EP0526392B1 - Mixing-in device for small amounts of fluid - Google Patents

Mixing-in device for small amounts of fluid Download PDF

Info

Publication number
EP0526392B1
EP0526392B1 EP92810503A EP92810503A EP0526392B1 EP 0526392 B1 EP0526392 B1 EP 0526392B1 EP 92810503 A EP92810503 A EP 92810503A EP 92810503 A EP92810503 A EP 92810503A EP 0526392 B1 EP0526392 B1 EP 0526392B1
Authority
EP
European Patent Office
Prior art keywords
mixing
sub
main
metering
mixing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810503A
Other languages
German (de)
French (fr)
Other versions
EP0526392A1 (en
Inventor
Markus Fleischli
Felix Streiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Chemtech AG
Original Assignee
Sulzer Chemtech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Chemtech AG filed Critical Sulzer Chemtech AG
Publication of EP0526392A1 publication Critical patent/EP0526392A1/en
Application granted granted Critical
Publication of EP0526392B1 publication Critical patent/EP0526392B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod

Definitions

  • the invention relates to a device for mixing a small amount of a fluid into a main stream of another fluid.
  • Very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the neutralization reaction takes place completely in the subsequent catalyst on the one hand, in order to be able to meet low nitrogen oxide limit values and on the other hand no excess ammonia breaks through .
  • the stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.
  • the division of the inlet cross-section of the mixing element into partial areas defined by the mixer structure on the one hand and the assignment of the directed metering openings to these partial areas on the other hand achieve a combined, particularly good homogenization effect if the flow rates through the metering openings are set proportionally to the partial flows through the corresponding partial areas.
  • the total cross-sectional area of the metering openings assigned to each partial area can be directly proportional to this partial area.
  • Very simple directional metering openings can be used as cylindrical bores the wall of the main metering tube or as outlet tubes. The metering openings can advantageously be directed towards the interior of the subchannels.
  • the cross section of the main metering tube can be at least twice as large as the sum of the cross-sectional areas of its metering openings.
  • the subchannels of the mixing element can preferably have an angle of 25 ° to 35 ° to the main flow direction.
  • Particularly intensive turbulence mixing can also be achieved with a larger angle of 45 °, for example.
  • the good homogenization according to the invention can be achieved with very short mixing elements, for example with a length of the mixing element which is one to two times as large as the distance between two adjacent crossing points of the mixing element.
  • Further mixing devices with particularly high mixing qualities with a low pressure drop can have a free post-mixing section in the main channel after the first mixing element, which is two to six times as large as the distance between adjacent crossing points of the mixing element or one to three times as large as the smallest diameter of the main channel.
  • a second mixing element can also be arranged after the post-mixing section.
  • at least two mixing elements can be arranged in the main channel, which have different orientations of their subchannels.
  • the devices according to the invention are also particularly well suited for mixing ammonia into the flue gas stream of a denitrification plant.
  • FIG. 1 shows a mixing device according to the invention in three views with a injection system 3 for an admixing fluid 1 into another fluid 2 in a main channel 7 and a static mixing element 4 connected downstream in the main flow direction Z.
  • the inlet cross section F is divided into partial areas F3, F4 which are defined by the partial channels 15, 16 formed by the mixing element 4.
  • Such a subchannel 15 of a mixing element consisting of V-shaped layers 11 (for example Sulzer SMV mixer) is shown in FIG. 1d. These form the two walls 13 of the subchannel 15 with a cross-sectional area F3, while on the open side the boundary 14 is defined by the layer plane 12.
  • the combination of the layers 11 is shown in perspective in FIG. 2.
  • F3 is the input cross-sectional area of a subchannel 15 in a layer 11, corresponding to the edge channels in FIG. 1a.
  • the mixing element has four layers which divide the input cross-section F into ten partial channels 15 at the edge with partial areas F3 and into seven inner partial channels 16 with partial areas F4.
  • the assigned injection system 3 consists of two main metering tubes 20 running parallel to the layer planes 12, with metering openings 21 directed towards the partial areas F3, F4 corresponding partial areas are as proportional as possible. If the flow velocity in the main channel 7 is the same over the entire input cross section F, the flow rate through the assigned metering openings is set proportionally to the partial areas, for the sake of simplicity mostly by the total cross-sectional area Q3, Q4, that of each partial area F3, F4 assigned metering openings is proportional to these partial areas. Thus, in the example of FIG.
  • This results in a total of 24 metering openings or outlet pipes 22, each with a cross-sectional area Q3 for the input cross section F 24 F3.
  • 1b shows the distance P between two adjacent crossing points 17 in the main flow direction Z.
  • the length S of the mixing element 4 which is kept as small as possible, corresponds, for example, to 1 to 2 times the distance P. In this example, S is approximately 1.3 times P and in FIG. 4 the length S is P.
  • FIG. 8 the same input cross section with the subchannels F3, F4 is combined with another injection device.
  • Three main metering tubes 20 run here transversely to the layers 11 with outlet tubes 22 and 23.
  • Either two outlet tubes 22 with cross-sectional areas 1/2 Q3 or 1 outlet tube 23 with cross-sectional area Q3 are assigned to the outer partial channels 15 with partial areas F3.
  • Either 4 outlet pipes 22 with surface 1/2 Q3 or 2 outlet pipes 23 with surfaces Q3 are assigned to the inner partial channels 16 with partial surfaces F4.
  • the total of 24 outlet pipes 22 and the 12 outlet pipes 23 have a summed cross-sectional area of all metering openings of 24 Q3, which corresponds to the inlet cross section F of 24 F3.
  • the uppermost and lowermost outlet pipes 24 have twice the cross-sectional area of the inner outlet pipes 23.
  • metering openings 21 or the outlet pipes 22, 23, 24 are always directed towards the interior of partial channels 15, 16 of the mixing element 4 and not towards channel walls 13 or crossing points 17.
  • L is usually larger than D.
  • FIG. 6 shows a further example with a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17.
  • a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17.
  • intersecting, rectangular partial channels 15 with cross-sectional areas F3 are formed, which are delimited on the closed two sides by a channel wall 13 and on the two open sides 14 by the layer planes 12.
  • the main channel cross section F is divided into 20 partial areas F3 of the subchannels 15 of equal size, each Partial area F3 is assigned a directed outlet pipe 22 with cross-sectional area Q3.
  • the main channel 7 in FIG. 7 has a circular cross section F. 5 layers 11 divide this area F into approximately 5 equally sized partial areas F2. Each partial area F2 is assigned a total cross-sectional area Q2 of the outlet pipes, the three inner layers and partial areas F2 each having three outlet pipes 24 with 1/3 Q2 and the two outer layers 2 outlet pipes 23 with 1/6 Q2 and an outlet pipe 24 with 1/3 Q2 are assigned.
  • Fig. 8 shows a mixing device after a sheet in the main channel 7.
  • the layer planes of the first mixing element 4 are placed in the direction of the sheet for the purpose of rapid inhomogeneity compensation. This is followed by a free post-mixing section N, which is approximately twice as long as the mixing element 4. After the post-mixing section N is followed by a second mixing element 5, the layers of which are oriented perpendicular to the layers of the mixing element 4.
  • each main metering tube should be at least twice as large as the summer of the cross-sectional areas of all metering openings of a main metering tube.
  • a total of between 20 and 100 metering openings 21 should be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

