EP0526392A1 - Mixing-in device for small amounts of fluid - Google Patents
Mixing-in device for small amounts of fluid Download PDFInfo
- Publication number
- EP0526392A1 EP0526392A1 EP92810503A EP92810503A EP0526392A1 EP 0526392 A1 EP0526392 A1 EP 0526392A1 EP 92810503 A EP92810503 A EP 92810503A EP 92810503 A EP92810503 A EP 92810503A EP 0526392 A1 EP0526392 A1 EP 0526392A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixing
- main
- mixing device
- metering
- partial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 85
- 238000002347 injection Methods 0.000 claims abstract description 9
- 239000007924 injection Substances 0.000 claims abstract description 9
- 230000003068 static effect Effects 0.000 claims abstract description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000003546 flue gas Substances 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
- B01F25/4323—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4316—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
Definitions
- the invention relates to a device for mixing a small amount of a fluid into a main stream of another fluid in a main channel with an injection system and with at least one downstream static mixing element.
- relatively small amounts for example less than 10%
- of a gas or a liquid are added to the flow of another gas or another liquid
- very long mixing sections are required in the empty tube in order to achieve homogeneous mixing.
- static mixers intensive mixing can be forced over short distances, but this is associated with an increased pressure drop.
- Conventional mixing devices with complicated adjustable injection systems or with simple injection systems and static mixers cannot meet the high demands on the mixing qualities in a wide load range and, above all, even with very low volume flow ratios.
- denitrification is carried out by adding gaseous ammonia to the flue gas stream in a very low ratio of 1: 1000 to 1: 10000.
- Very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the neutralization reaction takes place completely in the subsequent catalyst on the one hand, in order to be able to comply with low nitrogen oxide limit values and on the other hand no excess ammonia breaks through .
- the stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.
- the division of the inlet cross-section of the mixing element into partial areas defined by the mixer structure on the one hand and the assignment of the directed metering openings to these partial areas on the other hand achieves a combined, particularly good homogenization effect if the flow rates through the metering openings are set proportionally to the partial flows through the corresponding partial areas.
- the total cross-sectional area of the metering openings assigned to each partial area can be directly proportional to this partial area.
- Very simple directional metering openings can be used as cylindrical bores the wall of the main metering tube or as outlet tubes. The metering openings can advantageously be directed towards the interior of the subchannels.
- the cross section of the main metering tube can be at least twice as large as the sum of the cross-sectional areas of its metering openings.
- the subchannels of the mixing element can preferably have an angle of 25 ° to 35 ° to the main flow direction.
- Particularly intensive turbulence mixing can also be achieved with a larger angle of 45 °, for example.
- the good homogenization according to the invention can be achieved with very short mixing elements, for example with a length of the mixing element which is one to two times as large as the distance between two adjacent crossing points of the mixing element.
- Further mixing devices with particularly high mixing qualities with a low pressure drop can have a free post-mixing section in the main channel after the first mixing element, which is two to six times as large as the distance between adjacent crossing points of the mixing element or one to three times as large as the smallest diameter of the main channel.
- a second mixing element can also be arranged after the post-mixing section.
- at least two mixing elements can be arranged in the main channel, which have different orientations of their subchannels.
- the devices according to the invention are also particularly suitable for mixing ammonia into the flue gas stream of a denitrification plant.
- FIG. 1 shows a mixing device according to the invention in three views with a injection system 3 for an admixing fluid 1 into another fluid 2 in a main channel 7 and a static mixing element 4 connected downstream in the main flow direction Z.
- the inlet cross section F is divided into partial areas F3, F4, which are defined by the partial channels 15, 16 formed by the mixing element 4.
- 1d shows such a subchannel 15 of a mixing element consisting of V-shaped layers 11 (for example Sulzer SMV mixer). These form the two walls 13 of the partial duct 15 with a cross-sectional area F3, while on the open side the boundary 14 is defined by the layer plane 12.
- the combination of the layers 11 is shown in perspective in FIG. 2.
- F3 is the input cross-sectional area of a subchannel 15 in a layer 11, corresponding to the edge channels in FIG. 1a.
- the mixing element has four layers which divide the input cross-section F into ten partial channels 15 at the edge with partial areas F3 and into seven inner partial channels 16 with partial areas F4.
- the assigned injection system 3 consists of two main metering tubes 20 running parallel to the layer planes 12 with metering openings 21 directed towards the partial areas F3, F4.
- the distribution and dimensioning of the metering openings is assigned to the partial areas in such a way that the flow rates through the metering openings match the partial flows of the main flow through the corresponding partial areas are as proportional as possible. If the flow velocity in the main channel 7 is the same over the entire inlet cross-section F, the flow rate through the assigned metering openings is set proportionally to the partial areas, for the sake of simplicity mostly by the total cross-sectional area Q3, Q4, that of each partial area F3, F4 assigned metering openings is proportional to these partial areas. In the example of FIG.
- This results in a total of 24 metering openings or outlet pipes 22, each with a cross-sectional area Q3 for the inlet cross-section F 24 F3.
- 1b shows the distance P between two adjacent crossing points 17 in the main flow direction Z.
- the length S of the mixing element 4 which is kept as small as possible, corresponds, for example, to 1 to 2 times the distance P. In this example, S is approximately 1.3 times P and in FIG. 4 the length S is P.
- FIG. 8 the same input cross section with the subchannels F3, F4 is combined with another injection device.
