EP0526619A1 - Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage. - Google Patents

Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage.

Info

Publication number
EP0526619A1
EP0526619A1 EP92906888A EP92906888A EP0526619A1 EP 0526619 A1 EP0526619 A1 EP 0526619A1 EP 92906888 A EP92906888 A EP 92906888A EP 92906888 A EP92906888 A EP 92906888A EP 0526619 A1 EP0526619 A1 EP 0526619A1
Authority
EP
European Patent Office
Prior art keywords
spectrum
sensors
level
real
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92906888A
Other languages
German (de)
English (en)
Other versions
EP0526619B1 (fr
Inventor
Henry Henneuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Societe National Elf Aquitaine
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Publication of EP0526619A1 publication Critical patent/EP0526619A1/fr
Application granted granted Critical
Publication of EP0526619B1 publication Critical patent/EP0526619B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells

Definitions

  • the present invention relates to a method for automatically monitoring the vibrational state of a drill string.
  • the vibrational information emanating from these sensors conceals an obvious complexity for a non-specialist wishing to use it. Indeed, traditional spectrum analyzers generally only produce curves whose analysis is not immediate. However, the master driller must instantly know the vibratory behavior of its lining, and in particular a possible instability of said behavior in order to be able to adjust the various drilling parameters as quickly as possible, namely the weight on the tool, the speed of rotation as well as the mud flow. These instabilities occur due to the fact that the lining constitutes a mechanical assembly having its own modes which is capable of responding to the various mechanical stresses occurring during drilling, such as the work of the tool on the rock and the interactions between the well and said lining, this being true both axially as well as laterally or in torsion.
  • the present invention therefore relates to a method for automatically monitoring the vibrational state of a drill string which makes it possible to use the measurements provided by a set of sensors located at the top of a drill string, in particular by warning a user in a simple way of possible instabilities at the level of these measurements.
  • the invention proposes a method for automatically monitoring the vibrational state of a drill string provided with sensors, said method comprising the following steps:
  • FIG. 2 is a flowchart describing certain stages of signaling to the user.
  • the monitoring system comprises a battery of programmable filters 8 as well as RMS converters 10 or anti-aliasing filters 12 making it possible to process the signals coming from sensors 14 arranged on the drill string 16; the data coming from the converters 10 are grouped together at the level of a multiplexer 18 then transmitted to an analog-digital converter 20 and finally to one or several processors 22.
  • the microprocessor (s) 22 are optionally assisted by one or more signal processors 24 and are coupled to an interface 26; the user can transmit information to the processor (s) 22 by means of a keyboard 28 and a communication link 30.
  • the master driller determines in the first case a state which he considers adequate for effective drilling, possibly assisted in this by a vibration specialist in the field of drilling. This state corresponds to different vibration measurements provided by the sensors, these measurements being processed in the manner described below so as to obtain reference spectra relating to each of the sensors.
  • the processing of the vibration measurements can be carried out either roughly, that is to say that they are sampled at a low frequency, for example 0.1 Hz, and only their effective value is retained, or more fine, namely that they are sampled at a frequency greater than 400 Hz after careful anti-aliasing filtering.
  • simulation software to which mechanical information is supplied on the drill string produces the spectra relating to each of the sensors, the simulation software possibly being integrated into the system itself.
  • the information thus produced is introduced at the level of the processor or processors by means of a communication interface, said processor then only working by comparison with these reference elements.