The device for mixing in a small amount of fluid (1) into the main stream of another fluid (2) in a main duct has a nozzle injection system (3) and a static mixing element (4, 5) downstream thereof. The input cross section (F) of the mixing element is subdivided into subareas (F1, F2, F3, F4). The nozzle injection system comprises metering main pipes having a plurality of directed metering orifices (21). The flow rates through the metering orifices are proportional to the part streams through the corresponding associated subareas (F1, F2, F3, F4). This results in very uniform through-mixing over a short distance and with only a small pressure drop. The mixing-in device is particularly suitable for Denox installations. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zum Einmischen einer kleinen Menge eines Fluids in einen Hauptstrom eines anderen Fluids gemäss Anspruch 1.The invention relates to a device for mixing a small amount of a fluid into a main stream of another fluid.

Mischvorrichtungen sind aus CH-A-581493 und DE-B-2412454 bekannt.Mixing devices are known from CH-A-581493 and DE-B-2412454.

Beim Zumischen relativ kleiner Mengen, von beispielsweise weniger als 10 %, eines Gases bzw. einer Flüssigkeit zum Strom eines anderen Gases bzw. einer anderen Flüssigkeit werden sehr lange Mischstrecken im Leerrohr benötigt, um eine homogene Vermischung zu erreichen. Durch den Einsatz von statischen Mischern kann auf kurzen Strecken eine intensive Vermischung erzwungen werden, was aber mit erhöhten Druckabfall verbunden ist. Herkömmliche Einmischvorrichtungen mit komplizierten einstellbaren Eindüsesystemen oder mit einfachen Eindüsesystemen und statischen Mischern vermögen aber hohe Anforderungen an die Mischgüten in einem weiten Lastbereich und vor allem auch bei sehr kleinen Volumenstromverhältnissen nicht zu erreichen. Beispielsweise wird in Denox-Anlagen eine Entstickung durch Zumischung von gasförmigen Ammoniak in den Rauchgasstrom in einem sehr niedrigen Verhältnis von 1:1000 bis 1:10000 durchgeführt.When relatively small amounts, for example less than 10%, of a gas or a liquid are added to the flow of another gas or another liquid, very long mixing sections are required in the empty tube in order to achieve homogeneous mixing. By using static mixers, intensive mixing can be forced over short distances, but this is associated with an increased pressure drop. Conventional mixing devices with complicated, adjustable injection systems or with simple injection systems and static mixers, however, cannot meet the high demands on the mixing qualities in a wide load range and, above all, even with very low volume flow ratios. In Denox plants, for example, denitrification is carried out by adding gaseous ammonia to the flue gas stream in a very low ratio of 1: 1000 to 1: 10000.

Dabei muss eine sehr gute Homogenität (mit maximaler Abweichung von weniger als 5 % bezogen auf den Mittelwert) erreicht werden, damit im anschliessenden Katalysator einerseits die Neutralisierungsreaktion überall vollständig abläuft, um niedrige Stickoxyd-Grenzwerte einhalten zu können, und andererseits auch kein überschüssiges Ammoniak durchbricht. Die stöchiometrischen Mischverhältnisse müssen also über den ganzen Kanalquerschnitt gleichmässig und dauernd erfüllt sein. Diese Mischgüte muss zudem auf kurzen Strecken und mit geringem Druckabfall erreicht werden, wozu bekannte Einmischvorrichtungen noch nicht genügen.Very good homogeneity (with a maximum deviation of less than 5% based on the mean value) must be achieved so that the neutralization reaction takes place completely in the subsequent catalyst on the one hand, in order to be able to meet low nitrogen oxide limit values and on the other hand no excess ammonia breaks through . The stoichiometric mixing ratios must therefore be met uniformly and continuously over the entire channel cross section. This mixing quality must also be achieved over short distances and with a low pressure drop, for which known mixing devices are not yet sufficient.

Es ist daher Aufgabe der vorliegenden Erfindung, diese Nachteile zu überwinden und eine einfache Einmischvorrichtung zu schaffen, welche bei geringem Druckabfall und auf kurzen Strecken eine hohe Mischgüte über den ganzen Kanalquerschnitt und in einem weiten Bereich von Lastfällen sicherstellt. Diese Aufgabe wird erfindungsgemäss durch eine Einmischvorrichtung nach Anspruch 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Ausführungen und Weiterentwicklungen der Erfindung.It is therefore an object of the present invention to overcome these disadvantages and to provide a simple mixing device which ensures a high mixing quality over the entire channel cross section and in a wide range of load cases with a low pressure drop and over short distances. According to the invention, this object is achieved by a mixing device according to claim 1. The dependent claims relate to advantageous embodiments and further developments of the invention.