- Three main metering tubes 20 run here transversely to the layers 11 with outlet tubes 22 and 23.
- Either two outlet tubes 22 with cross-sectional areas 1/2 Q3 or 1 outlet tube 23 with cross-sectional area Q3 are assigned to the outer subchannels 15 with partial areas F3.
- Either 4 outlet pipes 22 with surface 1/2 Q3 or 2 outlet pipes 23 with surfaces Q3 are assigned to the inner partial channels 16 with partial surfaces F4.
- the total of 24 outlet pipes 22 and the 12 outlet pipes 23 have a total cross-sectional area of all metering openings of 24 Q3, which corresponds to the inlet cross section F of 24 F3.
- the top and bottom outlet pipes 24 have twice the cross-sectional area of the inner outlet pipes 23.
- metering openings 21 or the outlet pipes 22, 23, 24 are always directed towards the interior of partial channels 15, 16 of the mixing element 4 and not towards channel walls 13 or crossing points 17.
- L is usually larger than D.
- FIG. 6 shows a further example with a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17.
- a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17.
- intersecting, rectangular partial channels 15 with cross-sectional areas F3 are formed, which are delimited on the closed two sides by a channel wall 13 and on the two open sides 14 by the layer planes 12.
- the main channel cross-section F is divided into 24 subfaces F3 of the subchannels 15 of equal size, each Partial area F3 is assigned a directed outlet pipe 22 with cross-sectional area Q3.
- the main channel 7 in FIG. 7 has a circular cross section F. 5 layers 11 divide this area F into approximately 5 equally sized partial areas F2. Each partial area F2 is assigned a total cross-sectional area Q2 of the outlet pipes, the three inner layers and partial areas F2 each having three outlet pipes 24 with 1/3 Q2 and the two outer layers 2 outlet pipes 23 with 1/6 Q2 and an outlet pipe 24 with 1/3 Q2 are assigned.
- Fig. 8 shows a mixing device after a sheet in the main channel 7.
- the layer planes of the first mixing element 4 are placed in the direction of the sheet for the purpose of rapid inhomogeneity compensation. This is followed by a free post-mixing section N, which is approximately twice as long as the mixing element 4. After the post-mixing section N is followed by a second mixing element 5, the layers of which are oriented perpendicular to the layers of the mixing element 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Einmischen einer kleinen Menge eines Fluids in einen Hauptstrom eines anderen Fluids in einem Hauptkanal mit einem Eindüsesystem und mit mindestens einem nachgeschalteten statischen Mischelement. Beim Zumischen relativ kleiner Mengen, von beispielsweise weniger als 10 %, eines Gases bzw. einer Flüssigkeit zum Strom eines anderen Gases bzw. einer anderen Flüssigkeit werden sehr lange Mischstrecken im Leerrohr benötigt, um eine homogene Vermischung zu erreichen. Durch den Einsatz von statischen Mischern kann auf kurzen Strecken eine intensive Vermischung erzwungen werden, was aber mit erhöhtem Druckabfall verbunden ist. Herkömmliche Einmischvorrichtungen mit komplizierten einstellbaren Eindüsesystemen oder mit einfachen Eindüsesystemen und statischen Mischern vermögen aber hohe Anforderungen an die Mischgüten in einem weiten Lastbereich und vor allem auch bei sehr kleinen Volumenstromverhältnissen nicht zu erreichen. Beispielsweise wird in Denox-Anlagen eine Entstickung durch Zumischung von gasförmigem Ammoniak in den Rauchgasstrom in einem sehr niedrigen Verhältnis von 1:1000 bis 1:10000 durchgeführt.The invention relates to a device for mixing a small amount of a fluid into a main stream of another fluid in a main channel with an injection system and with at least one downstream static mixing element. When relatively small amounts, for example less than 10%, of a gas or a liquid are added to the flow of another gas or another liquid, very long mixing sections are required in the empty tube in order to achieve homogeneous mixing. By using static mixers, intensive mixing can be forced over short distances, but this is associated with an increased pressure drop. Conventional mixing devices with complicated adjustable injection systems or with simple injection systems and static mixers, however, cannot meet the high demands on the mixing qualities in a wide load range and, above all, even with very low volume flow ratios. In Denox plants, for example, denitrification is carried out by adding gaseous ammonia to the flue gas stream in a very low ratio of 1: 1000 to 1: 10000.
Dabei muss eine sehr gute Homogenität (mit maximaler Abweichung von weniger als 5 % bezogen auf den Mittelwert) erreicht werden, damit im anschliessenden Katalysator einerseits die Neutralisierungsreaktion überall vollständig abläuft, um niedrige Stickoxyd-Grenzwerte einhalten zu können, und andererseits auch kein überschüssiges Ammoniak durchbricht. Die stöchiometrischen Mischverhältnisse müssen also über den ganzen Kanalquerschnitt gleichmässig und dauernd erfüllt sein. Diese Mischgüte muss zudem auf kurzen Strecken und mit geringem Druckabfall erreicht werden, wozu bekannte Einmischvorrichtungen noch nicht genügen.Very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the neutralization reaction takes place completely in the subsequent catalyst on the one hand, in order to be able to comply with low nitrogen oxide limit values and on the other hand no excess ammonia breaks through . The stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.
