EP0529735B1 - Dispositif pour l'allumage de moteurs à combustion interne - Google Patents
Dispositif pour l'allumage de moteurs à combustion interne Download PDFInfo
- Publication number
- EP0529735B1 EP0529735B1 EP92202583A EP92202583A EP0529735B1 EP 0529735 B1 EP0529735 B1 EP 0529735B1 EP 92202583 A EP92202583 A EP 92202583A EP 92202583 A EP92202583 A EP 92202583A EP 0529735 B1 EP0529735 B1 EP 0529735B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transistor
- polarity
- whose
- impedance
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P1/00—Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
- F02P1/08—Layout of circuits
- F02P1/083—Layout of circuits for generating sparks by opening or closing a coil circuit
Definitions
- the present invention relates to a device for igniting internal combustion engines, comprising a coil with a primary winding and a secondary winding, provided with a frame in which the passage of a magnet driven by the rotation of the engine produces a flux variable magnetic which induces in the primary winding a current pulse whose cut-off causes in the secondary winding a high voltage pulse intended for a spark plug, a primary current circuit in which the said current closes and which has an impedance in series with a switch transistor, and a circuit for controlling the conductive or non-conductive state of the switch transistor, causing the current to be cut off by cutting the said switch transistor when the value of a control signal applied to an input terminal of this circuit crosses a determined threshold value.
- Such a device is used in small internal combustion engines, for example for lawn mowers, chain saws, hedge trimmers, brush cutters, etc.
- Such a device is known from German patent DE 23 14559.
- the circuit described by this document comprises a switch transistor which is of the Darlington NPN type with, in series in its emitter connection an impedance, in this case a measurement resistance of current.
- the voltage generated by the current in this resistor is applied to the base-emitter space of an NPN transistor, which therefore becomes conductive when the current exceeds a determined value.
- This transistor is connected in such a way that its conduction causes the switching transistor to switch off.
- the invention proposes to provide a device which, when the engine turns upside down, does not trigger an ignition spark.
- Another object of the invention is to provide a device which makes it possible to obtain, when the engine is running in the normal direction, a variable ignition advance with speed and well suited to the requirements of the engines.
- the invention is based on the remark that the known magnetic flywheels provide, before the main current pulse which is used for ignition, another pulse of opposite polarity, and on the idea of introducing into the device a capacitance which is charged by the first pulse and whose charge thus acquired remains active in operation during the following main pulse, so that in the event of reverse engine operation, which reverses the order when pulses appear, operation is completely disrupted.
- a device is remarkable in that, at least a first and a second immediately successive current pulses of opposite polarities being induced by the variable magnetic flux and the control circuit being designed to trigger the switching off of the switch transistor at during the second pulse, the variable voltage developed at the common point between the impedance and the switch transistor is transmitted to the input terminal of the control circuit by a capacitor whose armature is connected to said common point and, the transmitter and the collector of the switch transistor being shunted by a diode, there is a current path in series with the capacitance between the two terminals of the primary winding, path which allows the preloading of the capacitance, via the diode, during the first pulse.
- the current path in question allows a certain charge of the capacity during the first pulse, a charge which will be added to the control signal thereafter, since it is by this same capacity that the useful control signal is transmitted .
- the device according to the invention operates with maximum security when said threshold value is determined in such a way that the breaking of the current is controlled by the variable voltage, developed as a common point between the impedance and the switch transistor during the second electrical pulse, only when the capacity is preloaded beyond a predetermined value by the current of the first pulse.
- the control circuit comprises a transistor of a second polarity whose base is connected by the capacitance at said point common, whose emitter is connected to the end of the impedance which is not that connected to the common point, and whose collector is connected to the base of the switch transistor.
- the control circuit comprises a transistor of the first polarity whose base is connected by the transmission capacity to said common point and whose collector is connected to the base of a first transistor of a second polarity whose emitter is connected to the end of the impedance which is not that connected to the common point and whose collector is connected to the base of the transistor of the first polarity, and a second transistor of a second polarity whose emitter is connected to the end of the impedance which is not that connected to the common point, whose collector is connected at the base of the switch transistor, and the base of which is connected to the emitter of the transistor of the first polarity.
- the control circuit comprises a transistor of the first polarity, the base of which is connected by the transmission capacity to the said common point and whose collector is connected to the end of the impedance which is not that connected to the common point, and a transistor of a second polarity whose emitter is connected to the end of the impedance which is not that connected to the common point, the collector of which is connected to the base of the switch transistor, and the base of which is connected to the emitter of the transistor of the first polarity.
- the switch control circuit further includes a transistor of a second polarity, the base of which is connected to the midpoint of a resistance bridge which connects the two ends. of the primary winding, whose emitter is connected to the end of the impedance which is not that connected to the common point, and whose collector is connected to the emitter of the above-mentioned transistor of the first polarity.
- control circuit further comprises a transistor of a second polarity, the base of which is connected to the midpoint of a resistance bridge which connects the two ends of the primary winding, the emitter of which is connected to the end of the impedance which is not that connected to the common point, and whose collector is connected to the end of the capacitance which is not that connected to the common point.
- FIG. 1 schematically represents a device according to the invention.
- FIGS. 2A and 2B are diagrams of the voltage developed by the winding over time.
- Figures 3 to 6 show different variants or embodiments of electrical diagrams of a device.
- the device shown in Figure 1 comprises a coil with a primary winding 1 and a secondary winding 2.
- the windings are placed on a frame 3 in which a magnet 4 driven by the rotation of the motor produces a variable magnetic flux which induces a current in the primary winding 1.
- a cut in this current causes a high voltage pulse in the secondary winding for a spark plug.
- the switch transistor Ti is of the NPN type and the resistor R1 is placed in its collector path.
- Figure 2A shows the voltage pulses produced by the primary winding in the case of normal operation with a determined geometry of the magnet and the armatures chosen by way of example. This layout was noted for an idle operation, at 1500 rpm. Each passage of the magnet in front of the coil generates four pulses a, b, c, d, the fourth being very weak. The first and second immediately successive pulses of opposite polarities participate in the operation of the circuit. The other two play no role in normal operation.
- Figure 2B shows the voltage pulses produced in reverse.
- the shape of the pulses Due to the asymmetry of shape of the armature of the coil the shape of the pulses has changed, and the first pulse has become very weak, too weak to play a role, especially since it disappears completely as soon as the circuit is connected and draws current from the winding. Consequently, the first pulse which is not negligible is the pulse "b" of polarity opposite to the pulse "a” of FIG. 2A.
- the main pulse is now pulse "c", which is of opposite polarity to pulse "b" in Figure 2A.