Durch die Aufteilung des Eingangsquerschnitts des Mischelements in durch die Mischerstruktur definierte Teilflächen einerseits und die Zuordnung von den gerichteten Dosieröffnungen auf diese Teilflächen andererseits wird ein kombinierter, besonders guter Homogenisierungseffekt erreicht, wenn die Durchflussmengen durch die Dosieröffnungen den Teilströmen durch die entsprechenden Teilflächen proportional eingestellt sind. Bei einer besonders einfachen Zuordnung kann die totale Querschnittsfläche der jeder Teilfläche zugeordneten Dosieröffnungen direkt dieser Teilfläche proportional sein. Sehr einfache gerichtete Dosieröffnungen können als zylindrische Bohrungen in der Wand des Dosierhauptrohrs oder als Austrittsrohre ausgeführt sein. Mit Vorteil können die Dosieröffnungen auf das Innere der Teilkanäle gerichtet sein. Besonders einfache und kostengünstige Anordnungen bei durch Lagen definierten Teilflächen können nur ein senkrecht zu den Lagenebenen verlaufendes Dosierhauptrohr aufweisen. Um eine gleichmässige Dosierung mit allen Dosieröffnungen eines Dosierhauptrohrs zu erreichen, kann der Querschnitt des Dosierhauptrohrs mindestens zweimal so gross sein wie die Summe der Querschnittsflächen seiner Dosieröffnungen. Für möglichst geringe Druckabfälle können die Teilkanäle des Mischelements vorzugsweise einen Winkel von 25° bis 35° zur Hauptströmungsrichtung aufweisen. Besonders intensive Turbulenzvermischung kann aber auch mit einem grösseren Winkel von z.B. 45° erreicht werden.The division of the inlet cross-section of the mixing element into partial areas defined by the mixer structure on the one hand and the assignment of the directed metering openings to these partial areas on the other hand achieve a combined, particularly good homogenization effect if the flow rates through the metering openings are set proportionally to the partial flows through the corresponding partial areas. In the case of a particularly simple assignment, the total cross-sectional area of the metering openings assigned to each partial area can be directly proportional to this partial area. Very simple directional metering openings can be used as cylindrical bores the wall of the main metering tube or as outlet tubes. The metering openings can advantageously be directed towards the interior of the subchannels. Particularly simple and inexpensive arrangements for partial areas defined by layers can only have a main metering tube running perpendicular to the layer planes. In order to achieve uniform metering with all metering openings of a main metering tube, the cross section of the main metering tube can be at least twice as large as the sum of the cross-sectional areas of its metering openings. For the lowest possible pressure drops, the subchannels of the mixing element can preferably have an angle of 25 ° to 35 ° to the main flow direction. Particularly intensive turbulence mixing can also be achieved with a larger angle of 45 °, for example.

Die erfindungsgemäss gute Homogenisierung kann schon mit sehr kurzen Mischelementen erreicht werden, z.B. mit einer Länge des Mischelements, welche ein- bis zweimal so gross ist wie der Abstand zweier benachbarter Kreuzungsstellen des Mischelements. Weitere Einmischvorrichtungen mit besonders hohen Mischgüten bei geringem Druckabfall können im Hauptkanal nach dem ersten .Mischelement eine freie Nachmischstrecke aufweisen, welche zwei- bis sechsmal so gross ist wie der Abstand benachbarter Kreuzungsstellen des Mischelements oder welche ein- bis dreimal so gross ist wie der kleinste Durchmesser des Hauptkanals. Anschliessend an die Nachmischstrecke kann auch ein zweites Mischelement angeordnet werden. Und es können mindestens zwei Mischelemente im Hauptkanal angeordnet sein, welche unterschiedliche Orientierungen ihrer Teilkanäle aufweisen. Die erfindungsgemässen Vorrichtungen eignen sich auch besonders gut zum Einmischen von Ammoniak in den Rauchgasstrom einer Entstickungsanlage.The good homogenization according to the invention can be achieved with very short mixing elements, for example with a length of the mixing element which is one to two times as large as the distance between two adjacent crossing points of the mixing element. Further mixing devices with particularly high mixing qualities with a low pressure drop can have a free post-mixing section in the main channel after the first mixing element, which is two to six times as large as the distance between adjacent crossing points of the mixing element or one to three times as large as the smallest diameter of the main channel. A second mixing element can also be arranged after the post-mixing section. And at least two mixing elements can be arranged in the main channel, which have different orientations of their subchannels. The devices according to the invention are also particularly well suited for mixing ammonia into the flue gas stream of a denitrification plant.

Im folgenden wird die Erfindung anhand von Figuren weiter erläutert. Dabei zeigt:

Fig. 1a, b, c
ein Beispiel einer erfindungsgemässen Einmischvorrichtung in drei Ansichten;
Fig. 1d
von V-förmigen Mischerlagen gebildete Strömungskanäle;
Fig. 2
zwei Lagen eines statischen Mischelements mit sich kreuzenden Teilkanälen;
Fig. 3a, b, c
ein Beispiel mit drei Hauptrohren;
Fig. 4
gerichtete Dosieröffnungen als Bohrungen;
Fig. 5a, b, c
ein Beispiel mit einem Hauptrohr und auf die Mischelementlagen als Teilflächen gerichteten Dosieröffnungen;
Fig. 6a, b, c, d
ein Beispiel mit stegförmigen Mischerlagen und rechteckigen Teilkanälen;
Fig. 7a, b, c
ein Beispiel mit rundem Hauptkanalquerschnitt;
Fig. 8
eine Einmischvorrichtung mit Nachmischstrecke und nachgeordnetem zweitem Mischelement.
The invention is explained in more detail below with reference to figures. It shows:
1a, b, c
an example of a mixing device according to the invention in three views;
Fig. 1d
flow channels formed by V-shaped mixer layers;
Fig. 2
two layers of a static mixing element with intersecting partial channels;
3a, b, c
an example with three main tubes;
Fig. 4
directional metering openings as bores;
5a, b, c
an example with a main pipe and metering openings directed towards the mixing element layers as partial surfaces;
6a, b, c, d
an example with bar-shaped mixer layers and rectangular sub-channels;
7a, b, c
an example with a round main duct cross-section;
Fig. 8
a mixing device with post-mixing section and downstream second mixing element.