Es ist daher Aufgabe der vorliegenden Erfindung, diese Nachteile zu überwinden und eine einfache Einmischvorrichtung zu schaffen, welche bei geringem Druckabfall und auf kurzen Strecken eine hohe Mischgüte über den ganzen Kanalquerschnitt und in einem weiten Bereich von Lastfällen sicherstellt. Diese Aufgabe wird erfindungsgemäss durch eine Einmischvorrichtung nach Anspruch 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Ausführungen und Weiterentwicklungen der Erfindung.It is therefore an object of the present invention to overcome these disadvantages and to provide a simple mixing device which, with a low pressure drop and over short distances, ensures a high mixing quality over the entire channel cross section and in a wide range of load cases. According to the invention, this object is achieved by a mixing device according to
Durch die Aufteilung des Eingangsquerschnitts des Mischelements in durch die Mischerstruktur definierte Teilflächen einerseits und die Zuordnung von den gerichteten Dosieröffnungen auf diese Teilflächen andererseits wird ein kombinierter, besonders guter Homogenisierungseffekt erreicht, wenn die Durchflussmengen durch die Dosieröffnungen den Teilströmen durch die entsprechenden Teilflächen proportional eingestellt sind. Bei einer besonders einfachen Zuordnung kann die totale Querschnittsfläche der jeder Teilfläche zugeordneten Dosieröffnungen direkt dieser Teilfläche proportional sein. Sehr einfache gerichtete Dosieröffnungen können als zylindrische Bohrungen in der Wand des Dosierhauptrohrs oder als Austrittsrohre ausgeführt sein. Mit Vorteil können die Dosieröffnungen auf das Innere der Teilkanäle gerichtet sein. Besonders einfache und kostengünstige Anordnungen bei durch Lagen definierten Teilflächen können nur ein senkrecht zu den Lagenebenen verlaufendes Dosierhauptrohr aufweisen. Um eine gleichmässige Dosierung mit allen Dosieröffnungen eines Dosierhauptrohrs zu erreichen, kann der Querschnitt des Dosierhauptrohrs mindestens zweimal so gross sein wie die Summe der Querschnittsflächen seiner Dosieröffnungen. Für möglichst geringe Druckabfälle können die Teilkanäle des Mischelements vorzugsweise einen Winkel von 25° bis 35° zur Hauptströmungsrichtung aufweisen. Besonders intensive Turbulenzvermischung kann aber auch mit einem grösseren Winkel von z.B. 45° erreicht werden.The division of the inlet cross-section of the mixing element into partial areas defined by the mixer structure on the one hand and the assignment of the directed metering openings to these partial areas on the other hand achieves a combined, particularly good homogenization effect if the flow rates through the metering openings are set proportionally to the partial flows through the corresponding partial areas. In the case of a particularly simple assignment, the total cross-sectional area of the metering openings assigned to each partial area can be directly proportional to this partial area. Very simple directional metering openings can be used as cylindrical bores the wall of the main metering tube or as outlet tubes. The metering openings can advantageously be directed towards the interior of the subchannels. Particularly simple and inexpensive arrangements for partial areas defined by layers can only have a main metering tube running perpendicular to the layer planes. In order to achieve uniform metering with all metering openings of a main metering tube, the cross section of the main metering tube can be at least twice as large as the sum of the cross-sectional areas of its metering openings. For the lowest possible pressure drops, the subchannels of the mixing element can preferably have an angle of 25 ° to 35 ° to the main flow direction. Particularly intensive turbulence mixing can also be achieved with a larger angle of 45 °, for example.
Die erfindungsgemäss gute Homogenisierung kann schon mit sehr kurzen Mischelementen erreicht werden, z.B. mit einer Länge des Mischelements, welche ein- bis zweimal so gross ist wie der Abstand zweier benachbarter Kreuzungsstellen des Mischelements. Weitere Einmischvorrichtungen mit besonders hohen Mischgüten bei geringem Druckabfall können im Hauptkanal nach dem ersten .Mischelement eine freie Nachmischstrecke aufweisen, welche zwei- bis sechsmal so gross ist wie der Abstand benachbarter Kreuzungsstellen des Mischelements oder welche ein- bis dreimal so gross ist wie der kleinste Durchmesser des Hauptkanals. Anschliessend an die Nachmischstrecke kann auch ein zweites Mischelement angeordnet werden. Und es können mindestens zwei Mischelemente im Hauptkanal angeordnet sein, welche unterschiedliche Orientierungen ihrer Teilkanäle aufweisen. Die erfindungsgemässen Vorrichtungen eignen sich auch besonders gut zum Einmischen von Ammoniak in den Rauchgasstrom einer Entstickungsanlage.The good homogenization according to the invention can be achieved with very short mixing elements, for example with a length of the mixing element which is one to two times as large as the distance between two adjacent crossing points of the mixing element. Further mixing devices with particularly high mixing qualities with a low pressure drop can have a free post-mixing section in the main channel after the first mixing element, which is two to six times as large as the distance between adjacent crossing points of the mixing element or one to three times as large as the smallest diameter of the main channel. A second mixing element can also be arranged after the post-mixing section. And at least two mixing elements can be arranged in the main channel, which have different orientations of their subchannels. The devices according to the invention are also particularly suitable for mixing ammonia into the flue gas stream of a denitrification plant.