- a control circuit 7 for the conductive or non-conductive state of the switch transistor Ti is provided with an input terminal 9 and is connected to the base of the transistor Ti. Its essential role is, during the second pulse b, to first make the transistor Ti conductive and then to cause the current of this transistor to be cut off. This interruption occurs when the increasing voltage on the input terminal 9 crosses a determined threshold value.
- the variable signal at the common point 8 between the resistor R1 and the transistor Ti is applied to the input terminal 9 via a capacitor C.
- the transistor Ti is here a transistor of the so-called Darlington type which generally comprises by construction a diode D in shunt, diode D which is conductive in the direction of current opposite to that of the transistor Ti.
- a current path in series with the capacitance between the two terminals of the primary winding, path which is conductive at least during the first pulse, is constituted by the diode D and a resistor 10 between the input terminal 9 of the control circuit 7 and terminal 5.
- the threshold value on input 9 of the circuit of FIG. 1, for which the setting in the non-conducting state of the switch transistor Ti, is determined in such a way that the breaking of the current is controlled by the variable voltage developed at the common point 8 during the second electrical pulse only when the capacity is preloaded by the current of the first pulse.
- a person skilled in the art will easily obtain this by carrying out successive experiments during which he will vary elements of the circuit 7 at his choice, so as to vary the triggering threshold, until the above condition is satisfied. . This will be explained more precisely on the occasion of the description of the diagrams given below by way of examples.
- the control circuit 7 comprises a transistor T2 of PNP type, the base of which is connected to the capacitor C via a resistor 11. The other end of the capacitor is connected to the common point 8.
- the emitter of transistor T2 is connected to the end of resistor R1 which is linked to terminal 5, i.e. the end which is not connected to common point 8, and its collector is connected to base of the switch transistor Ti via a diode and a resistor in series.
- a diode D2 constitutes, in series with the resistor 11, a current path between the input of the control circuit, that is to say the point 9 connected to the capacitor C, and the end of the impedance R1 linked at terminal 5, i.e. the end which is not connected to common point 8.
- the operation is as follows: the first pulse produces a signal between terminals 5 and 6 which is more negative on terminal 5; thus the capacitor C is charged via the elements D, 11, D2 with a negative polarity on its left armature in the figure; at the start of the second pulse, the negative voltage across the capacitor negatively polarizes the base of transistor T2 relative to its emitter, which makes it conductive; the pulse produces a more positive signal on terminal 5, and therefore it passes an emitter-collector current in the transistor T2 which makes the transistor Ti conductive and a current begins to pass in R1 and the transistor Ti; the capacitance C is discharged then possibly charges in the other direction due to the base current of the transistor T2, regulated by the value of the resistor 11, and in the end the transistor T2 passes to the cut state as well as the transistor Ti. In the absence of a first negative pulse, the capacitor is not charged and the transistor T2 as well as the transistor Ti are blocked from the start of the positive pulse; there is no spark.
- This circuit which corresponds to the simplest variant of a circuit according to the invention has the disadvantage of not operating if the first pulse is small, that is to say at low speed, unless using a very powerful magnet.
- control circuit comprises a transistor T1 of NPN type, the base of which is connected by the capacitance C to the common point 8, via a resistor 21 in series with the capacitance C.
- a second PNP type transistor T2 has its emitter connected to the resistor R1 on the side of terminal 5.
- a diode is inserted in this link.
- a resistor 26 is inserted there.
- the collector of transistor T2 is connected to the base of the switch transistor.
- a resistor 28 is interposed in series in the link.
- the base of the PNP transistor T2 is connected to the emitter of the NPN transistor T1.
- a resistor 12 is inserted in the link.
- the base of transistor T2 is also connected to the emitter of the switch transistor via one or more resistors, namely resistance 13 in the circuits of FIGS. 5 and 6, and resistors 12 and 13 in series in the circuit of FIG. 4.
- a resistor 30, possibly integrated in the transistor Ti connects the base of the transistor Ti to terminal 6.
- the base of the transistor T1 is connected to the collector of a transistor T4 of the PNP type, the emitter of which is connected to the terminal 5, and the base of which is connected to the collector of the NPN transistor T1.
- the two transistors T1 and T4 are mounted as a thyristor in a known manner, which prevents the transistor T1, once it has become conductive, from relocking again.
- Two resistors 22, 23 in series are placed between terminal 5 and point 9.
- a resistor 24 is further connected between the base of transistor T2 and that of transistor T1 and a resistor 18 between terminal 5 and the base of transistor T2 .
- the collector of the transistor T1 is connected to the end of the impedance R1 which is linked to the terminal 5, that is to say which is not connected to the common point 8. Its base is also connected to terminal 5 by a resistor 17.
- a current path between the capacitance armature, on the left in the figures, and the end of the impedance R1, at the top in the figures, for charging the capacitance during the first negative pulse, is constituted by a or several resistors in series: the resistors 22, 23 or the resistors 18, 24, 21 in the circuit of FIG. 4, the resistors 17 and 21 in the circuits of FIGS. 5, 6.
- the setting of the threshold value at input 9 for which the transistor Ti is cut can be done in the circuit of Figure 4 by the values of the resistors 12 or 13 or 18 and in that of Figures 5 and 6 by the ratio of the resistance bridge 17, 21.
- the value of the basic voltage which makes the transistor T2 conductive is also an important element for fixing the triggering threshold. Elements such as the diode D3 or the resistor 26 bring this voltage to the desired value.
- the point common to the base of the transistor T4 and to the collector of the transistor T1 is connected by a resistor at the midpoint of the bridge of the two resistors 22, 23. This allows the direct triggering of the transistor T4 at large speed, the capacitance C then transmitting to the bridge 22, 23, before having had time to discharge, the voltage created at the terminals of the resistor R1 by the rise of the current. There is then more advance on ignition.
- the emitter of transistor T2 is connected to the end 6 of the primary winding by a resistor 27.
- the control circuit further includes a PNP type transistor T5, the base of which is connected to the central point of a star with three resistors 19, 20, 14. Each of these resistors is connected, from the side opposite to the central point, respectively to terminal 5, i.e. the common point of the primary winding and the resistor R1, at the end 6 of the primary winding, and at the end 8 of the impedance R1.
- the resistance 20 or else the resistance 14 may be infinite, that is to say not be present.
- the emitter of transistor T5 is connected to the end of resistor R1 which is not the one connected to common point 8, and its collector is connected to the emitter of transistor NPN T1, i.e. the base of transistor T2.