Fig. 1 zeigt eine erfindungsgemässe Einmischvorrichtung in drei Ansichten mit einem Eindüsesystem 3 für ein Zumischfluid 1 in ein anderes Fluid 2 in einem Hauptkanal 7 und einem in Hauptströmungsrichtung Z nachgeschalteten statischen Mischelement 4. Wie in Fig. 1a ersichtlich, ist der Eingangsquerschnitt F in Teilflächen F3, F4 aufgeteilt, welche durch die vom Mischelement 4 gebildeten Teilkanäle 15, 16 definiert sind. In Fig. 1d ist ein solcher Teilkanal 15 eines aus V-förmigen Lagen 11 bestehenden Mischelements (z.B. Sulzer SMV-Mischer) dargestellt. Diese bilden die zwei Wände 13 des Teilkanals 15 mit einer Querschnittsfläche F3, während an der offenen Seite die Begrenzung 14 durch die Lagenebene 12 definiert ist. Die Zusammenstellung der Lagen 11 ist in Fig. 2 perspektivisch gezeigt. Zwei Lagen 11 einer gewellten Mischerstruktur bilden hier sich kreuzende Teilkanäle 15 mit Kreuzungsstellen 17. F3 ist die Eingangsquerschnittsfläche eines Teilkanals 15 in einer Lage 11, entsprechend den Randkanälen in Fig. 1a. Je zwei innere Teilkanäle 15 benachbarter Lagen addieren sich zu einem inneren Teilkanal 16 mit doppelter Querschnittsfläche F4 = 2 F3, welcher begrenzt ist durch die Kanalwände 13 (siehe Fig. 1a). Das Mischelement weist vier Lagen auf, welche den Eingangsquerschnitt F in zehn Teilkanäle 15 am Rand mit Teilflächen F3 und in sieben innere Teilkanäle 16 mit Teilflächen F4 aufteilen. Das zugeordnete Eindüsesystem 3 besteht aus zwei parallel zu den Lagenebenen 12 verlaufenden Dosierhauptrohren 20 mit auf die Teilflächen F3, F4 gerichteten Dosieröffnungen 21. Die Verteilung und Bemessung der Dosieröffnungen ist den Teilflächen so zugeordnet, dass die Durchflussmengen durch die Dosieröffnungen den Teilströmen des Hauptstromes durch die entsprechenden Teilflächen möglichst proportional sind. Wenn die Strömungsgeschwindigkeit im Hauptkanal 7 über den ganzen Eingangsquerschnitt F gleich ist, wird die Durchflussmenge durch die zugeordneten Dosieröffnungen den Teilflächen proportional eingestellt, einfachheitshalber meist indem die totale Querschnittsfläche Q3, Q4, der jeder Teilfläche F3, F4 zugeordneten Dosieröffnungen diesen Teilflächen proportional ist. So ist im Beispiel von Fig. 1 jedem äusseren Teilkanal 15 mit Teilfläche F3 als Dosieröffnung ein Austrittsrohr 22 mit einer Querschnittsfläche Q3 zugeordnet, während für jeden inneren Teilkanal 16 mit doppelter Fläche F4 zwei Austrittsrohre 22 mit einer totalen Querschnittsfläche Q4 = 2 Q3 vorgesehen sind. Dies ergibt total 24 Dosieröffnungen bzw. Austrittsrohre 22 mit je einer Querschnittsfläche Q3 für den Eingangsquerschnitt F = 24 F3. Aus Fig. 1b ist der Abstand P zweier benachbarter Kreuzungsstellen 17 in Hauptstromrichtung Z ersichtlich. Die Länge S des Mischelements 4, welche möglichst klein gehalten ist, entspricht z.B. 1 bis 2 mal dem Abstand P. In diesem Beispiel ist S ca. 1.3 mal P und in Fig. 4 ist die Länge S gleich P. Damit wird schon mit minimalem Druckverlust eine gute kombinierte Homogenisierungswirkung erreicht, vor allem wenn noch eine freie Nachmischstrecke N (Fig. 8) auf das Mischelement 4 folgt, welche mit Vorteil 2 bis 6 mal dem Abstand P entspricht. Im Beispiel von Fig. 3 wird der gleiche Eingangsquerschnitt mit den Teilkanälen F3, F4 mit einer anderen Eindüsevorrichtung kombiniert. Drei Dosierhauptrohre 20 verlaufen hier quer zu den Lagen 11 mit Austrittsrohren 22 und 23. Den äusseren Teilkanälen 15 mit Teilflächen F3 sind dabei entweder zwei Austrittsrohre 22 mit Querschnittsflächen 1/2 Q3 oder 1 Austrittsrohr 23 mit Querschnittfläche Q3 zugeordnet. Den inneren Teilkanälen 16 mit Teilflächen F4 sind entweder 4 Austrittsrohre 22 mit Fläche 1/2 Q3 oder 2 Austrittsrohre 23 mit Flächen Q3 zugeordnet. Die insgesamt 24 Austrittsrohre 22 und die 12 Austrittsrohre 23 weisen eine summierte Querschnittsfläche aller Dosieröffnungen von 24 Q3 auf, welche dem Eingangsquerschnitt F von 24 F3 entspricht.1 shows a mixing device according to the invention in three views with a injection system 3 for an admixing fluid 1 into another fluid 2 in a main channel 7 and a static mixing element 4 connected downstream in the main flow direction Z. As can be seen in FIG. 1a, the inlet cross section F is divided into partial areas F3, F4 which are defined by the partial channels 15, 16 formed by the mixing element 4. Such a subchannel 15 of a mixing element consisting of V-shaped layers 11 (for example Sulzer SMV mixer) is shown in FIG. 1d. These form the two walls 13 of the subchannel 15 with a cross-sectional area F3, while on the open side the boundary 14 is defined by the layer plane 12. The combination of the layers 11 is shown in perspective in FIG. 2. Two layers 11 of a corrugated mixer structure here form intersecting subchannels 15 with intersection points 17. F3 is the input cross-sectional area of a subchannel 15 in a layer 11, corresponding to the edge channels in FIG. 1a. Two inner subchannels 15 of adjacent layers each add up to an inner subchannel 16 with double cross-sectional area F4 = 2 F3, which is delimited by the channel walls 13 (see FIG. 1a). The mixing element has four layers which divide the input cross-section F into ten partial channels 15 at the edge with partial areas F3 and into seven inner partial channels 16 with partial areas F4. The assigned injection system 3 consists of two main metering tubes 20 running parallel to the layer planes 12, with metering openings 21 directed towards the partial areas F3, F4 corresponding partial areas are as proportional as possible. If the flow velocity in the main channel 7 is the same over the entire input cross section F, the flow rate through the assigned metering openings is set proportionally to the partial areas, for the sake of simplicity mostly by the total cross-sectional area Q3, Q4, that of each partial area F3, F4 assigned metering openings is proportional to these partial areas. Thus, in the example of FIG. 1, an outlet pipe 22 with a cross-sectional area Q3 is assigned to each outer subchannel 15 with partial area F3 as a metering opening, while two outlet pipes 22 with a total cross-sectional area Q4 = 2 Q3 are provided for each inner subchannel 16 with double area F4. This results in a total of 24 metering openings or outlet pipes 22, each with a cross-sectional area Q3 for the input cross section F = 24 F3. 1b shows the distance P between two adjacent crossing points 17 in the main flow direction Z. The length S of the mixing element 4, which is kept as small as possible, corresponds, for example, to 1 to 2 times the distance P. In this example, S is approximately 1.3 times P and in FIG. 4 the length S is P. Thus, with minimal Pressure loss achieves a good combined homogenization effect, especially if a free post-mixing section N (FIG. 8) follows the mixing element 4, which advantageously corresponds to the distance P 2 to 6 times. In the example of FIG. 3, the same input cross section with the subchannels F3, F4 is combined with another injection device. Three main metering tubes 20 run here transversely to the layers 11 with outlet tubes 22 and 23. Either two outlet tubes 22 with cross-sectional areas 1/2 Q3 or 1 outlet tube 23 with cross-sectional area Q3 are assigned to the outer partial channels 15 with partial areas F3. Either 4 outlet pipes 22 with surface 1/2 Q3 or 2 outlet pipes 23 with surfaces Q3 are assigned to the inner partial channels 16 with partial surfaces F4. The total of 24 outlet pipes 22 and the 12 outlet pipes 23 have a summed cross-sectional area of all metering openings of 24 Q3, which corresponds to the inlet cross section F of 24 F3.

Im Beispiel von Fig. 5 mit einem quer zu den Lagenebenen 12 verlaufenden Hauptrohr 20 sind die Teilflächen F1 durch die 10 Mischerlagen 11 definiert: Also F1 = F/10. Das oberste und das unterste Austrittsrohr 24 weisen dabei die doppelte Querschnittsfläche der inneren Austrittsrohre 23 auf. Den inneren Teilflächen F1 sind je 3 Dosierrohre 23 mit einer Querschnittsfläche von 3 x 1/3 Q1 = Q1 und der obersten und der untersten Teilfläche F1 je ein Austrittsrohr 23 mit 1/3 Q1 und ein Austrittsrohr 24 mit 2/3 Q1 zugeordnet, was wiederum eine totale Querschnittsfläche Q1 ergibt. Die insgesamt 28 Austrittsrohre 23 und 24 weisen hier eine totale Querschnittsfläche von 10 Q1 entsprechend der totalen Querschnittsfläche F = 10 F1 auf.In the example of FIG. 5 with a main pipe 20 running transversely to the layer planes 12, the partial areas F1 are defined by the 10 mixer layers 11: F1 = F / 10. The uppermost and lowermost outlet pipes 24 have twice the cross-sectional area of the inner outlet pipes 23. The inner partial surfaces F1 are each assigned 3 metering tubes 23 with a cross-sectional area of 3 x 1/3 Q1 = Q1 and the top and bottom partial surfaces F1 each have an outlet tube 23 with 1/3 Q1 and an outlet tube 24 with 2/3 Q1, which again results in a total cross-sectional area Q1. The total of 28 outlet pipes 23 and 24 here have a total cross-sectional area of 10 Q1 corresponding to the total cross-sectional area F = 10 F1.

Wichtig ist, dass die Dosieröffnungen 21 bzw. die Austrittsrohre 22, 23, 24 immer auf das Innere von Teilkanälen 15, 16 des Mischelements 4 gerichtet sind und nicht auf Kanalwände 13 oder Kreuzungsstellen 17.It is important that the metering openings 21 or the outlet pipes 22, 23, 24 are always directed towards the interior of partial channels 15, 16 of the mixing element 4 and not towards channel walls 13 or crossing points 17.

Wie in Fig. 4 illustriert, weisen die gerichteten Dosieröffnungen 21, z.B. als Bohrungen im Hauptrohr 20, eine Länge L auf, die mindestens halb so gross ist wie deren Durchmesser D. Bei den Austrittsrohren 22, 23, 24 ist L meist grösser als D.As illustrated in Fig. 4, the directed metering openings 21, e.g. as bores in the main pipe 20, a length L that is at least half as large as its diameter D. In the outlet pipes 22, 23, 24, L is usually larger than D.