Im folgenden wird die Erfindung anhand von Figuren weiter erläutert. Dabei zeigt:
- Fig. 1a, b, c ein Beispiel einer erfindungsgemässen Einmischvorrichtung in drei Ansichten;
- Fig. 1d von V-förmigen Mischerlagen gebildete Strömungskanäle;
- Fig. 2 zwei Lagen eines statischen Mischelements mit sich kreuzenden Teilkanälen;
- Fig. 3a, b, c ein Beispiel mit drei Hauptrohren;
- Fig. 4 gerichtete Dosieröffnungen als Bohrungen;
- Fig. 5a, b, c ein Beispiel mit einem Hauptrohr und auf die Mischelementlagen als Teilflächen gerichteten Dosieröffnungen;
- Fig. 6a, b, c, d ein Beispiel mit stegförmigen Mischerlagen und rechteckigen Teilkanälen;
- Fig. 7a, b, c ein Beispiel mit rundem Hauptkanalquerschnitt;
- Fig. 8 eine Einmischvorrichtung mit Nachmischstrecke und nachgeordnetem zweitem Mischelement.
- 1a, b, c an example of a mixing device according to the invention in three views;
- 1d flow channels formed by V-shaped mixer layers;
- 2 shows two layers of a static mixing element with intersecting subchannels;
- Fig. 3a, b, c an example with three main tubes;
- 4 directed metering openings as bores;
- 5a, b, c show an example with a main pipe and metering openings directed towards the mixing element layers as partial surfaces;
- 6a, b, c, d an example with web-shaped mixer layers and rectangular subchannels;
- 7a, b, c an example with a round main channel cross section;
- 8 shows a mixing device with a post-mixing section and a downstream second mixing element.
Fig. 1 zeigt eine erfindungsgemässe Einmischvorrichtung in drei Ansichten mit einem Eindüsesystem 3 für ein Zumischfluid 1 in ein anderes Fluid 2 in einem Hauptkanal 7 und einem in Hauptströmungsrichtung Z nachgeschalteten statischen Mischelement 4. Wie in Fig. 1a ersichtlich, ist der Eingangsquerschnitt F in Teilflächen F3, F4 aufgeteilt, welche durch die vom Mischelement 4 gebildeten Teilkanäle 15, 16 definiert sind. In Fig. 1d ist ein solcher Teilkanal 15 eines aus V-förmigen Lagen 11 bestehenden Mischelements (z.B. Sulzer SMV-Mischer) dargestellt. Diese bilden die zwei Wände 13 des Teilkanals 15 mit einer Querschnittsfläche F3, während an der offenen Seite die Begrenzung 14 durch die Lagenebene 12 definiert ist. Die Zusammenstellung der Lagen 11 ist in Fig. 2 perspektivisch gezeigt. Zwei Lagen 11 einer gewellten Mischerstruktur bilden hier sich kreuzende Teilkanäle 15 mit Kreuzungsstellen 17. F3 ist die Eingangsquerschnittsfläche eines Teilkanals 15 in einer Lage 11, entsprechend den Randkanälen in Fig. 1a. Je zwei innere Teilkanäle 15 benachbarter Lagen addieren sich zu einem inneren Teilkanal 16 mit doppelter Querschnittsfläche F4 = 2 F3, welcher begrenzt ist durch die Kanalwände 13 (siehe Fig. 1a). Das Mischelement weist vier Lagen auf, welche den Eingangsquerschnitt F in zehn Teilkanäle 15 am Rand mit Teilflächen F3 und in sieben innere Teilkanäle 16 mit Teilflächen F4 aufteilen. Das zugeordnete Eindüsesystem 3 besteht aus zwei parallel zu den Lagenebenen 12 verlaufenden Dosierhauptrohren 20 mit auf die Teilflächen F3, F4 gerichteten Dosieröffnungen 21. Die Verteilung und Bemessung der Dosieröffnungen ist den Teilflächen so zugeordnet, dass die Durchflussmengen durch die Dosieröffnungen den Teilströmen des Hauptstromes durch die entsprechenden Teilflächen möglichst proportional sind. Wenn die Strömungsgeschwindigkeit im Hauptkanal 7 über den ganzen Eingangsquerschnitt F gleich ist, wird die Durchflussmenge durch die zugeordneten Dosieröffnungen den Teilflächen proportional eingestellt, einfachheitshalber meist indem die totale Querschnittsfläche Q3, Q4, der jeder Teilfläche F3, F4 zugeordneten Dosieröffnungen diesen Teilflächen proportional ist. So ist im Beispiel von Fig. 1 jedem äusseren Teilkanal 15 mit Teilfläche F3 als Dosieröffnung ein Austrittsrohr 22 mit einer Querschnittsfläche Q3 zugeordnet, während für jeden inneren Teilkanal 16 mit doppelter Fläche F4 zwei Austrittsrohre 22 mit einer totalen Querschnittsfläche Q4 = 2 Q3 vorgesehen sind. Dies ergibt total 24 Dosieröffnungen bzw. Austrittsrohre 22 mit je einer Querschnittsfläche Q3 für den Eingangsquerschnitt F = 24 F3. Aus Fig. 1b ist der Abstand P zweier benachbarter Kreuzungsstellen 17 in Hauptstromrichtung Z ersichtlich. Die Länge S des Mischelements 4, welche möglichst klein gehalten ist, entspricht z.B. 1 bis 2 mal dem Abstand P. In diesem Beispiel ist S ca. 1.3 mal P und in Fig. 4 ist die Länge S gleich P. Damit wird schon mit minimalem Druckverlust eine gute kombinierte Homogenisierungswirkung erreicht, vor allem wenn noch eine freie Nachmischstrecke N (Fig. 8) auf das Mischelement 4 folgt, welche mit Vorteil 2 bis 6 mal dem Abstand P entspricht. Im Beispiel von Fig. 3 wird der gleiche Eingangsquerschnitt mit den Teilkanälen F3, F4 mit einer anderen Eindüsevorrichtung kombiniert. Drei Dosierhauptrohre 20 verlaufen hier quer zu den Lagen 11 mit Austrittsrohren 22 und 23. Den äusseren Teilkanälen 15 mit Teilflächen F3 sind dabei entweder zwei Austrittsrohre 22 mit Querschnittsflächen 1/2 Q3 oder 1 Austrittsrohr 23 mit Querschnittfläche Q3 zugeordnet. Den inneren Teilkanälen 16 mit Teilflächen F4 sind entweder 4 Austrittsrohre 22 mit Fläche 1/2 Q3 oder 2 Austrittsrohre 23 mit Flächen Q3 zugeordnet. Die insgesamt 24 Austrittsrohre 22 und die 12 Austrittsrohre 23 weisen eine summierte Querschnittsfläche aller Dosieröffnungen von 24 Q3 auf, welche dem Eingangsquerschnitt F von 24 F3 entspricht.1 shows a mixing device according to the invention in three views with a
Im Beispiel von Fig. 5 mit einem quer zu den Lagenebenen 12 verlaufenden Hauptrohr 20 sind die Teilflächen F1 durch die 10 Mischerlagen 11 definiert: Also F1 = F/10. Das oberste und das unterste Austrittsrohr 24 weisen dabei die doppelte Querschnittsfläche der inneren Austrittsrohre 23 auf. Den inneren Teilflächen F1 sind je 3 Dosierrohre 23 mit einer Querschnittsfläche von 3 x 1/3 Q1 = Q1 und der obersten und der untersten Teilfläche F1 je ein Austrittsrohr 23 mit 1/3 Q1 und ein Austrittsrohr 24 mit 2/3 Q1 zugeordnet, was wiederum eine totale Querschnittsfläche Q1 ergibt. Die insgesamt 28 Austrittsrohre 23 und 24 weisen hier eine totale Querschnittsfläche von 10 Q1 entsprechend der totalen Querschnittsfläche F = 10 F1 auf.In the example of FIG. 5 with a
Wichtig ist, dass die Dosieröffnungen 21 bzw. die Austrittsrohre 22, 23, 24 immer auf das Innere von Teilkanälen 15, 16 des Mischelements 4 gerichtet sind und nicht auf Kanalwände 13 oder Kreuzungsstellen 17.It is important that the
Wie in Fig. 4 illustriert, weisen die gerichteten Dosieröffnungen 21, z.B. als Bohrungen im Hauptrohr 20, eine Länge L auf, die mindestens halb so gross ist wie deren Durchmesser D. Bei den Austrittsrohren 22, 23, 24 ist L meist grösser als D.As illustrated in Fig. 4, the directed
Fig. 6 zeigt eine weiteres Beispiel mit einem statischen Mischelement, welches aus gekreuzten rechteckigen Platten oder Stegen besteht, die in den Lagenebenen 12 an den Kreuzungsstellen 17 miteinander verbunden sind. Dadurch werden sich kreuzende, rechteckige Teilkanäle 15 mit Querschnittsflächen F3 gebildet, welche auf den geschlossenen zwei Seiten von einer Kanalwand 13 und auf den beiden offenen Seiten 14 durch die Lagenebenen 12 begrenzt sind. Der Hauptkanalquerschnitt F ist in 24 gleich grosse Teilflächen F3 der Teilkanäle 15 aufgeteilt, wobei jeder Teilfläche F3 ein gerichtetes Austrittsrohr 22 mit Querschnittsfläche Q3 zugeordnet ist.6 shows a further example with a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17. In this way, intersecting, rectangular
Der Hauptkanal 7 in Fig. 7 weist einen kreisförmigen Querschnitt F auf. 5 Lagen 11 teilen diese Fläche F in ungefähr 5 gleich grosse Teilflächen F2 auf. Jeder Teilfläche F2 ist eine totale Querschnittsfläche Q2 der Austrittsrohre zugeordnet, wobei den 3 inneren Lagen und Teilflächen F2 je drei Austrittsrohre 24 mit 1/3 Q2 und den beiden äusseren Lagen 2 Austrittsrohre 23 mit 1/6 Q2 sowie ein Austrittsrohr 24 mit 1/3 Q2 zugeordnet sind.The
Fig. 8 zeigt eine Einmischvorrichtung nach einem Bogen im Hauptkanal 7. Die Lagenebenen des ersten Mischelements 4 sind zwecks raschem Inhomogenitätsausgleich in Richtung des Bogens gelegt. Anschliessend folgt eine freie Nachmischstrecke N, die rund zweimal so lang ist wie das Mischelement 4. Nach der Nachmischstrecke N folgt ein zweites Mischelement 5, dessen Lagen senkrecht zu den Lagen des Mischelements 4 orientiert sind.Fig. 8 shows a mixing device after a sheet in the
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH227591 | 1991-07-30 | ||
CH2275/91 | 1991-07-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0526392A1 true EP0526392A1 (en) | 1993-02-03 |
EP0526392B1 EP0526392B1 (en) | 1995-11-15 |
Family
ID=4229958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92810503A Expired - Lifetime EP0526392B1 (en) | 1991-07-30 | 1992-07-01 | Mixing-in device for small amounts of fluid |
Country Status (5)
Country | Link |
---|---|
US (1) | US5380088A (en) |
EP (1) | EP0526392B1 (en) |
JP (1) | JP3385042B2 (en) |
AT (1) | ATE130220T1 (en) |