- a diode D1 is connected by its anode to the intermediate point of two resistors in series connecting terminal 5 to the base of the transistor T5, and by its cathode to the end of the capacitor C on the side of the transistor T1. This diode allows a faster rise than that which would be obtained via resistors 17 and 21 only, for the voltage on terminal 9 of the capacitor.
- the transistor T5 is blocked at the start of a positive pulse because the voltage obtained at the terminals of the resistor 19 from that between the terminals 5 and 6 or between the terminals 5 and 8 by division in the bridges of resistors 20, 19 and 14, 19 is lower than the emitter-base voltage which would make the transistor T5 conductive.
- the transistor T5 becomes conductive which blocks the transistor T2, as when the transistor T1 becomes conductive.
- the transistors T5 and T1 act each on their own, and it is the first to act which matters: at high speed it is T5 which acts first, which then makes it possible to have more advance on ignition . The switching from one operating mode to the other takes place suddenly at a certain speed.
- the control circuit comprises a transistor T6 of PNP type whose base is connected to the central point of a star of three resistors 15, 16 , 31. Each of these resistors is connected, on the opposite side to the central point, respectively to terminal 5, that is to say the common point of the primary winding and of the resistor R1, at the end 6 of the primary winding , and at the end 8 of the impedance R1.
- the resistor 16 or else the resistor 31 can be infinite, that is to say not be present.
- the emitter-collector path of transistor T6 is not connected in parallel with that of transistor T1 as is the case for transistor T5 in figure 5, but creates a connection between terminal 5 and the armature, on the left in the figure, of the capacitance C.
- the transistor T6 when it becomes conductive adds an additional current to that which crosses the resistor 17, which causes the tension of the armature 9 of the capacitor C to rise more quickly; thus is provided an ignition advance which, from a certain speed, varies gradually as a function of the speed.
- the positive voltage increases very quickly on the terminal 5 of the primary winding, because of the self-inductance.
- the corresponding current in the chain of elements constituted by the resistor 17, the base-emitter space of the transistor T1 and the resistor 13 could develop at the terminals of the resistor 17 a voltage sufficient to make the transistor T2 again conductive.
- the bridge of resistors 26, 27 varies the voltage of the emitter of transistor T2 so as to follow the rise of the voltage applied to its base and to avoid this drawback.
- the invention is not limited to the embodiments described above. It is possible for example to add to the circuit of FIGS. 5 and 6 the resistor 28 of the circuit of FIG. 4, or to introduce into the circuits of FIGS. 5 and 6 the chain of resistors 18, 12, 13 of the circuit of the figure 4. In addition, it is roughly equivalent to connect the lower terminal of the resistor 17 of figures 5 and 6 on the other side of the resistor 21, that is to say directly at point 9, the resistor 21 being of low ohmic value. In the diagram of FIG. 6, the high point of this same resistor 17, which is connected to the supply terminal 5, can also be connected to it through the resistor 15, that is to say that said resistor 17 is then connected between the base of transistor T6 and point 9.
- control circuit 7 which has the required voltage levels (it suffices for example to use transistors of opposite polarity and add or subtract a transistor to reverse the signal applied to the base of the switch transistor) so as to reproduce in another form the circuits described here.
- the transistor Ti can also be replaced by another controllable switch device, for example a MOS type transistor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Description
- La présente invention concerne un dispositif pour l'allumage de moteurs à combustion interne, comprenant une bobine avec un bobinage primaire et un bobinage secondaire, munie d'une armature dans laquelle le passage d'un aimant entraîné par la rotation du moteur produit un flux magnétique variable qui induit dans le bobinage primaire une impulsion de courant dont la coupure provoque dans le bobinage secondaire une impulsion de tension élevée destinée à une bougie d'allumage, un circuit de courant primaire dans lequel se referme ledit courant et qui comporte une impédance en série avec un transistor interrupteur, et un circuit de commande de l'état conducteur ou non conducteur du transistor interrupteur, provoquant la coupure du courant par la coupure dudit transistor interrupteur lorsque la valeur d'un signal de commande appliqué à une borne d'entrée de ce circuit franchit une valeur de seuil déterminée.
- Un tel dispositif est utilisé dans des petits moteurs à combustion interne, par exemple pour des tondeuses à gazon, des scies à chaine, des taille-haies, des débroussailleuses, etc.
- Un tel dispositif est connu du brevet allemand DE 23 14559. Le circuit décrit par ce document comporte un transistor interrupteur qui est de type Darlington NPN avec, en série dans sa connexion d'émetteur une impédance, en l'occurence une résistance de mesure de courant. La tension engendrée par le courant dans cette résistance est appliquée à l'espace base-émetteur d'un transistor NPN, qui devient donc conducteur lorsque le courant dépasse une valeur déterminée. Ce transistor est branché de telle façon que sa conduction provoque la coupure du transistor interrupteur.
- Un tel dispositif fonctionne, mais il n'est pas protégé contre le fonctionnement du moteur tournant à l'envers.
- L'invention se propose de fournir un dispositif qui, lorsque le moteur tourne à l'envers, ne déclenche pas d'étincelle d'allumage.
- Un autre but de l'invention est de fournir un dispositif qui permette d'obtenir, lorsque le moteur tourne dans le sens normal, une avance à l'allumage variable avec la vitesse et bien adaptée aux exigences des moteurs.
- L'invention est basée sur la remarque que les volants magnétiques connus fournissent, avant l'impulsion de courant principale qui est utilisée pour l'allumage, une autre impulsion de polarité opposée, et sur l'idée d'introduire dans le dispositif une capacité qui est chargée par la première impulsion et dont la charge ainsi acquise demeure active dans le fonctionnement au cours de l'impulsion principale qui suit, de telle façon qu'en cas de marche à l'envers du moteur, ce qui inverse l'ordre d'apparition des impulsions, le fonctionnement est complètement perturbé.
- Ainsi un dispositif selon l'invention est remarquable en ce que, au moins une première et une seconde impulsions de courant immédiatement successives de polarités opposées étant induites par le flux magnétique variable et le circuit de commande étant conçu pour déclencher la coupure du transistor interrupteur au cours de la seconde impulsion, la tension variable développée au point commun entre l'impédance et le transistor interrupteur est transmise à la borne d'entrée du circuit de commande par une capacité dont une armature est reliée au dit point commun et, l'émetteur et le collecteur du transistor interrupteur étant shuntés par une diode, il existe un chemin de courant en série avec la capacité entre les deux bornes du bobinage primaire, chemin qui permet le préchargement de la capacité, via la diode, pendant la première impulsion.
- Le chemin de courant en question permet une certaine charge de la capacité au cours de la première impulsion, charge qui viendra s'ajouter au signal de commande par la suite, puisque c'est par cette même capacité que le signal de commande utile est transmis.