Fig. 6 zeigt eine weiteres Beispiel mit einem statischen Mischelement, welches aus gekreuzten rechteckigen Platten oder Stegen besteht, die in den Lagenebenen 12 an den Kreuzungsstellen 17 miteinander verbunden sind. Dadurch werden sich kreuzende, rechteckige Teilkanäle 15 mit Querschnittsflächen F3 gebildet, welche auf den geschlossenen zwei Seiten von einer Kanalwand 13 und auf den beiden offenen Seiten 14 durch die Lagenebenen 12 begrenzt sind. Der Hauptkanalquerschnitt F ist in 20 gleich grosse Teilflächen F3 der Teilkanäle 15 aufgeteilt, wobei jeder Teilfläche F3 ein gerichtetes Austrittsrohr 22 mit Querschnittsfläche Q3 zugeordnet ist.6 shows a further example with a static mixing element which consists of crossed rectangular plates or webs which are connected to one another in the layer planes 12 at the crossing points 17. In this way, intersecting, rectangular partial channels 15 with cross-sectional areas F3 are formed, which are delimited on the closed two sides by a channel wall 13 and on the two open sides 14 by the layer planes 12. The main channel cross section F is divided into 20 partial areas F3 of the subchannels 15 of equal size, each Partial area F3 is assigned a directed outlet pipe 22 with cross-sectional area Q3.

Der Hauptkanal 7 in Fig. 7 weist einen kreisförmigen Querschnitt F auf. 5 Lagen 11 teilen diese Fläche F in ungefähr 5 gleich grosse Teilflächen F2 auf. Jeder Teilfläche F2 ist eine totale Querschnittsfläche Q2 der Austrittsrohre zugeordnet, wobei den 3 inneren Lagen und Teilflächen F2 je drei Austrittsrohre 24 mit 1/3 Q2 und den beiden äusseren Lagen 2 Austrittsrohre 23 mit 1/6 Q2 sowie ein Austrittsrohr 24 mit 1/3 Q2 zugeordnet sind.The main channel 7 in FIG. 7 has a circular cross section F. 5 layers 11 divide this area F into approximately 5 equally sized partial areas F2. Each partial area F2 is assigned a total cross-sectional area Q2 of the outlet pipes, the three inner layers and partial areas F2 each having three outlet pipes 24 with 1/3 Q2 and the two outer layers 2 outlet pipes 23 with 1/6 Q2 and an outlet pipe 24 with 1/3 Q2 are assigned.

Fig. 8 zeigt eine Einmischvorrichtung nach einem Bogen im Hauptkanal 7. Die Lagenebenen des ersten Mischelements 4 sind zwecks raschem Inhomogenitätsausgleich in Richtung des Bogens gelegt. Anschliessend folgt eine freie Nachmischstrecke N, die rund zweimal so lang ist wie das Mischelement 4. Nach der Nachmischstrecke N folgt ein zweites Mischelement 5, dessen Lagen senkrecht zu den Lagen des Mischelements 4 orientiert sind.Fig. 8 shows a mixing device after a sheet in the main channel 7. The layer planes of the first mixing element 4 are placed in the direction of the sheet for the purpose of rapid inhomogeneity compensation. This is followed by a free post-mixing section N, which is approximately twice as long as the mixing element 4. After the post-mixing section N is followed by a second mixing element 5, the layers of which are oriented perpendicular to the layers of the mixing element 4.

Der Querschnitt jedes Dosierhauptrohrs soll mindestens 2 mal so gross sein wie die Somme der Querschnittsflächen aller Dosieröffnungen eines Dosierhauptrohrs. Insgesamt sollen zwischen 20 und 100 Dosieröffnungen 21 vorgesehen sein.The cross-section of each main metering tube should be at least twice as large as the summer of the cross-sectional areas of all metering openings of a main metering tube. A total of between 20 and 100 metering openings 21 should be provided.

Claims (16)

  1. Device for mixing a small quantity of a fluid (1) into a main flow of another fluid (2) in a main channel, with an injection system (3) and at least one static mixing unit (4, 5) arranged downstream and filling the cross-section of the main channel, wherein the or each static element is built up from layers (11) with sub-channels and the sub-channels of adjacent layers cross one another and are open to one another, wherein the inlet cross section (F) of the mixing unit is divided into sub-areas (F1, F2, F3, F4), and this division is defined by layers of the mixing unit (F1, F2) or by sub-channels (F3, F4) formed by the mixing unit, wherein the injection system consists of at least one main metering pipe (20) with a plurality of metering openings (21) which are directed at the sub-areas and the length L of which is at least half as great as their diameter D, and the metering openings are associated with the sub-areas in such manner that the flow quantities through the metering openings are substantially proportional to the component flows of the main flow through the corresponding sub-areas (F1, F2, F3, F4).
  2. Mixing device according to claim 1, characterised in that the total cross-sectional area (Q1 to Q4) of the metering openings associated with each sub-area is proportional to this sub-area (F1 to F4).
  3. Mixing device according to claim 1 or 2, characterised in that the directed metering openings (21) consist of cylindrical bores in the wall of the main metering pipe.
  4. Mixing device according to claim 1 or 2, characterised in that the directed metering openings are formed as outlet pipes (22, 23, 24).
  5. Mixing device according to one of the preceding claims, characterised in that the metering openings are directed at the inside of sub-channels (15, 16).
  6. Mixing device according to one of claims 1 to 5, characterised in that the sub-areas (F1, F2) are defined by layers and just one main metering pipe is provided which extends perpendicularly to the layer planes (12).
  7. Mixing device according to one of claims 1 to 5, characterised in that the sub-areas (F3, F4) are defined by sub-channels, and at least two main metering pipes (20) are provided.
  8. Mixing device according to one of the preceding claims, characterised in that the cross section of each main metering pipe is at least twice as great as the sum of the cross-sectional areas of all the metering openings of a main metering pipe.
  9. Mixing device according to one of the preceding claims, characterised in that a total of between 20 and 100 metering openings (21) are provided.
  10. Mixing device according to one of the preceding claims, characterised in that the sub-channels (15) of the mixing unit are disposed at an angle W of between 25° and 35° with respect to the main flow direction Z in the main channel.
  11. Mixing device according to one of the preceding claims, characterised in that the intersecting sub-channels (15) in the main direction of flow Z define at least two adjacent intersection points (17) disposed at a spacing P and the length S of the mixing unit is between one and two times as great as the spacing P.
  12. Mixing device according to one of the preceding claims, characterised in that the first mixing unit (4) is followed by a free post-mixing section N in the main channel which is between two and six times large as the spacing P of adjacent intersection points of the mixing unit.
  13. Mixing device according to one of the preceding claims, characterised by a free post-mixing section N following the first mixing unit which is between one and three times as large as the smallest diameter A of the main channel.
  14. Mixing device according to claim 12 or 13, characterised in that a second mixing unit (5) is arranged subsequent to the post-mixing section N.
  15. Mixing device according to one of the preceding claims, characterised in that at least two mixing units (4, 5) whose sub-channels (15) point in different directions are arranged in the main channel.
  16. Use of the mixing device according to one of the preceding claims in a Denox plant for mixing ammonia into to a waste-gas flow.
EP92810503A 1991-07-30 1992-07-01 Mixing-in device for small amounts of fluid Expired - Lifetime EP0526392B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH227591 1991-07-30
CH2275/91 1991-07-30