DE (1) | DE59204320D1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995012452A2 (en) * | 1993-11-01 | 1995-05-11 | Erik Hoel | Gas injection method and apparatus |
DE10324886A1 (en) * | 2003-05-30 | 2005-01-20 | Framatome Anp Gmbh | Mixing element for homogenizing flow medium comprises number of mixing blades arranged around central axle in which neighboring blades overlap in their projection on normal plane of central axle |
WO2005021144A1 (en) * | 2003-07-28 | 2005-03-10 | Framatome Anp Gmbh | Mixing system |
EP1982756A1 (en) | 2007-04-19 | 2008-10-22 | Magneti Marelli Sistemi di Scarico S.p.a. | An exhaust system of an internal combustion engine |
WO2009097878A1 (en) * | 2008-02-08 | 2009-08-13 | Voith Patent Gmbh | Mixing arrangement and method |
EP2098697A1 (en) | 2008-02-12 | 2009-09-09 | Magneti Marelli S.p.A. | Exhaust system of an internal combustion engine |
WO2011020200A1 (en) * | 2009-08-18 | 2011-02-24 | Flowtech Industries Ag | Static mixer and its use, f. ex. for catalytic denitrification of exhaust gases and the like |
US20110188338A1 (en) * | 2010-02-03 | 2011-08-04 | Albrecht Melvin J | Stepped down gas mixing device |
WO2011116840A1 (en) | 2010-03-22 | 2011-09-29 | Sulzer Chemtech Ag | Mixing or dispersing element and process for static mixing or dispersing |
CN102389727A (en) * | 2011-10-13 | 2012-03-28 | 东南大学 | SCR (Selective Catalytic Reduction) denitration four-corner tangent circle type ammonia-fume gas uniformly-mixing device |
DE102011089850A1 (en) * | 2011-12-23 | 2013-06-27 | Bosch Emission Systems Gmbh & Co. Kg | Mixing and evaporation device for exhaust system of motor vehicle, particularly for mixing of urea solution with exhaust in internal combustion engine, has cylindrical housing with longitudinal axis and with inlet opening |
US9518734B2 (en) | 2013-01-28 | 2016-12-13 | General Electric Technology Gmbh | Fluid distribution and mixing grid for mixing gases |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH687832A5 (en) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Fuel supply for combustion. |
KR100339317B1 (en) * | 1994-03-25 | 2002-11-23 | 지멘스 악티엔게젤샤프트 | Combined feed and mixing device |
DE19541266A1 (en) | 1995-11-06 | 1997-05-07 | Bayer Ag | Method and device for carrying out chemical reactions using a microstructure lamella mixer |
DE10019414C2 (en) * | 2000-04-19 | 2003-06-12 | Ballard Power Systems | Device for introducing gas into a pipe section |
US20020152680A1 (en) * | 2001-04-18 | 2002-10-24 | Callaghan Vincent M. | Fuel cell power plant |
US20050056313A1 (en) * | 2003-09-12 | 2005-03-17 | Hagen David L. | Method and apparatus for mixing fluids |
US8240908B2 (en) * | 2005-09-01 | 2012-08-14 | The Procter & Gamble Company | Control system for and method of combining materials |
US20080031085A1 (en) * | 2005-09-01 | 2008-02-07 | Mclaughlin Jon K | Control system for and method of combining materials |
US8616760B2 (en) * | 2005-09-01 | 2013-12-31 | The Procter & Gamble Company | Control system for and method of combining materials |
US20070047384A1 (en) * | 2005-09-01 | 2007-03-01 | Mclaughlin Jon K | Control system for and method of combining materials |
CA2584955C (en) * | 2006-05-15 | 2014-12-02 | Sulzer Chemtech Ag | A static mixer |
WO2008077287A1 (en) * | 2006-12-27 | 2008-07-03 | Ningbo Wanhua Polyurethanes Co. Ltd. | An orifice jet-type injection reactor |
CN101209405B (en) * | 2006-12-27 | 2013-08-28 | 宁波万华聚氨酯有限公司 | Hole jet type injecting reactor |
DE102008028616A1 (en) * | 2008-04-21 | 2009-10-22 | Heinrich Gillet Gmbh | mixer |
US8017084B1 (en) * | 2008-06-11 | 2011-09-13 | Callidus Technologies, L.L.C. | Ammonia injection grid for a selective catalytic reduction system |
US8516786B2 (en) * | 2009-08-13 | 2013-08-27 | General Electric Company | System and method for injection of cooling air into exhaust gas flow |
US9387448B2 (en) * | 2012-11-14 | 2016-07-12 | Innova Global Ltd. | Fluid flow mixer |
AT516173B1 (en) * | 2014-10-29 | 2016-03-15 | Merlin Technology Gmbh | Device for air humidification in an air duct |
US9718037B2 (en) * | 2014-12-17 | 2017-08-01 | Caterpillar Inc. | Mixing system for aftertreatment system |
US20180058698A1 (en) * | 2016-08-23 | 2018-03-01 | General Electric Technology Gmbh | Tempered Ammonia Injection For Gas Turbine Selective Catalyst Reduction System |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH291049A (en) * | 1949-02-24 | 1953-05-31 | Minimax Ag | Device for generating air foam. |
US3018182A (en) * | 1960-07-25 | 1962-01-23 | John M Leach | Process and apparatus for treating materials |
DE2412454B1 (en) * | 1974-03-11 | 1975-07-03 | Sulzer Ag | Static mixing device |