- Il est vrai qu'un dispositif comportant une résistance dans laquelle passe le courant primaire et aussi une capacité est connu du brevet allemand DE 15 39180. Toutefois dans ce dispositif, la capacité est directement connectée à une extrémité du bobinage primaire (point référencé 28 ou "c"), et sa charge ne peut donc pas s'ajouter ou se soustraire avec la tension créée par le courant dans la résistance.
- Le dispositif selon l'invention fonctionne avec une sécurité maximale quand ladite valeur de seuil est déterminée de telle façon que la coupure du courant est commandée par la tension variable, développée point commun entre l'impédance et le transistor interrupteur lors de la seconde impulsion électrique, seulement lorsque la capacité est préchargée au delà d'une valeur prédéterminée par le courant de la première impulsion.
- Dans un mode de réalisation particulier, le transistor interrupteur étant d'une première polarité et ladite impédance étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor d'une seconde polarité dont la base est reliée par la capacité au dit point commun, dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, et dont le collecteur est relié à la base du transistor interrupteur.
- Dans un autre mode de réalisation, le transistor interrupteur étant d'une première polarité et ladite impédance étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor de la première polarité dont la base est reliée par la capacité de transmission au dit point commun et dont le collecteur est relié à la base d'un premier transistor d'une seconde polarité dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun et dont le collecteur est relié à la base du transistor de la première polarité, et un second transistor d'une seconde polarité dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, dont le collecteur est relié à la base du transistor interrupteur, et dont la base est reliée à l'émetteur du transistor de la première polarité.
- Dans un encore autre mode de réalisation, le transistor interrupteur étant d'une première polarité et ladite impédance étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor de la première polarité dont la base est reliée par la capacité de transmission au dit point commun et dont le collecteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, et un transistor d'une seconde polarité dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, dont le collecteur est relié à la base du transistor interrupteur, et dont la base est reliée à l'émetteur du transistor de la première polarité.
- Selon une variante, le circuit de commande du commmutateur comporte en outre un transistor d'une seconde polarité dont la base est reliée au point milieu d'un pont de résistances qui relie les deux extrémités du bobinage primaire, dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, et dont le collecteur est relié à l'émetteur du susdit transistor de la première polarité.
- Selon une autre variante, le circuit de commande comporte en outre un transistor d'une seconde polarité dont la base est reliée au point milieu d'un pont de résistances qui relie les deux extrémités du bobinage primaire, dont l'émetteur est relié à l'extrémité de l'impédance qui n'est pas celle reliée au point commun, et dont le collecteur est relié à l'extrémité de la capacité qui n'est pas celle reliée au point commun.
- La description qui va suivre, en regard des dessins annexés décrivant des exemples non limitatifs fera bien comprendre comment l'invention peut être réalisée.
- La figure 1 représente schématiquement un dispositif selon l'invention.
- Les figures 2A et 2B sont des diagrammes de la tension développée par le bobinage au cours du temps.
- Les figures 3 à 6 représentent différentes variantes ou modes de réalisation de schémas électriques d'un dispositif.
- Le dispositif représenté sur la figure 1 comporte une bobine avec un bobinage primaire 1 et un bobinage secondaire 2. Les bobinages sont placés sur une armature 3 dans laquelle un aimant 4 entraîné par la rotation du moteur produit un flux magnétique variable qui induit un courant dans le bobinage primaire 1.
- Une coupure de ce courant provoque dans le bobinage secondaire une impulsion de tension élevée destinée à une bougie d'allumage.
- Le courant du bobinage primaire 1 prélevé sur des bornes 5 et 6 se referme dans un circuit de courant primaire fait d'une résistance R1 en série avec un transistor interrupteur Ti. Le transistor interrupteur Ti est de type NPN et la résistance R1 est placée dans son trajet de collecteur.
- La figure 2A montre les impulsions de tension produites par le bobinage primaire dans le cas d'une marche normale avec une géométrie déterminée de l'aimant et des armatures choisie à titre d'exemple. Ce tracé a été relevé pour un fonctionnement à vide, à 1500 tours/minute. Chaque passage de l'aimant devant la bobine engendre quatre impulsions a, b, c, d, la quatrième étant très faible. La première et la seconde impulsions immédiatement successives de polarités opposées participent au fonctionnement du circuit. Les deux autres ne jouent aucun rôle en fonctionnement normal. La figure 2B montre les impulsions de tension produites en marche arrière. Du fait de la dissymétrie de forme de l'armature de la bobine la forme des impulsions a changé, et la première impulsion est devenue très faible, trop faible pour jouer un rôle, d'autant plus qu'elle disparaît complètement dès que le circuit est branché et tire du courant sur le bobinage. En conséquence la première impulsion qui ne soit pas négligeable est l'impulsion "b" de polarité opposée à l'impulsion "a" de la figure 2A. L'impulsion principale est maintenant l'impulsion "c", qui est de polarité opposée à l'impulsion "b" de la figure 2A.
- Dans le circuit de la figure 1, un circuit de commande 7 de l'état conducteur ou non conducteur du transistor interrupteur Ti est muni d'une borne d'entrée 9 et est relié à la base du transistor Ti. Son rôle essentiel est, lors de la deuxième impulsion b, de rendre d'abord conducteur le transistor Ti puis de provoquer la coupure du courant de ce transistor. Cette coupure se produit lorsque la tension croissante sur la borne d'entrée 9 franchit une valeur de seuil déterminée. Le signal variable au point commun 8 entre la résistance R1 et le transistor Ti est appliqué à la borne d'entrée 9 par l'intermédiaire d'une capacité C.
- Le transistor Ti est ici un transistor de type dit Darlington qui comprend en général par construction une diode D en dérivation, diode D qui est conductrice dans le sens de courant opposé à celui du transistor Ti.
- Un chemin de courant en série avec la capacité entre les deux bornes du bobinage primaire, chemin qui est conducteur au moins pendant la première impulsion, est constitué par la diode D et une résistance 10 entre la borne d'entrée 9 du circuit de commande 7 et la borne 5.
- La valeur de seuil sur l'entrée 9 du circuit de la figure 1, pour laquelle est déclenchée la mise dans l'état non conducteur du transistor interrupteur Ti, est déterminée de telle façon que la coupure du courant est commandée par la tension variable développée au point commun 8 lors de la seconde impulsion électrique seulement lorsque la capacité est préchargée par le courant de la première impulsion. L'homme du métier obtiendra cela aisément en réalisant des expériences successives au cours desquelles il fera varier des éléments du circuit 7 à son choix, de façon à faire varier le seuil de déclenchement, jusqu'à obtenir la satisfaction de la condition ci-dessus. Ceci sera expliqué plus précisément à l'occasion de la description des schémas donnés ci-après à titre d'exemples.