Publications (2)

Publication Number Publication Date
EP0526392A1 EP0526392A1 (en) 1993-02-03
EP0526392B1 true EP0526392B1 (en) 1995-11-15

Family

ID=4229958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810503A Expired - Lifetime EP0526392B1 (en) 1991-07-30 1992-07-01 Mixing-in device for small amounts of fluid

Country Status (5)

Country Link
US (1) US5380088A (en)
EP (1) EP0526392B1 (en)
JP (1) JP3385042B2 (en)
AT (1) ATE130220T1 (en)
DE (1) DE59204320D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019414C2 (en) * 2000-04-19 2003-06-12 Ballard Power Systems Device for introducing gas into a pipe section
DE102008028616A1 (en) * 2008-04-21 2009-10-22 Heinrich Gillet Gmbh mixer
CN102151503A (en) * 2010-02-03 2011-08-17 巴布科克和威尔科克斯能量产生集团公司 Stepped down gas mixing device
CN103968372A (en) * 2013-01-28 2014-08-06 阿尔斯通技术有限公司 Fluid distribution and mixing grid for mixing gases

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687832A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Fuel supply for combustion.
AU7988194A (en) * 1993-11-01 1995-05-23 Erik Hoel Gas injection method and apparatus
CA2186253A1 (en) * 1994-03-25 1995-10-05 Klaus Huttenhofer Combined feed and mixing device
DE19541266A1 (en) 1995-11-06 1997-05-07 Bayer Ag Method and device for carrying out chemical reactions using a microstructure lamella mixer
US20020152680A1 (en) * 2001-04-18 2002-10-24 Callaghan Vincent M. Fuel cell power plant
DE10324886B4 (en) * 2003-05-30 2008-02-28 Framatome Anp Gmbh Mixing element and static mixer with a number of such mixing elements
DE10334593B3 (en) * 2003-07-28 2005-04-21 Framatome Anp Gmbh mixing system
US20050056313A1 (en) * 2003-09-12 2005-03-17 Hagen David L. Method and apparatus for mixing fluids
US8616760B2 (en) * 2005-09-01 2013-12-31 The Procter & Gamble Company Control system for and method of combining materials
US8240908B2 (en) * 2005-09-01 2012-08-14 The Procter & Gamble Company Control system for and method of combining materials
US20070047384A1 (en) * 2005-09-01 2007-03-01 Mclaughlin Jon K Control system for and method of combining materials
US20080031085A1 (en) * 2005-09-01 2008-02-07 Mclaughlin Jon K Control system for and method of combining materials
CA2584955C (en) * 2006-05-15 2014-12-02 Sulzer Chemtech Ag A static mixer
WO2008077287A1 (en) * 2006-12-27 2008-07-03 Ningbo Wanhua Polyurethanes Co. Ltd. An orifice jet-type injection reactor
CN101209405B (en) * 2006-12-27 2013-08-28 宁波万华聚氨酯有限公司 Hole jet type injecting reactor
EP1982756A1 (en) 2007-04-19 2008-10-22 Magneti Marelli Sistemi di Scarico S.p.a. An exhaust system of an internal combustion engine
DE102008000258A1 (en) * 2008-02-08 2009-08-13 Voith Patent Gmbh mixing arrangement
DE602008002403D1 (en) 2008-02-12 2010-10-14 Magneti Marelli Spa Exhaust system of an internal combustion engine
US8017084B1 (en) * 2008-06-11 2011-09-13 Callidus Technologies, L.L.C. Ammonia injection grid for a selective catalytic reduction system
US8516786B2 (en) * 2009-08-13 2013-08-27 General Electric Company System and method for injection of cooling air into exhaust gas flow
CH702279B8 (en) * 2009-08-18 2011-12-30 Flowtech Ind Ag Static mixer.
EP2368625A1 (en) 2010-03-22 2011-09-28 Sulzer Chemtech AG Method and device for dispersion
CN102389727B (en) * 2011-10-13 2013-10-09 东南大学 SCR (Selective Catalytic Reduction) denitration four-corner tangent circle type ammonia-fume gas uniformly-mixing device
DE102011089850A1 (en) * 2011-12-23 2013-06-27 Bosch Emission Systems Gmbh & Co. Kg Mixing and evaporation device for exhaust system of motor vehicle, particularly for mixing of urea solution with exhaust in internal combustion engine, has cylindrical housing with longitudinal axis and with inlet opening
US9387448B2 (en) * 2012-11-14 2016-07-12 Innova Global Ltd. Fluid flow mixer
AT516173B1 (en) * 2014-10-29 2016-03-15 Merlin Technology Gmbh Device for air humidification in an air duct
US9718037B2 (en) * 2014-12-17 2017-08-01 Caterpillar Inc. Mixing system for aftertreatment system
US20180058698A1 (en) * 2016-08-23 2018-03-01 General Electric Technology Gmbh Tempered Ammonia Injection For Gas Turbine Selective Catalyst Reduction System

