0 (en) * | 1985-09-24 | 1985-10-30 | Pyrene Chemicals Services Ltd | Coating metals |
JPH01100281A (ja) * | 1987-10-13 | 1989-04-18 | Nippon Parkerizing Co Ltd | 金属表面の皮膜化成処理液 |
US4970264A (en) * | 1987-12-04 | 1990-11-13 | Henkel Corporation | Treatment and after-treatment of metal with amine oxide-containing polyphenol compounds |
JPH02101174A (ja) * | 1988-10-06 | 1990-04-12 | Nippon Paint Co Ltd | 冷間加工用リン酸亜鉛処理方法 |
JPH03207766A (ja) * | 1990-01-10 | 1991-09-11 | Nippon Parkerizing Co Ltd | ぶりきdi缶の表面処理方法 |
-
1991
- 1991-06-13 WO PCT/US1991/004250 patent/WO1991019828A1/en active IP Right Grant
- 1991-06-13 ES ES91912131T patent/ES2067942T3/es not_active Expired - Lifetime
- 1991-06-13 CA CA002085489A patent/CA2085489C/en not_active Expired - Fee Related
- 1991-06-13 EP EP91912131A patent/EP0533823B1/de not_active Expired - Lifetime
- 1991-06-13 DE DE69106510T patent/DE69106510T2/de not_active Expired - Fee Related
- 1991-06-13 AT AT91912131T patent/ATE116694T1/de not_active IP Right Cessation
- 1991-06-13 BR BR919106572A patent/BR9106572A/pt not_active IP Right Cessation
- 1991-06-13 AU AU80693/91A patent/AU647498B2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO9119828A1 * |
Also Published As
Publication number | Publication date |
---|---|
ES2067942T3 (es) | 1995-04-01 |
AU8069391A (en) | 1992-01-07 |
DE69106510T2 (de) | 1995-08-03 |
DE69106510D1 (de) | 1995-02-16 |
ATE116694T1 (de) | 1995-01-15 |
BR9106572A (pt) | 1993-06-01 |
EP0533823B1 (de) | 1995-01-04 |
CA2085489C (en) | 2000-12-12 |
CA2085489A1 (en) | 1991-12-20 |
WO1991019828A1 (en) | 1991-12-26 |
AU647498B2 (en) | 1994-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU684929B2 (en) | Composition and process for treating the surface of aluminiferous metals | |
JP3992173B2 (ja) | 金属表面処理用組成物及び表面処理液ならびに表面処理方法 | |
EP0730672B1 (de) | Zusammensetzung und verfahren zur behandlung von magnesiumenthaltenden metallen und daraus hergestelltes produkt | |
US7842400B2 (en) | Surface-treated steel sheet and method for manufacturing the same | |
JP3333611B2 (ja) | アルミニウム及びアルミニウム合金用6価クロムフリーの化成表面処理剤 | |
US4422886A (en) | Surface treatment for aluminum and aluminum alloys | |
CA2208459A1 (en) | Low sludging composition and process for treating aluminum and its alloys | |
JP2771110B2 (ja) | アルミニウム含有金属材料用表面処理組成物および表面処理方法 | |
AU8069391A (en) | Liquid composition and process for treating aluminium or tin cans to impart corrosion resistance and reduced friction coefficient | |
AU653566B2 (en) | Composition and method for treating tin plated steel surface | |
US5370909A (en) | Liquid composition and process for treating aluminum or tin cans to impart corrosion resistance and mobility thereto | |
JP2000144444A (ja) | 耐食性に優れた表面処理鋼板の製造方法 | |
EP0516700B1 (de) | Verfahren und zusammensetzungen zur konversionsbehandlung von aluminium und aluminiumlegierungen | |
US6200693B1 (en) | Water-based liquid treatment for aluminum and its alloys | |
JP3544761B2 (ja) | アルミニウム含有金属材料用表面処理組成物および表面処理方法 | |
US5728234A (en) | Composition and process for treating the surface of aluminiferous metals | |
AU685938C (en) | Composition and process for treating the surface of aluminiferous metals | |
WO1993012268A1 (en) | A process and composition for treating the surface of tin-plated steel | |
JPH101780A (ja) | 金属表面処理剤、処理方法及び表面処理された金属材料 | |
JPH10237668A (ja) | 耐白錆性に優れたクロメート処理極低鉛溶融亜鉛めっき鋼板の製造方法 | |
MXPA97004518A (en) | Composition with low sedimentation and process for the treatment of the aluminum and its alea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19921215 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE DK ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19940322 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE DK ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950104 Ref country code: DK Effective date: 19950104 |
|
REF | Corresponds to: |
Ref document number: 116694 Country of ref document: AT Date of ref document: 19950115 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 91912131.9 |
|
REF | Corresponds to: |
Ref document number: 69106510 Country of ref document: DE Date of ref document: 19950216 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2067942 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19980615 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990630 |
|
BERE | Be: lapsed |
Owner name: HENKEL CORP. Effective date: 19990630 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020517 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020520 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020605 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020620 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020710 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030613 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030614 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040101 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050613 |