- Dans le dispositif de la figure 3, le circuit de commande 7 comprend un transistor T2 de type PNP dont la base est reliée à la capacité C via une résistance 11. L'autre extrémité de la capacité est reliée au point commun 8. L'émetteur du transistor T2 est relié à l'extrémité de la résistance R1 qui est liée à la borne 5, c'est-à-dire l'extrémité qui n'est pas reliée au point commun 8, et son collecteur est relié à la base du transistor interrupteur Ti via une diode et une résistance en série. Une diode D2 constitue, en série avec la résistance 11, un chemin de courant entre l'entrée du circuit de commande c'est-à-dire le point 9 relié à la capacité C, et l'extrémité de l'impédance R1 liée à la borne 5, c'est-à-dire l'extrémité qui n'est pas reliée au point commun 8.
- Le fonctionnement est le suivant : la première impulsion produit un signal entre les bornes 5 et 6 qui est plus négatif sur la borne 5 ; ainsi la capacité C est chargée via les éléments D, 11, D2 avec une polarité négative sur son armature de gauche sur la figure ; au début de la deuxième impulsion, la tension négative aux bornes de la capacité polarise négativement la base du transistor T2 par rapport à son émetteur, ce qui le rend conducteur ; l'impulsion produit un signal plus positif sur la borne 5, et il passe donc un courant émetteur-collecteur dans le transistor T2 qui rend conducteur le transistor Ti et un courant commence à passer dans R1 et le transistor Ti ; la capacité C se décharge puis se charge éventuellement dans l'autre sens du fait du courant de base du transistor T2, réglé par la valeur de la résistance 11, et en fin de compte le transistor T2 passe à l'état coupé ainsi que le transistor Ti. En l'absence d'une première impulsion négative, la capacité n'est pas chargée et le transistor T2 ainsi que le transistor Ti sont bloqués dès le début de l'impulsion positive ; il n'y a pas d'étincelle.
- Ce circuit qui correspond à la variante la plus simple d'un circuit selon l'invention présente toutefois l'inconvénient de ne pas fonctionner si la première impulsion est petite c'est-à-dire à vitesse faible, à moins d'utiliser un aimant très puissant.
- Dans les circuits des figures 4 à 6, le circuit de commande comprend un transistor T1 de type NPN, dont la base est reliée par la capacité C au point commun 8, via une résistance 21 en série avec la capacité C.
- Un second transistor T2 de type PNP a son émetteur relié à la résistance R1 du côté de la borne 5. Dans le circuit de la figure 4, une diode est insérée dans cette liaison. Dans les circuits des figures 5 et 6, une résistance 26 y est insérée. Le collecteur du transistor T2 est relié à la base du transistor interrupteur. Dans le circuit de la figure 4, une résistance 28 est interposée en série dans la liaison. La base du transistor PNP T2 est reliée à l'émetteur du transistor NPN T1. Dans le circuit de la figure 4 une résistance 12 est insérée dans la liaison. La base du transistor T2 est aussi reliée à l'émetteur du transistor interrupteur via une ou plusieurs résistances à savoir la résistance 13 dans les circuits des figures 5 et 6, et les résistances 12 et 13 en série dans le circuit de la figure 4. Une résistance 30, éventuellement intégrée dans le transistor Ti, relie la base du transistor Ti à la borne 6.
- On supposera par la suite que la masse est connectée à la borne 6. Il ne s'agit là que d'une convention destinée à enlever toute ambiguïté à certaines explications.
- Dans le circuit de la figure 4, la base du transistor T1 est reliée au collecteur d'un transistor T4 de type PNP dont l'émetteur est relié à la borne 5, et dont la base est reliée au collecteur du transistor NPN T1. Ainsi les deux transistors T1 et T4 sont montés en thyristor de façon connue, ce qui interdit au transistor T1, une fois qu'il est devenu conducteur, de se rebloquer à nouveau. Deux résistances 22, 23 en série sont placées entre la borne 5 et le point 9. Une résistance 24 est en outre connectée entre la base du transistor T2 et celle du transistor T1 et une résistance 18 entre la borne 5 et la base du transistor T2.
- Dans les circuits des figures 5 et 6, le collecteur du transistor T1 est relié à l'extrémité de l'impédance R1 qui est liée à la borne 5, c est-à-dire qui n'est pas reliée au point commun 8. Sa base est reliée aussi à la borne 5 par une résistance 17.
- Un chemin de courant entre l'armature de la capacité, à gauche sur les figures, et l'extrémité de l'impédance R1, en haut sur les figures, pour charger la capacité au cours de la première impulsion négative, est constitué par une ou plusieurs résistances en série : les résistances 22, 23 ou les résistances 18, 24, 21 dans le circuit de la figure 4, les résistances 17 et 21 dans les circuits des figures 5, 6.
- Le réglage de la valeur de seuil à l'entrée 9 pour laquelle le transistor Ti est coupé peut se faire dans le circuit de la figure 4 par les valeurs des résistances 12 ou 13 ou 18 et dans celui des figures 5 et 6 par le ratio du pont de résistances 17, 21. La valeur de la tension de base qui rend le transistor T2 conducteur est aussi un élément important pour fixer le seuil de déclenchement. Des éléments tels que la diode D3 ou la résistance 26 amènent cette tension à la valeur désirée.
- Ces trois circuits fonctionnent de la façon suivante : lorsqu'une tension positive apparaît sur la borne 5 par rapport à la borne 6, un courant s'écoule par la jonction émetteur-base du transistor T2 et va vers la borne 6 via les résistances 12 et/ou 13 ; le transistor T2 est donc conducteur et alimente la base du transistor Ti qui devient conducteur ; de ce fait la tension au point 8 est proche de celle au point 6 et la tension au point 9 est encore plus basse étant donné la charge préalable de la capacité C sur la première impulsion négative (comme cela a été expliqué en regard de la figure 3), donc le transistor T1 est bloqué ; une partie du courant qui s'écoule dans le transistor Ti passe par la résistance R1 bien entendu, mais aussi par le chemin de courant déja mentionné ce qui rend de plus en plus positive la tension sur l'armature 9 de la capacité C ; après un certain délai, cette tension au point 9 est assez haute pour rendre le transistor T1 conducteur ce qui fait monter la tension sur la base du transistor T2 ; celui ci se bloque alors ainsi que le transistor Ti.