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1419216A (en) * 1920-08-10 1922-06-13 Burckhardt Rodolphe William Device for effecting the mixing of gaseous strata
US1637697A (en) * 1927-03-07 1927-08-02 Duriron Co Mixing nozzle
CH291049A (en) * 1949-02-24 1953-05-31 Minimax Ag Device for generating air foam.
US3297305A (en) * 1957-08-14 1967-01-10 Willie W Walden Fluid mixing apparatus
US3018182A (en) * 1960-07-25 1962-01-23 John M Leach Process and apparatus for treating materials
US3643927A (en) * 1970-10-15 1972-02-22 Phillips Petroleum Co Stationary mixture and method for mixing material
CH537208A (en) * 1971-04-29 1973-07-13 Sulzer Ag Mixing device for flowable media
DE2256500C3 (en) * 1972-11-17 1975-09-18 Hermann J. 8000 Muenchen Schladitz Porous body for atomizing and / or vaporizing a liquid in a gas stream
CH563802A5 (en) * 1973-04-18 1975-07-15 Sulzer Ag
US4068830A (en) * 1974-01-04 1978-01-17 E. I. Du Pont De Nemours And Company Mixing method and system
CH581493A5 (en) * 1974-06-24 1976-11-15 Escher Wyss Ag Static mixer for in line mixing - having sudden expansion with secondary fluid injection just prior to it
US4266879A (en) * 1975-01-16 1981-05-12 Mcfall Richard T Fluid resonator
US4040256A (en) * 1976-07-14 1977-08-09 The Dow Chemical Company Flume mixer
CH653908A5 (en) * 1980-10-13 1986-01-31 Jan Grochol GIANT BODY FOR FABRIC AND HEAT EXCHANGE.
CH653909A5 (en) * 1981-07-30 1986-01-31 Sulzer Ag COLUMN FOR FABRIC AND / OR HEAT EXCHANGE PROCESS.
US4441823A (en) * 1982-07-19 1984-04-10 Power Harold H Static line mixer
CA1224891A (en) * 1984-03-28 1987-07-28 Kenox Corporation Wet oxidation system
US4674888A (en) * 1984-05-06 1987-06-23 Komax Systems, Inc. Gaseous injector for mixing apparatus
US4573803A (en) * 1984-05-15 1986-03-04 Union Oil Company Of California Injection nozzle
US4564298A (en) * 1984-05-15 1986-01-14 Union Oil Company Of California Hydrofoil injection nozzle
CA1262722A (en) * 1984-06-20 1989-11-07 Lawrence Marvin Litz Process for dispersing one fluid in another
EP0201614B1 (en) * 1985-05-14 1989-12-27 GebràœDer Sulzer Aktiengesellschaft Reactor for carrying out heterogeneous catalytic chemical reactions
US4824614A (en) * 1987-04-09 1989-04-25 Santa Fe Energy Company Device for uniformly distributing a two-phase fluid
DE3918483A1 (en) * 1989-06-06 1990-12-13 Munters Euroform Gmbh Carl FILLED BODY

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019414C2 (en) * 2000-04-19 2003-06-12 Ballard Power Systems Device for introducing gas into a pipe section
DE102008028616A1 (en) * 2008-04-21 2009-10-22 Heinrich Gillet Gmbh mixer
CN102151503A (en) * 2010-02-03 2011-08-17 巴布科克和威尔科克斯能量产生集团公司 Stepped down gas mixing device
CN102151503B (en) * 2010-02-03 2015-07-01 巴布科克和威尔科克斯能量产生集团公司 Stepped down gas mixing device
CN103968372A (en) * 2013-01-28 2014-08-06 阿尔斯通技术有限公司 Fluid distribution and mixing grid for mixing gases

Also Published As

Publication number Publication date
EP0526392A1 (en) 1993-02-03
DE59204320D1 (en) 1995-12-21
JP3385042B2 (en) 2003-03-10
US5380088A (en) 1995-01-10
ATE130220T1 (en) 1995-12-15
JPH05208125A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
EP0526392B1 (en) Mixing-in device for small amounts of fluid
EP0526393B1 (en) mixing-in device
DE4314507C1 (en) Flotation facility injector
DE2205371A1 (en) Mixing device
EP1216747B1 (en) Static mixer
EP0118029B1 (en) Gravimetric liquid distribution device for a mass and heat exchange column
DE60006341T2 (en) STATIC MIXER
DE2635360C2 (en) Damping device for a liquid flow
EP0529422A1 (en) Filling element
DE2320741A1 (en) STATIC MIXING DEVICE
EP0472491A1 (en) Static laminar mixing device, admixing device, as well as the use of the mixing and admixing device
DE4313393A1 (en) Static mixer
EP0070921B1 (en) Installation element for an apparatus for mass transfer, direct heat exchange and mixing
EP0231841A1 (en) Apparatus for the uniform distribution of a liquid containing solid particles on a cross area
DE2508482A1 (en) MIXING DEVICE
DE1020598B (en) Gas-liquid exchange tray
EP0759806B1 (en) Device for mixing two fluids
DE2622530A1 (en) MIXING DEVICE
EP0153974A1 (en) Distributor for gas-liquid mixtures consisting of a gaseous dispersing agent and the liquid disperse phase distributed therein
DD161209A1 (en) DEVICE FOR STATIC MIXING FLUIDER MEDIA
DE3509895C2 (en)
DE2642105A1 (en) Static mixer for flowable material - has inner set of superimposed plates with deep grooves on both sides
DE2629293A1 (en) STATIC MIXER
EP0697913B1 (en) Plate-type catalytic converter
DE19733973C2 (en) Device for dosing and mixing flowable media

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930726

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER CHEMTECH AG

17Q First examination report despatched

Effective date: 19940808

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 130220

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59204320

Country of ref document: DE

Date of ref document: 19951221

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960106

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010702

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070713

Year of fee payment: 16

Ref country code: AT

Payment date: 20070716

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080722

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080716

Year of fee payment: 17

Ref country code: IT

Payment date: 20080725

Year of fee payment: 17

Ref country code: FR

Payment date: 20080715

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201