  • the vibration measurements provided by the sensors are processed in the same manner as for obtaining the reference spectrum, said manner being described above; in the example illustrated, the quantities measured by the sensors are respectively the dynamic component of the hook force (FCD), the longitudinal acceleration (AL), the dynamic component of the torque (CD), the torsional acceleration (AT ) and bending acceleration (AF).
  • FCD dynamic component of the hook force
  • AL longitudinal acceleration
  • CD dynamic component of the torque
  • AT torsional acceleration
  • AF bending acceleration
  • This comparison can be made either at the level of the effective values only, or at the level of the entire spectrum.
  • the processor compares said value with that of reference previously determined, this comparison being carried out in the form of the ratio of the two values, which makes it possible to dispense with a calibration of the always delicate sensors.
  • the master driller If the level of at least one of them exceeds 100 times its reference level, the master driller is alerted to the existence of a very unstable situation and must remedy it as soon as possible.
  • the processing at the spectra level is of the same type. Indeed, the spectra developed on each measurement by the processor are compared lines to lines with those of reference. As for the effective values, the criteria corresponding to ratios respectively 10 and 100 times larger than the reference are retained in the illustrated example. However, in either case, the values 10 and 100 are arbitrary and are subject to change.
  • the present invention makes it possible, in a simple manner, to signal to the master-driller the level of instability of the various quantities measured by the sensors.
  • a set of warning lights is used, similar to conventional lights intended to regulate road traffic, as well as various auditory signals.
  • a green light indicates to the master driller the existence of a stable situation
  • an orange light supplemented by a disengageable discontinuous sound signal warns him of a relative instability
  • a red light supplemented by a sound signal continues the alert of high instability.
  • Figures 3a, 3b and 3c are explanatory curves of the present invention.
  • the curves 3a and 3b are spectra obtained for the same sensor, one 3A being a reference spectrum and the other 3B being an instantaneous spectrum corresponding to a real situation, said spectra extending over a frequency range of 0 , 5 to 50 Hz.
  • the curve 3C represents the ratio of the instantaneous spectrum to the real spectrum over the preceding frequency domain. From the different values of this report, the device is able to signal to the user if it is necessary to make, if necessary, a modification to the different drilling parameters.
  • this monitoring system can be supplemented by numerous algorithms allowing it to significantly expand its possibilities. Thus, it can detect a possible disappearance of the vibrations, corresponding respectively to 1/10 ratios between the real spectrum and the reference spectrum for a relative disappearance and 1/100 for a notable disappearance. The disappearance of vibrations is just as worrying as the increase in amplitudes, because it reflects, among other things, the collapse of the well above the tool.
  • the system object of the present invention allows the processing of data transmitted from the bottom by an appropriate tool and transmitted to the surface by any measurement method during drilling.
  • the master driller can, if necessary, make the modifications which seem to him necessary in terms of the various drilling parameters, such as the weight on the tool, the speed of rotation and the flow of mud.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Earth Drilling (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Spray Control Apparatus (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Méthode de surveillance automatique de l'état vibratoire d'une garniture de forage pourvue de capteurs, ladite méthode comportant les étapes suivantes: obtention d'un spectre de référence pour chacun des capteurs, obtention d'un spectre pour chacun des capteurs en situation réelle, comparaison des deux spectres afin de détecter d'éventuelles instabilités au niveau des grandeurs mesurées par les capteurs, signalisation desdites instabilités au moyen de dispositifs auditifs et/ou visuels.