- Il est clair que lorsque le moteur tourne à l'envers, il n'y a plus de précharge de la capacité C par la première impulsion et le fonctionnement est modifié. Il peut encore se produire une étincelle, mais elle est décalée dans le temps de façon importante.
- Dans le circuit de la figure 4, le point commun à la base du transistor T4 et au collecteur du transistor T1 est relié par une résistance au point milieu du pont des deux résistances 22, 23. Ceci permet le déclenchement direct du transistor T4 à grande vitesse, la capacité C transmettant alors au pont 22, 23, avant d'avoir eu le temps de se décharger, la tension créée aux bornes de la résistance R1 par la montée du courant. Il y a alors plus d'avance à l'allumage.
- Dans les circuits des figures 5 et 6, l'émetteur du transistor T2 est relié à l'extrémité 6 du bobinage primaire par une résistance 27.
- Dans le circuit de la figure 5, le circuit de commande comporte en outre un transistor T5 de type PNP dont la base est reliée au point central d'une étoile de trois résistances 19, 20, 14. Chacune de ces résistances est reliée, du côté opposé au point central, respectivement à la borne 5, c'est-à-dire le point commun du bobinage primaire et de la résistance R1, à l'extrémité 6 du bobinage primaire, et à l'extrémité 8 de l'impédance R1. En variante, la résistance 20 ou bien la résistance 14 peut être infinie, c'est-à-dire ne pas être présente. L'émetteur du transistor T5 est relié à l'extrémité de la résistance R1 qui n'est pas celle reliée au point commun 8, et son collecteur est relié à l'émetteur du transistor NPN T1, c'est-à-dire à la base du transistor T2. En outre une diode D1 est reliée par son anode au point intermédiaire de deux résistances en série reliant la borne 5 à la base du transistor T5, et par sa cathode à l'extrémité de la capacité C du côté du transistor T1. Cette diode permet une remontée plus rapide que celle qui serait obtenue via les résistances 17 et 21 seulement, pour la tension sur la borne 9 de la capacité.
- Le transistor T5 est bloqué au début d'une impulsion positive parce que la tension obtenue aux bornes de la résistance 19 à partir de celle entre les bornes 5 et 6 ou entre les bornes 5 et 8 par division dans les ponts de résistances 20, 19 et 14, 19 est inférieure à la tension émetteur-base qui rendrait le transistor T5 conducteur. Quand cette tension a grandi, le transistor T5 devient conducteur ce qui bloque le transistor T2, comme lorsque le transistor T1 devient conducteur. Ainsi les transistors T5 et T1 agissent chacun de leur côté, et c'est le premier à agir qui importe : à grande vitesse c'est T5 qui agit le premier, ce qui permet d'avoir alors plus d'avance à l'allumage. Le passage d'un mode de fonctionnement à l'autre se fait brutalement à une certaine vitesse.
- Le circuit de la figure 6 qui est le montage préféré, est dérivé de celui de la figure 5 : le circuit de commande comporte un transistor T6 de type PNP dont la base est reliée au point central d'une étoile de trois résistances 15, 16, 31. Chacune de ces résistances est reliée, du côté opposé au point central, respectivement à la borne 5, c'est-à-dire le point commun du bobinage primaire et de la résistance R1, à l'extrémité 6 du bobinage primaire, et à l'extrémité 8 de l'impédance R1. En variante, la résistance 16 ou bien la résistance 31 peut être infinie, c'est-à-dire ne pas être présente. Le trajet émetteur-collecteur du transistor T6 n'est pas relié en parallèle avec celui du transistor T1 comme c'est le cas pour le transistor T5 de la figure 5, mais réalise une liaison entre la borne 5 et l'armature, à gauche sur la figure, de la capacité C. Au lieu d'agir directement pour bloquer le transistor T2 comme fait le transistor T5 de la figure 5, le transistor T6 lorsqu'il devient conducteur ajoute un courant supplémentaire à celui qui traverse la résistance 17, ce qui fait remonter plus vite la tension de l'armature 9 de la capacité C ; ainsi est procurée une avance à l'allumage qui, à partir d'un certain régime, varie progressivement en fonction de la vitesse.
- Lorsque le transistor Ti est coupé, la tension positive croît très rapidement sur la borne 5 du bobinage primaire, à cause de la self-inductance. Le courant correspondant dans la chaine d'éléments constituée par la résistance 17, l'espace base-émetteur du transistor T1 et la résistance 13 pourrait développer aux bornes de la résistance 17 une tension suffisante pour rendre à nouveau conducteur le transistor T2. Le pont des résistances 26, 27 fait varier la tension de l'émetteur du transistor T2 de façon à suivre la montée de la tension appliquée à sa base et à éviter cet inconvénient.
- Un fonctionnement satisfaisant du circuit de la figure 6 est obtenu avec une résistance R1 de l'ordre de 1 à 2 Ω, une capacité de l'ordre de 27 nF, des résistances 21, 17, 13, 15, 16, 26, 27, 30 respectivement de l'ordre de 1,5 kΩ, 40 kΩ, 15 kΩ, 5 kΩ, 40 kΩ, 50 Ω, 7 kΩ, 3 kΩ. Avec ces valeurs, on n'utilise pas de résistance 31. Un élément 29, fait d'une résistance d'environ 5 kΩ en série avec une résistance dite CTN de 15 kΩ est en outre connecté entre la borne 5 et la base du transistor T6, de façon à maintenir les caractéristiques en température. Les transistors Ti et T2 sont des modèles à haute tension.
- L'invention n'est pas limitée aux formes de réalisation décrites ci-dessus. Il est possible par exemple d'ajouter au circuit des figures 5 et 6 la résistance 28 du circuit de la figure 4, ou d'introduire dans les circuits des figures 5 et 6 la chaine de résistances 18, 12, 13 du circuit de la figure 4. Par ailleurs, il est à peu près équivalent de connecter la borne inférieure de la résistance 17 des figures 5 et 6 de l'autre côté de la résistance 21, c'est-à-dire directement au point 9, la résistance 21 étant de valeur ohmique faible. Dans le schéma de la figure 6, le point haut de cette même résistance 17, qui est connecté à la borne d'alimentation 5, peut aussi y être connecté au travers de la résistance 15, c'est à dire que la dite résistance 17 est alors branchée entre la base du transistor T6 et le point 9.