CH581493A5 (en) * | 1974-06-24 | 1976-11-15 | Escher Wyss Ag | Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it |
EP0157569A2 (en) * | 1984-03-28 | 1985-10-09 | Kenox Corporation | Wet oxidation system |
EP0167060A1 (en) * | 1984-06-20 | 1986-01-08 | Union Carbide Corporation | A process for dispersing one fluid in another |
US4573803A (en) * | 1984-05-15 | 1986-03-04 | Union Oil Company Of California | Injection nozzle |
US4674888A (en) * | 1984-05-06 | 1987-06-23 | Komax Systems, Inc. | Gaseous injector for mixing apparatus |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1419216A (en) * | 1920-08-10 | 1922-06-13 | Burckhardt Rodolphe William | Device for effecting the mixing of gaseous strata |
US1637697A (en) * | 1927-03-07 | 1927-08-02 | Duriron Co | Mixing nozzle |
US3297305A (en) * | 1957-08-14 | 1967-01-10 | Willie W Walden | Fluid mixing apparatus |
US3643927A (en) * | 1970-10-15 | 1972-02-22 | Phillips Petroleum Co | Stationary mixture and method for mixing material |
CH537208A (en) * | 1971-04-29 | 1973-07-13 | Sulzer Ag | Mixing device for flowable media |
DE2256500C3 (en) * | 1972-11-17 | 1975-09-18 | Hermann J. 8000 Muenchen Schladitz | Porous body for atomizing and / or vaporizing a liquid in a gas stream |
CH563802A5 (en) * | 1973-04-18 | 1975-07-15 | Sulzer Ag | |
US4068830A (en) * | 1974-01-04 | 1978-01-17 | E. I. Du Pont De Nemours And Company | Mixing method and system |
US4266879A (en) * | 1975-01-16 | 1981-05-12 | Mcfall Richard T | Fluid resonator |
US4040256A (en) * | 1976-07-14 | 1977-08-09 | The Dow Chemical Company | Flume mixer |
CH653908A5 (en) * | 1980-10-13 | 1986-01-31 | Jan Grochol | GIANT BODY FOR FABRIC AND HEAT EXCHANGE. |
CH653909A5 (en) * | 1981-07-30 | 1986-01-31 | Sulzer Ag | COLUMN FOR FABRIC AND / OR HEAT EXCHANGE PROCESS. |
US4441823A (en) * | 1982-07-19 | 1984-04-10 | Power Harold H | Static line mixer |
US4564298A (en) * | 1984-05-15 | 1986-01-14 | Union Oil Company Of California | Hydrofoil injection nozzle |
DE3574937D1 (en) * | 1985-05-14 | 1990-02-01 | Sulzer Ag | REACTOR FOR CARRYING OUT HETEROGENIC, CATALYZED CHEMICAL REACTIONS. |
US4824614A (en) * | 1987-04-09 | 1989-04-25 | Santa Fe Energy Company | Device for uniformly distributing a two-phase fluid |
DE3918483A1 (en) * | 1989-06-06 | 1990-12-13 | Munters Euroform Gmbh Carl | FILLED BODY |
-
1992
- 1992-07-01 DE DE59204320T patent/DE59204320D1/en not_active Expired - Fee Related
- 1992-07-01 EP EP92810503A patent/EP0526392B1/en not_active Expired - Lifetime
- 1992-07-01 AT AT92810503T patent/ATE130220T1/en not_active IP Right Cessation
- 1992-07-30 JP JP20394492A patent/JP3385042B2/en not_active Expired - Fee Related
-
1994
- 1994-01-21 US US08/183,926 patent/US5380088A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH291049A (en) * | 1949-02-24 | 1953-05-31 | Minimax Ag | Device for generating air foam. |
US3018182A (en) * | 1960-07-25 | 1962-01-23 | John M Leach | Process and apparatus for treating materials |
DE2412454B1 (en) * | 1974-03-11 | 1975-07-03 | Sulzer Ag | Static mixing device |
CH581493A5 (en) * | 1974-06-24 | 1976-11-15 | Escher Wyss Ag | Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it |
EP0157569A2 (en) * | 1984-03-28 | 1985-10-09 | Kenox Corporation | Wet oxidation system |
US4674888A (en) * | 1984-05-06 | 1987-06-23 | Komax Systems, Inc. | Gaseous injector for mixing apparatus |
US4573803A (en) * | 1984-05-15 | 1986-03-04 | Union Oil Company Of California | Injection nozzle |
EP0167060A1 (en) * | 1984-06-20 | 1986-01-08 | Union Carbide Corporation | A process for dispersing one fluid in another |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995012452A3 (en) * | 1993-11-01 | 1995-06-29 | Erik Hoel | Gas injection method and apparatus |
WO1995012452A2 (en) * | 1993-11-01 | 1995-05-11 | Erik Hoel | Gas injection method and apparatus |
DE10324886B4 (en) * | 2003-05-30 | 2008-02-28 | Framatome Anp Gmbh | Mixing element and static mixer with a number of such mixing elements |
DE10324886A1 (en) * | 2003-05-30 | 2005-01-20 | Framatome Anp Gmbh | Mixing element for homogenizing flow medium comprises number of mixing blades arranged around central axle in which neighboring blades overlap in their projection on normal plane of central axle |
US7665884B2 (en) | 2003-07-28 | 2010-02-23 | Areva ANP GmbH | Mixing system |
WO2005021144A1 (en) * | 2003-07-28 | 2005-03-10 | Framatome Anp Gmbh | Mixing system |
EP1982756A1 (en) | 2007-04-19 | 2008-10-22 | Magneti Marelli Sistemi di Scarico S.p.a. | An exhaust system of an internal combustion engine |