Description

METHODE DE SURVEILLANCE AUTOMATIQUE DE L'ETAT VIBRATOIRE D'UNE GARNITURE DE FORAGE
La présente invention se rapporte à une méthode de surveillance automatique de l'état vibratoire d'une garniture de forage.
La recherche en milieu pétrolier a conduit à doter en leur sommet les garnitures de forage de nombreux capteurs tels que des accéléromètres et/ou des jauges de contrainte, permettant d'accéder à des grandeurs telles que les accélérations de torsion, axiales ou transverses, la force axiale, le couple et les moments de fléchissement.
Toutefois, l'information vibratoire émanant de ces capteurs recèle une complexité évidente pour un non- spécialiste désirant l'exploiter. En effet, les analyseurs de spectres traditionnels ne produisent en général que des courbes dont l'analyse n'est pas immédiate. Or, le maître- foreur doit connaître de manière instantanée le comportement vibratoire de sa garniture, et notamment une éventuelle instabilité dudit comportement afin de pouvoir régler au plus vite et au mieux les différents paramètres du forage, à savoir le poids sur l'outil, la vitesse de rotation ainsi que le débit de boue. Ces instabilités se produisent du fait que la garniture constitue un ensemble mécanique possédant ses modes propres qui est susceptible de répondre aux diverses sollicitations mécaniques intervenant lors du forage, tels que le travail de l'outil sur la roche et les interactions entre le puits et ladite garniture, ceci étant vrai aussi bien axialement que latéralement ou en torsion.
De telles instabilités sont à proscrire car elles sont à l'origine d'une contrainte supplémentaire apportée au matériau risquant d'entraîner une rupture de la garniture ; de plus, elles consomment une part d'énergie qu'il serait préférable de transmettre directement à l'outil, ce dernier la transformant alors en énergie de destruction de la roche, ce qui contribue à un avancement du forage plus efficace. La présente invention a donc pour objet une méthode de surveillance automatique de l'état vibratoire d'une garniture de forage qui permet d'exploiter les mesures fournies par un ensemble de capteurs situés au sommet d'une garniture de forage, notamment en avertissant un utilisateur de manière simple d'éventuelles instabilités au niveau de ces mesures.
Pour ce faire, l'invention propose une méthode de surveillance automatique de l'état vibratoire d'une garniture de forage pourvue de capteurs, ladite méthode comportant les étapes suivantes :
- obtention d'un spectre de référence pour chacun des capteurs ,
- obtention d'un spectre pour chacun des capteurs en situation réelle,
- comparaison des deux spectres afin de détecter d'éventuelles instabilités au niveau des grandeurs mesurées par les capteurs,
- signalisation desdites instabilités au moyen de dispositifs auditifs et/ou visuels.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après faite en référence aux dessins annexés sur lesquels : - la figure 1 est un dessin schématique de l'ensemble du système de surveillance ;
- la figure 2 est un logigramme décrivant certaines étapes de la signalisation à l'utilisateur ; et
- les figures 3a, 3b et 3c sont des courbes explicatives de la présente invention.
Comme représenté sur la figure l, le système de surveillance comprend une batterie de filtres programmables 8 ainsi que des convertisseurs RMS 10 ou des filtres anti¬ repliement 12 permettant de traiter les signaux provenant de capteurs 14 disposés sur la garniture de forage 16 ; les données provenant des convertisseurs 10 sont regroupées au niveau d'un multiplexeur 18 puis transmises à un convertisseur analogique - numérique 20 et enfin à un ou plusieurs processeurs 22. Le ou les microprocesseurs 22 sont éventuellement assistés par un ou plusieurs processeurs de signal 24 et sont couplés à une interface 26 ; l'utilisateur peut transmettre des informations au(x) processeur(s) 22 au moyen d'un clavier 28 et d'un lien de communication 30. On peut rentrer au niveau de l'interface 26 certaines informations concernant les spectres de référence 32 relatifs à chaque capteur, ladite interface 26 étant reliée à des moyens de signalisation auditifs 34 et/ou visuels 36. Afin de détecter d'éventuelles instabilités au niveau des grandeurs mesurées par les capteurs, il convient de procéder aux étapes suivantes :
- Obtention d'un spectre de référence pour chacun des capteurs : Pour ce faire, deux méthodes sont possibles. Le maître-foreur détermine dans le premier cas un état qu'il juge adéquat à un forage efficace, assisté éventuellement en cela par un spécialiste des vibrations dans le domaine du forage. A cet état correspondent différentes mesures vibratoires fournies par les capteurs, ces mesures étant traitées de la façon décrite ci-après de manière à obtenir des spectres de référence relatifs à chacun des capteurs. Le traitement des mesures vibratoires peut être effectué soit de manière grossière, c'est-à-dire qu'elles sont échantillonnées à une fréquence faible, par exemple 0,1 Hz, et que seule est retenue leur valeur efficace, soit de manière plus fine, à savoir qu'elles sont échantillonnées à une fréquence supérieure à 400 Hz après un filtrage anti-repliement soigné.
Dans le second cas, un logiciel de simulation auquel on fournit des renseignements mécaniques sur la garniture de forage produit les spectres relatifs à chacun des capteurs, le logiciel de simulation pouvant le cas échéant être intégré au système lui-même. L'information ainsi produite est introduite au niveau du ou des processeurs au moyen d'une interface de communication, ledit processeur n'oeuvrant plus ensuite que par comparaison avec ces éléments de référence.
- Obtention d'un spectre en situation réelle : A cette fin, les mesures vibratoires fournies par les capteurs sont traitées de la même manière que pour l'obtention du spectre de référence, ladite manière étant décrite ci-dessus ; dans l'exemple illustré, les grandeurs mesurées par les capteurs sont respectivement la composante dynamique de la force au crochet (FCD) , l'accélération longitudinale (AL) , la composante dynamique du couple (CD) , l'accélération de torsion (AT) et l'accélération de flexion (AF) . L'information est alors transmise au processeur après une conversion analogique - numérique des mesures.
- Comparaison des données et signalisation d'éventuelles instabilités :
Cette comparaison peut se faire soit au niveau des valeurs efficaces uniquement, soit au niveau du spectre tout entier.
En ce qui concerne les valeurs efficaces, le processeur compare ladite valeur à celle de référence déterminée précédemment, cette comparaison s'effectuant sous la forme du rapport des deux valeurs, ce qui permet de s'affranchir d'un étalonnage des capteurs toujours délicat.
Comme représenté sur la figure 2, si aucune valeur efficace n'excède 10 fois son niveau de référence, la situation est considérée comme stable, et aucun avertissement n'est adressé au maître-foreur. Si le niveau de l'une d'entre elles au moins est compris entre 10 et 100 fois son niveau de référence, le maître-foreur est alerté et peut, s'il le juge nécessaire, faire varier les paramètres du forage.
Si le niveau de l'une d'entre elles au moins excède 100 fois son niveau de référence, le maître-foreur est alerté de l'existence d'une situation très instable et se doit d'y remédier au plus vite.
Le traitement au niveau des spectres est du même type. En effet, les spectres élaborés sur chaque mesure par le processeur sont comparés raies à raies avec ceux de référence. De même que pour les valeurs efficaces, les critères correspondant à des rapports respectivement 10 et 100 fois plus grands que la référence sont retenus dans l'exemple illustré. Toutefois, dans un cas comme dans l'autre, les valeurs 10 et 100 sont arbitraires et sont susceptibles d'être modifiées.
Comme représenté sur la figure 2, la présente invention permet, de manière simple, de signaler au maître- foreur le niveau d'instabilité des différentes grandeurs mesurées par les capteurs. Dans l'exemple illustré, on utilise un ensemble de voyants, analogue aux feux classiques destinés à régler la circulation routière, ainsi que différents signaux auditifs.
Dans l'exemple illustré, un voyant vert indique au maître-foreur l'existence d'une situation stable, un voyant orange complété par un signal sonore discontinu débrayable l'avertit d'une instabilité relative et un voyant rouge complété par un signal sonore continu l'alerte d'une forte instabilité.
Les figures 3a, 3b et 3c sont des courbes explicatives de la présente invention. Les courbes 3a et 3b sont des spectres obtenus pour un même capteur, l'un 3A étant un spectre de référence et l'autre 3B étant un spectre instantané correspondant à une situation réelle, lesdits spectres s'étendant sur une gamme de fréquences de 0,5 a 50 Hz. La courbe 3C représente le rapport du spectre instantané sur le spectre réel sur le domaine de fréquences précédant. A partir des différentes valeurs de ce rapport, l'appareil est en mesure de signaler à l'utilisateur s'il est nécessaire d'apporter, le cas échéant, une modification aux différents paramètres de forage.
Il est à noter que ce système de surveillance peut être complété par de nombreux algorithmes lui permettant d'élargir sensiblement ses possibilités. Ainsi, il peut détecter une éventuelle disparition des vibrations, correspondant respectivement à des rapports 1/10 entre le spectre réel et le spectre de référence pour une disparition relative et 1/100 pour une disparition notable. La disparition des vibrations se révèle aussi préoccupante que l'accroissement des amplitudes, car elle traduit entre autres l'effondrement du puits au-dessus de l'outil. De plus, le système objet de la présente invention permet le traitement de données émises depuis le fond par un outil approprié et transmises à la surface par une quelconque méthode de mesure en cours de forage. Ainsi, à partir des différents signaux auditifs et/ou visuels qui lui parviennent, le maître-foreur peut, le cas échéant, apporter les modifications qui lui semblent nécessaires au niveau des différents paramètres de forage, tels que le poids sur l'outil, la vitesse de rotation et le débit de boue.

Claims

REVENDICATIONS
1 - Méthode de surveillance automatique de l'état vibratoire d'une garniture de forage pourvue de capteurs, ladite méthode comportant les étapes suivantes :
- obtention d'un spectre de référence pour chacun des capteurs,
- obtention d'un spectre pour chacun des capteurs en situation réelle, - comparaison des deux spectres afin de détecter d'éventuelles instabilités au niveau des grandeurs mesurées par les capteurs,
- signalisation desdites instabilités au moyen de dispositifs auditifs et/ou visuels, caractérisée en ce que le traitement des spectres s'effectue sur une gamme de fréquences s'étendant au moins de 0,1 Hz à 400 Hz, et en ce que, si le rapport entre spectre réel et spectre de référence est compris entre la valeur de sécurité et la valeur d'alerte, on signale cet état à l'utilisateur afin de lui permettre de modifier le cas échéant les paramètres de forage.
2 - Méthode selon la revendication 1, caractérisée en ce que les signaux fournis par les capteurs passent successivement par des filtres programmables, des convertisseurs RMS ou des filtres anti-repliement, un multiplexeur, un convertisseur analogique - numérique et un ou plusieurs processeurs.
3 - Méthode selon la revendication 1 ou 2, caractérisée en ce que la comparaison s'effectue sous forme d'un rapport entre le spectre réel et le spectre de référence.
4 - Méthode selon l'une des revendications 1 à 3, caractérisée en ce que la comparaison s'effectue soit au niveau des valeurs efficaces uniquement, soit au niveau du spectre tout entier. 5 - Méthode selon l'une des revendications l à 4, caractérisée en ce que, si le rapport entre spectre réel et spectre de référence n'excède pas une valeur de 8
sécurité, on signale à l'utilisateur que les paramètres de forage peuvent être maintenus. 6 - Méthode selon l'une des revendications 1 à 5, caractérisée en ce que, si le rapport entre spectre réel et spectre de référence excède une valeur d'alerte, on signale cet état à l'utilisateur afin qu'il puisse agir activement et modifier les paramètres de forage.
EP92906888A 1991-02-25 1992-02-25 Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage Expired - Lifetime EP0526619B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9102201 1991-02-25
FR9102201A FR2673237B1 (fr) 1991-02-25 1991-02-25 Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage.
PCT/FR1992/000169 WO1992014908A1 (fr) 1991-02-25 1992-02-25 Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage

Publications (2)

Publication Number Publication Date
EP0526619A1 true EP0526619A1 (fr) 1993-02-10
EP0526619B1 EP0526619B1 (fr) 1995-08-30

Family

ID=9410040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92906888A Expired - Lifetime EP0526619B1 (fr) 1991-02-25 1992-02-25 Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage

Country Status (12)

Country Link
US (1) US5273122A (fr)
EP (1) EP0526619B1 (fr)
JP (1) JP3194744B2 (fr)
AT (1) ATE127197T1 (fr)
CA (1) CA2080483C (fr)
DE (1) DE69204396T2 (fr)
DK (1) DK0526619T3 (fr)
ES (1) ES2079862T3 (fr)
FR (1) FR2673237B1 (fr)
NO (1) NO305999B1 (fr)
OA (1) OA09619A (fr)
WO (1) WO1992014908A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321981A (en) * 1993-02-01 1994-06-21 Baker Hughes Incorporated Methods for analysis of drillstring vibration using torsionally induced frequency modulation
US5448911A (en) * 1993-02-18 1995-09-12 Baker Hughes Incorporated Method and apparatus for detecting impending sticking of a drillstring
NO940209D0 (no) * 1993-02-19 1994-01-20 Baker Hughes Inc Fremgangsmaate og anordning for aa detektere borrspinn
GB9620679D0 (en) * 1996-10-04 1996-11-20 Halliburton Co Method and apparatus for sensing and displaying torsional vibration
GB9824248D0 (en) 1998-11-06 1998-12-30 Camco Int Uk Ltd Methods and apparatus for detecting torsional vibration in a downhole assembly
US7168506B2 (en) * 2004-04-14 2007-01-30 Reedhycalog, L.P. On-bit, analog multiplexer for transmission of multi-channel drilling information
GB0419588D0 (en) * 2004-09-03 2004-10-06 Virtual Well Engineer Ltd "Design and control of oil well formation"
US7357030B2 (en) * 2004-11-11 2008-04-15 Battelle Energy Alliance, Llc Apparatus and methods for determining at least one characteristic of a proximate environment
US20100078216A1 (en) * 2008-09-25 2010-04-01 Baker Hughes Incorporated Downhole vibration monitoring for reaming tools
US20110162888A1 (en) 2009-12-02 2011-07-07 Mchugh Charles System and method for the autonomous drilling of ground holes
US20100258352A1 (en) * 2009-04-08 2010-10-14 King Saud University System And Method For Drill String Vibration Control
US8695692B2 (en) * 2011-07-29 2014-04-15 Baker Hughes Incorporated Downhole condition alert system for a drill operator
NL2010033C2 (en) * 2012-12-20 2014-06-23 Cofely Experts B V A method of and a device for determining operational parameters of a computational model of borehole equipment, an electronic controller and borehole equipment.
US9644440B2 (en) 2013-10-21 2017-05-09 Laguna Oil Tools, Llc Systems and methods for producing forced axial vibration of a drillstring
WO2015123570A1 (fr) * 2014-02-13 2015-08-20 Conocophillips Company Notification d'alarme de forage vocale

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28436E (en) * 1970-12-28 1975-06-03 Method op determining downhole occurences in well drilling using rotary torque oscillation measurements
US3703096A (en) * 1970-12-28 1972-11-21 Chevron Res Method of determining downhole occurrences in well drilling using rotary torque oscillation measurements
US4150568A (en) * 1978-03-28 1979-04-24 General Electric Company Apparatus and method for down hole vibration spectrum analysis
US4637479A (en) * 1985-05-31 1987-01-20 Schlumberger Technology Corporation Methods and apparatus for controlled directional drilling of boreholes
US4903245A (en) * 1988-03-11 1990-02-20 Exploration Logging, Inc. Downhole vibration monitoring of a drillstring
GB2217012B (en) * 1988-04-05 1992-03-25 Forex Neptune Sa Method of determining drill bit wear
FR2645205B1 (fr) * 1989-03-31 1991-06-07 Elf Aquitaine Dispositif de representation auditive et/ou visuelle des phenomenes mecaniques dans un forage et utilisation du dispositif dans un procede de conduite d'un forage
GB8916459D0 (en) * 1989-07-19 1989-09-06 Forex Neptune Serv Tech Sa Method of monitoring the drilling of a borehole
JPH07103781B2 (ja) * 1990-04-19 1995-11-08 株式会社小松製作所 小口径管地中掘進機の操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9214908A1 *

Also Published As

Publication number Publication date
NO924117L (no) 1992-10-23
FR2673237B1 (fr) 1999-02-26
WO1992014908A1 (fr) 1992-09-03
JP3194744B2 (ja) 2001-08-06
NO305999B1 (no) 1999-08-30
US5273122A (en) 1993-12-28
ES2079862T3 (es) 1996-01-16
CA2080483A1 (fr) 1992-08-26
NO924117D0 (no) 1992-10-23
CA2080483C (fr) 2001-11-20
JPH05507533A (ja) 1993-10-28
EP0526619B1 (fr) 1995-08-30
OA09619A (fr) 1993-04-30
DE69204396D1 (de) 1995-10-05
FR2673237A1 (fr) 1992-08-28
DK0526619T3 (da) 1996-04-01
DE69204396T2 (de) 1996-05-02
ATE127197T1 (de) 1995-09-15

Similar Documents

Publication Publication Date Title
EP0526619A1 (fr) Methode de surveillance automatique de l'etat vibratoire d'une garniture de forage.
FR2732403A1 (fr) Methode et systeme de prediction de l'apparition d'un dysfonctionnement en cours de forage
CA2030520C (fr) Dispositif et procede de controle d'un forage par analyse des vibrations
FR2461815A1 (fr) Dispositif pour juger de la force d'un cliquetis
CA2072138C (fr) Procede de conduite d'un forage
FR2650336A1 (fr) Procede et dispositif pour determiner un profil sismique vertical par la mesure de vibrations provenant d'un forage
FR2565624A1 (fr) Procede pour optimiser le forage des roches
EP0657620B1 (fr) Méthode et système de contrÔle de "stick-slip" d'un outil de forage
FR2611804A1 (fr) Procede de controle des operations de forage d'un puits
FR2879740A1 (fr) Dispositif de saisie de mouvements perturbateurs au poste de conduite d'une machine de travail mobile
EP1571517A1 (fr) Procédé de contrôle de l'amortissement de vibrations d'un hélicoptère et dispositif mettant en oeuvre le procédé
FR2772125A1 (fr) Procede et dispositif pour determiner l'etat d'une structure vibrante d'un aeronef a voilure tournante
FR2799793A1 (fr) Moteur a piston alternatif
CA2788901A1 (fr) Methode de detection automatisee de l'ingestion d'au moins un corps etranger par un moteur a turbine a gaz
FR2798734A1 (fr) Methode optimisee pour determiner des parametres physiques d'un echantillon soumis a centrifugation
CA2072139C (fr) Procede de determination de la vitesse de rotation d'un outil de forage
EP1054243B1 (fr) Procédé et système de mesure vibratoire combinée
WO1994003338A1 (fr) Procede et dispositifs de detection de la mise en appui d'un pneumatique sur un appui de securite
FR2930183A1 (fr) Procede et dispositif de determination d'au moins un point de fonctionnement d'une machine-outil, machine-outil comprenant un tel dispositif
FR2890739A1 (fr) Procede de caracterisation d'un modele de couple transmis par un groupe moteur
FR2890737A1 (fr) Dispositif d'estimation du deplacement d'un groupe moteur par rapport a la struture d'un vehicule automobile et systeme d'evaluation du couple transmis par le groupe moteur
FR2719385A1 (fr) Procédé de diagraphie acoustique instantanée dans un puits de forage.
FR2642791A1 (fr) Dispositif de mesure de parametres de forage
FR2858400A1 (fr) Jauge de carburant pour reservoir de vehicule automobile
FR2705801A1 (fr) Procédé de contrôle de la vitesse de rotation d'une garniture de forage.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF AQUITAINE PRODUCTION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950830

Ref country code: AT

Effective date: 19950830

REF Corresponds to:

Ref document number: 127197

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69204396

Country of ref document: DE

Date of ref document: 19951005

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079862

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960229

Ref country code: LI

Effective date: 19960229

Ref country code: CH

Effective date: 19960229

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ELF AQUITAINE PRODUCTION

Effective date: 19960228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19990125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990126

Year of fee payment: 8

NLS Nl: assignments of ep-patents

Owner name: ELF EXPLORATION PRODUCTION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990215

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000226

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110311

Year of fee payment: 20

Ref country code: NL

Payment date: 20110128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110128

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120225

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120224