- D'une façon plus générale, en plaçant la résistance R1 dans la connexion d'émetteur du transistor Ti, l'homme du métier peut facilement imaginer un circuit de commande 7 qui présente les niveaux de tension requis (il suffit par exemple d'utiliser des transistors de polarité opposée et d'ajouter ou retrancher un transistor pour inverser le signal appliqué à la base du transistor interrupteur) de façon à reproduire sous une autre forme les circuits décrits ici. Le transistor Ti peut aussi être remplacé par un autre dispositif interrupteur commandable, par exemple un transistor de type MOS.
Claims (9)
- Dispositif pour l'allumage de moteurs à combustion interne, comprenant une bobine avec un bobinage primaire (1) et un bobinage secondaire (2), munie d'une armature (3) dans laquelle le passage d'un aimant entraîné par la rotation du moteur produit un flux magnétique variable qui induit dans le bobinage primaire une impulsion de courant dont la coupure provoque dans le bobinage secondaire une impulsion de tension élevée destinée à une bougie d'allumage, un circuit de courant primaire dans lequel se referme ledit courant et qui comporte une impédance (R1) en série avec un transistor interrupteur (Ti), et un circuit (7) de commande de l'état conducteur ou non conducteur du transistor interrupteur, provoquant la coupure du courant par la mise dans l'état non conducteur du transistor interrupteur lorsque la valeur d'un signal de commande appliqué à une borne d'entrée (9) de ce circuit franchit une valeur de seuil déterminée, caractérisé en ce que, au moins une première (a) et une seconde (b) impulsions de courant immédiatement successives de polarités opposées étant induites par le flux magnétique variable et le circuit de commande étant conçu pour déclencher la coupure du transistor interrupteur au cours de la seconde impulsion (b), la tension variable développée au point commun (8) entre l'impédance (R1) et le transistor interrupteur (Ti) est transmise à la borne d'entrée (9) du circuit de commande par une capacité (C) dont une armature est reliée au dit point commun et, l'émetteur et le collecteur du transistor interrupteur étant shuntés par une diode, il existe un chemin de courant (D, 10) en série avec la capacité entre les deux bornes (5, 6) du bobinage primaire, chemin qui permet le préchargement de la capacité, via la diode, pendant la première impulsion.
- Dispositif selon la revendication 1 caractérisé en ce que ladite valeur de seuil est déterminée de telle façon que la coupure du courant n'est commandée par la tension variable développée au point commun (9) entre l'impédance et le transistor interrupteur lors de la seconde impulsion électrique que lorsque la capacité (C) est préchargée par le courant de la première impulsion (a).
- Dispositif selon l'une des revendications 1 ou 2 caractérisé en ce que, le transistor interrupteur (Ti) étant d'une première polarité et ladite impédance (R1) étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor (T2) d'une seconde polarité dont la base est reliée par la capacité (C) au dit point commun (8), dont l'émetteur est relié à l'extrémité (5) de l'impédance (R1) qui n'est pas celle reliée au point commun (8), et dont le collecteur est relié à la base du transistor (Ti) interrupteur.
- Dispositif selon l'une des revendications 1 ou 2 caractérisé en ce que, le transistor interrupteur (Ti) étant d'une première polarité et ladite impédance (R1) étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor de la première polarité (T1) dont la base est reliée par la capacité (C) de transmission au dit point commun (8) et dont le collecteur est relié à la base d'un premier transistor (T4) d'une seconde polarité dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8) et dont le collecteur est relié à la base du transistor (T1) de la première polarité, et un second transistor (T2) d'une seconde polarité dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), dont le collecteur est relié à la base du transistor (Ti) interrupteur, et dont la base est reliée à l'émetteur du transistor (T1) de la première polarité.
- Dispositif selon l'une des revendications 1 ou 2 caractérisé en ce que, le transistor interrupteur (Ti) étant d'une première polarité et ladite impédance (R1) étant placée dans son trajet de collecteur, le circuit de commande comprend un transistor de la première polarité (T1) dont la base est reliée par la capacité (C) de transmission au dit point commun (8) et dont le collecteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun, et un transistor (T2) d'une seconde polarité dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), dont le collecteur est relié à la base du transistor (Ti) interrupteur, et dont la base est reliée à l'émetteur du transistor (T1) de la première polarité.
- Dispositif selon la revendication 5, caractérisé en ce que le circuit de commande du commmutateur comporte en outre un transistor (T5) d'une seconde polarité dont la base est reliée au point milieu d'un pont de résistances (19, 20) qui relie les deux extrémités (5, 6) du bobinage primaire, dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), et dont le collecteur est relié à la base du susdit transistor (T2) de la seconde polarité.
- Dispositif selon la revendication 5, caractérisé en ce que le circuit de commande du commmutateur comporte en outre un transistor (T6) d'une seconde polarité dont la base est reliée au point milieu d'un pont de résistances (15, 16) qui relie les deux extrémités (5, 6) du bobinage primaire, dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), et dont le collecteur est relié à l'extrémité de la capacité (C) qui n'est pas celle reliée au point commun (8).
- Dispositif selon la revendication 5, caractérisé en ce que le circuit de commande du commmutateur comporte en outre un transistor d'une seconde polarité (T5) dont la base est reliée au point milieu d'un pont de résistances (19, 14) qui relie les deux extrémités de l'impédance (R1), dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), et dont le collecteur est relié à la base du susdit transistor (T2) de la seconde polarité.