WO2009097878A1 (en) * | 2008-02-08 | 2009-08-13 | Voith Patent Gmbh | Mixing arrangement and method |
CN101939086A (en) * | 2008-02-08 | 2011-01-05 | 沃依特专利有限责任公司 | Mixing arrangement and method |
EP2098697A1 (en) | 2008-02-12 | 2009-09-09 | Magneti Marelli S.p.A. | Exhaust system of an internal combustion engine |
WO2011020200A1 (en) * | 2009-08-18 | 2011-02-24 | Flowtech Industries Ag | Static mixer and its use, f. ex. for catalytic denitrification of exhaust gases and the like |
US20110188338A1 (en) * | 2010-02-03 | 2011-08-04 | Albrecht Melvin J | Stepped down gas mixing device |
US8317390B2 (en) * | 2010-02-03 | 2012-11-27 | Babcock & Wilcox Power Generation Group, Inc. | Stepped down gas mixing device |
WO2011116840A1 (en) | 2010-03-22 | 2011-09-29 | Sulzer Chemtech Ag | Mixing or dispersing element and process for static mixing or dispersing |
CN102389727A (en) * | 2011-10-13 | 2012-03-28 | 东南大学 | SCR (Selective Catalytic Reduction) denitration four-corner tangent circle type ammonia-fume gas uniformly-mixing device |
DE102011089850A1 (en) * | 2011-12-23 | 2013-06-27 | Bosch Emission Systems Gmbh & Co. Kg | Mixing and evaporation device for exhaust system of motor vehicle, particularly for mixing of urea solution with exhaust in internal combustion engine, has cylindrical housing with longitudinal axis and with inlet opening |
US9518734B2 (en) | 2013-01-28 | 2016-12-13 | General Electric Technology Gmbh | Fluid distribution and mixing grid for mixing gases |
Also Published As
Publication number | Publication date |
---|---|
DE59204320D1 (en) | 1995-12-21 |
JP3385042B2 (en) | 2003-03-10 |
ATE130220T1 (en) | 1995-12-15 |
JPH05208125A (en) | 1993-08-20 |
US5380088A (en) | 1995-01-10 |
EP0526392B1 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0526392B1 (en) | Mixing-in device for small amounts of fluid | |
EP0526393B1 (en) | mixing-in device | |
DE4314507C1 (en) | Flotation facility injector | |
EP0594657B1 (en) | Static mixer | |
DE2205371A1 (en) | Mixing device | |
DE2635360C2 (en) | Damping device for a liquid flow | |
EP0879083A1 (en) | Device for mixing small quantities of liquids | |
DE2320741A1 (en) | STATIC MIXING DEVICE | |
EP0472491A1 (en) | Static laminar mixing device, admixing device, as well as the use of the mixing and admixing device | |
DE4313393A1 (en) | Static mixer | |
EP1166861A1 (en) | Mixer for mixing at least two gas streams or other Newtonian liquids | |
WO2005021144A1 (en) | Mixing system | |
DE1020598B (en) | Gas-liquid exchange tray | |
DE4418287C2 (en) | Device for mixing two fluids | |
EP3645149B1 (en) | Distributor for a fluid | |
DE2622530A1 (en) | MIXING DEVICE | |
DE3509895C2 (en) | ||
DD161209A1 (en) | DEVICE FOR STATIC MIXING FLUIDER MEDIA | |
CH615839A5 (en) | Static mixer | |
DE2642105A1 (en) | Static mixer for flowable material - has inner set of superimposed plates with deep grooves on both sides | |
EP0697913B1 (en) | Plate-type catalytic converter | |
DE2359192C3 (en) | Mixer reactor | |
DE19733973C2 (en) | Device for dosing and mixing flowable media | |
DE102017002811A1 (en) | Flow channel with a mixing device | |
CH685430A5 (en) | Media flow distribution plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19930726 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SULZER CHEMTECH AG |
|
17Q | First examination report despatched |
Effective date: 19940808 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 130220 Country of ref document: AT Date of ref document: 19951215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59204320 Country of ref document: DE Date of ref document: 19951221 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960106 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SULZER MANAGEMENT AG |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010702 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
EUG | Se: european patent has lapsed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20070713 Year of fee payment: 16 Ref country code: AT Payment date: 20070716 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080722 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080716 Year of fee payment: 17 Ref country code: IT Payment date: 20080725 Year of fee payment: 17 Ref country code: FR Payment date: 20080715 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080722 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090701 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20100201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100201 |