- Dispositif selon la revendication 5, caractérisé en ce que le circuit de commande du commmutateur comporte en outre un transistor d'une seconde polarité (T6) dont la base est reliée au point milieu d'un pont de résistances (15, 31) qui relie les deux extrémités de l'impédance (R1), dont l'émetteur est relié à l'extrémité (5) de l'impédance qui n'est pas celle reliée au point commun (8), et dont le collecteur est relié à l'extrémité de la capacité (C) qui n'est pas celle reliée au point commun (8).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9110670 | 1991-08-28 | ||
FR9110670A FR2680835A1 (fr) | 1991-08-28 | 1991-08-28 | Dispositif pour l'allumage de moteurs a combustion interne. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0529735A1 EP0529735A1 (fr) | 1993-03-03 |
EP0529735B1 true EP0529735B1 (fr) | 1996-04-10 |
Family
ID=9416431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92202583A Expired - Lifetime EP0529735B1 (fr) | 1991-08-28 | 1992-08-25 | Dispositif pour l'allumage de moteurs à combustion interne |
Country Status (5)
Country | Link |
---|---|
US (1) | US5220902A (fr) |
EP (1) | EP0529735B1 (fr) |
JP (1) | JP3133164B2 (fr) |
DE (1) | DE69209747T2 (fr) |
FR (1) | FR2680835A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3945645B2 (ja) * | 2002-11-26 | 2007-07-18 | ヤマハモーターエレクトロニクス株式会社 | エンジンのケッチン防止回路 |
ITMI20041015A1 (it) * | 2004-05-21 | 2004-08-21 | Ducati Energia Spa | Sistemna di accensione induttiva per motori a combustione interna |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT285248B (de) * | 1967-05-09 | 1970-10-27 | Bosch Gmbh Robert | Zündeinrichtung für Brennkraftmaschinen |
US3795235A (en) * | 1971-12-16 | 1974-03-05 | Outboard Marine Corp | Breakless ignition system with means for preventing reverse engine operation |
DE2314559C2 (de) * | 1973-03-23 | 1982-08-05 | Robert Bosch Gmbh, 7000 Stuttgart | Zündanlage für Brennkraftmaschinen mit einem Magnetzünder |
US3955549A (en) * | 1974-10-29 | 1976-05-11 | R. E. Phelon Company, Inc. | CD ignition system with anti-reverse feature |
DE2807507A1 (de) * | 1978-02-22 | 1979-08-23 | Bosch Gmbh Robert | Zuendanlage, insbesondere fuer brennkraftmaschinen |
EP0012784A1 (fr) * | 1978-12-27 | 1980-07-09 | SORECO Holding S.A. | Dispositif d'allumage électronique haute-fréquence pour moteur à combustion interne |
JPS5814458U (ja) * | 1981-07-20 | 1983-01-29 | 池田電機株式会社 | エンジンのトランジスタ式点火装置 |
JPS5847156A (ja) * | 1981-09-17 | 1983-03-18 | Fuji Electric Co Ltd | 内燃機関点火回路 |
DE3152015C2 (de) * | 1981-12-31 | 1983-11-24 | Prüfrex-Elektro-Apparatebau Inh. Helga Müller, geb.Dutschke, 8501 Cadolzburg | Elektronische Zündvorrichtung für Brennkraftmaschinen |
DE3201534A1 (de) * | 1982-01-20 | 1983-07-28 | Robert Bosch Gmbh, 7000 Stuttgart | Zuendanlage fuer brennkraftmaschinen mit einem magnetgenerator |
JPH0711271B2 (ja) * | 1987-10-19 | 1995-02-08 | 三菱電機株式会社 | 内燃機関点火装置 |
JPH01267364A (ja) * | 1988-04-14 | 1989-10-25 | Mitsubishi Electric Corp | 内燃機関点火装置 |
US4862861A (en) * | 1988-04-21 | 1989-09-05 | Outboard Marine Corporation | Under the flywheel ignition system |
JPH023067U (fr) * | 1988-06-17 | 1990-01-10 |
-
1991
- 1991-08-28 FR FR9110670A patent/FR2680835A1/fr active Pending
-
1992
- 1992-07-15 US US07/914,373 patent/US5220902A/en not_active Expired - Fee Related
- 1992-08-25 DE DE69209747T patent/DE69209747T2/de not_active Expired - Fee Related
- 1992-08-25 EP EP92202583A patent/EP0529735B1/fr not_active Expired - Lifetime
- 1992-08-25 JP JP04225921A patent/JP3133164B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE69209747T2 (de) | 1996-10-31 |
JPH05195934A (ja) | 1993-08-06 |
FR2680835A1 (fr) | 1993-03-05 |
JP3133164B2 (ja) | 2001-02-05 |
EP0529735A1 (fr) | 1993-03-03 |
DE69209747D1 (de) | 1996-05-15 |
US5220902A (en) | 1993-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0408436B1 (fr) | Circuit de détection du signal phase alternateur polyphase de contrôle d'un régulateur de charge de batterie de véhicule automobile et son utilisation | |
FR2679082A1 (fr) | Dispositif de commutation a semiconducteurs pouvant etre commande et comportant un systeme integre de limitation de courant et de coupure pour temperature excessive. | |
CH620742A5 (fr) | ||
FR2812036A1 (fr) | Dispositif de commande du demarreur d'un moteur thermique | |
EP0509914B1 (fr) | Circuit électrique bi-tension à signalisation de défaut perfectionnée, notamment pour véhicule automobile | |
EP0338926A1 (fr) | Dispositif d'alimentation électrique sous tension élevée du circuit auxiliaire d'un véhicule automobile | |
FR2579033A1 (fr) | Moteur electrique comportant un dispositif de protection a thermistances contre les surintensites | |
EP0529735B1 (fr) | Dispositif pour l'allumage de moteurs à combustion interne | |
EP0307325B1 (fr) | Circuit de commande d'allumage | |
EP0654604B1 (fr) | Procédé et dispositif d'allumage à bobine avec des décharges additionnelles pour diagnostics | |
FR2520890A1 (fr) | Dispositif de controle de la vitesse d'embrayage d'un embrayage electromagnetique | |
FR2788559A1 (fr) | Dispositif de detection d'etat de combustion pour un moteur a combustion interne | |
FR2533375A1 (fr) | Dispositif generateur d'energie electrique pour vehicule, a alternateur polyphase et regulateur de tension | |
EP0561707B1 (fr) | Circuit d'alternateur à régulation modifiée au démarrage | |
EP0163332A1 (fr) | Relais statique pour courant continu | |
EP1113352B1 (fr) | Dispositif de régulation | |
FR2519380A1 (fr) | Dispositif d'allumage electronique pour moteurs a combustion interne | |
EP0046092B1 (fr) | Dispositif électronique de commande d'allumage de moteur à combustion interne | |
EP0559555B1 (fr) | Circuit d'alternateur à antiparasitage amélioré, notamment pour véhicules automobiles | |
FR2467996A1 (fr) | Dispositif de branchement pour limiter la vitesse de rotation d'un moteur | |
FR2522605A2 (fr) | Dispositif d'assistance de direction pour vehicule automobile | |
FR2688033A1 (fr) | Dispositif d'allumage a bobine. | |
FR2548840A1 (fr) | Commutateur disjoncteur statique | |
WO1981002817A1 (fr) | Dispositif de commande automatique de mise en service des aiternateurs de vehicules automobiles | |
CH496889A (fr) | Régulateur électronique d'étincelle électrique d'allumage pour moteur à explosions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN Owner name: PHILIPS COMPOSANTS |
|
17P | Request for examination filed |
Effective date: 19930820 |
|
17Q | First examination report despatched |
Effective date: 19950208 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PHILIPS ELECTRONICS N.V. Owner name: PHILIPS COMPOSANTS ET SEMICONDUCTEURS |
|
REF | Corresponds to: |
Ref document number: 69209747 Country of ref document: DE Date of ref document: 19960515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960710 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960614 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20021231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030827 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030829 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031015 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050429 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |