EP0524275A1 - Circuit electrique pour appareils de mesure du niveau de citernes industrielles et similaires - Google Patents

Circuit electrique pour appareils de mesure du niveau de citernes industrielles et similaires

Info

Publication number
EP0524275A1
EP0524275A1 EP92902706A EP92902706A EP0524275A1 EP 0524275 A1 EP0524275 A1 EP 0524275A1 EP 92902706 A EP92902706 A EP 92902706A EP 92902706 A EP92902706 A EP 92902706A EP 0524275 A1 EP0524275 A1 EP 0524275A1
Authority
EP
European Patent Office
Prior art keywords
frequency
microprocessor
bandpass filter
level
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92902706A
Other languages
German (de)
English (en)
Inventor
Ronald Van Der Pol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of EP0524275A1 publication Critical patent/EP0524275A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • the invention relates to an electrical circuit for a device for level measurement of industrial tanks and.
  • the like With an electronic transmitter and receiving part for microwaves and a waveguide provided with a window and an antenna, the signal reflected by the liquid level and the transmission signal being fed to a mixing stage, the low-frequency output signal of which is via an A / D converter the microprocessor calculating the fill level is abandoned.
  • Level measuring devices working with microwaves which emit signals in the microwave range, these being reflected on the surface of the medium in the container and being picked up by the receiver.
  • the distance between the fill level measuring device and the surface of the medium is determined from the signals with the aid of an electronic switching arrangement, which is also assigned to microprocessors and electronic computers for evaluation.
  • an electronic switching arrangement which is also assigned to microprocessors and electronic computers for evaluation.
  • a cylindrical waveguide window made of quartz glass or the like is arranged in the waveguide projecting through the tank roof of the tank and has a low dielectric loss factor which is favorable for the permeability of the microwaves.
  • a voltage-controlled ten oscillator generates a continuously changing transmission signal which uses a coupler to generate microwaves which are directed onto the liquid surface via the waveguide provided with a window and the antenna.
  • the electromagnetic waves reflected by the liquid surface are received by the antenna and converted into an electrical frequency signal by the head part, which is fed to a mixer.
  • the received signal experiences a frequency shift compared to the transmitted signal, which is directly proportional to the fill level.
  • the transmit and receive signals are converted by means of a mixing stage into a low-frequency signal, which is digitized and processed in the microprocessor.
  • the optical window arranged in the waveguide disadvantageously causes interference signals due to reflection of the microwaves, the amplitudes of which are substantially greater than those of the useful signal.
  • the output signal of the mixer stage contains a power density component which may be considerably higher than the component of the useful signal reflected by the liquid surface due to possible mode changes in the microwave signal and / or due to multiple reflections of the optical window.
  • the spectral lines of the power density spectrum which occur at different fill levels result in relatively high values at low frequencies, which are based on the reflection of the optical window, but lower values at higher frequencies due to the larger measuring section.
  • the high, low-frequency power components that arise in particular when the optical window is dirty are also present at a low fill level.
  • the fluctuations between the low-frequency and higher-frequency values of the power density can be between four and twenty times, in industrial tanks and the like. Like. Are even above it. 2
  • a circuit for a level measuring device without a waveguide window is known from DE-OS 31 34 243, in which a filter is arranged between a mixing stage and an A / D converter and is intended to filter out undesired frequencies. Since the distance information is the content of the mixed frequency, the filtering out of undesired frequencies would also filter out the corresponding useful signals and would not allow a distance determination in this frequency range at all.
  • the object of the invention is to design a circuit of the generic type in such a way that the interference signals are damped without impairing the detection of the distance information.
  • This object is achieved according to the invention in that a bandpass filter with a lower fundamental frequency damping the low-frequency interference frequencies is arranged between the mixer stage and the A / D converter.
  • the band-pass filter only the low-frequency range of the frequency band is specifically attenuated by the band-pass filter, in which the interference frequencies caused by the optical window and on the other hand the useful frequencies which arise at a relatively high level with a high power density are located.
  • the low-frequency interference frequencies are essentially eliminated and useful signals are transmitted in a power density suitable for the evaluation.
  • the useful signals which are above the fundamental frequency of the bandpass filter and which have only a lower power density due to the greater distance between the level measuring device and the surface of the medium are passed through in a damped manner.
  • a bandpass filter can be selected with a correspondingly fixed cut-off frequency, which captures the spectrum of the interference frequencies caused by the optical window.
  • a limit frequency as suitable, which corresponds to a distance frequency generated with a distance between the coupler of the level measuring device and the liquid level of approximately 0.1 to 3 m.
  • the lower cut-off frequency can advantageously also be controlled either by the microprocessor or a computer, or the bandpass filter can be adjustable to a plurality of selectable cut-off frequencies.
  • a frequency analysis can be carried out with the microprocessor and the limit frequency of the bandpass filter can be set depending on the proportion of the interference frequencies. Adjusting the cut-off frequency can also make sense depending on the level.
  • the interference frequencies caused by the optical window are expediently determined when the tank is empty, stored in the microprocessor and taken into account in the arithmetic signal processing.
  • the bandpass filter is advantageously assigned an amplifier stage controlled by the microprocessor, which can be arranged or integrated before or after the bandpass filter.
  • 1 shows a circuit arrangement for a level measuring device
  • Fig. 3 shows the low-frequency signal formed by a mixer
  • FIG. 4 shows the power density spectrum formed by an A / D converter.
  • a sawtooth generator 1 or the like controls a voltage-controlled oscillator 2, which generates an electrical output signal f a which changes continuously in frequency.
  • the time course of this frequency is represented, for example, in FIG. 2 by the curve f s .
  • the transmission signal f s is converted via a coupler 3 into electromagnetic waves (microwaves) which are directed by a waveguide 4 via an optical window 5 and an antenna 6 onto the surface of a liquid located in an industrial tank 7 or the like.
  • the microwaves reflected by the liquid surface are received again by the antenna 6 and converted by the coupler 3 into an electrical signal f r which is fed to a mixer 8. Due to the running time of the microwave from the coupler 3 to the liquid surface and back, there is a frequency shift £ dependent on the fill level with respect to the transmission signal (cf. FIG. 2). This frequency shift corresponds to equation (1).
  • the frequency shift is directly proportional to the level.
  • the transmission signal f s and the reception signal f r are fed to the mixer 8, the output signal of which is the low-frequency Contains the 4th distance signal £, which is shown in FIG. 3 as an ideal sinus curve.
  • the output signal contains further frequency components which are caused by reflections of the microels on the inner wall of the container, on the built-in containers and the like. Like arise.
  • Such interference frequencies can be determined and suppressed by means of a microprocessor processing the measurement signals in the context of so-called learning processes.
  • the low-frequency output signal ⁇ f of the mixer 8 is fed to an A / D converter 12 via a bandpass filter, consisting of a high-pass filter 9 and a low-pass filter 10, and digitized with a discrete number of adjustments.
  • a microprocessor 13 carries out a frequency analysis from the successive digital values and determines a discrete power density spectrum.
  • the power density spectrum would only consist of a few frequency lines, as indicated in FIG. 4, the two secondary lines being limited by the time the signal ⁇ f is present for the Frequency analysis are caused.
  • the output signal j f of the mixer 8 contains, due to possible changes in mode of the microwave signal and / or due to multiple reflections of the optical window, a power density component which can be considerably higher than the component of the useful signal reflected by the liquid surface.
  • the spectral lines of the power density spectrum which occur at different filling levels result in relatively high values at low frequencies, which are based on the reflection of the optical window, but lower values at higher frequencies due to the larger measuring path.
  • the high, low-frequency power components that arise in particular when the optical window is dirty are also present at a low fill level.
  • the fluctuations between the low-frequency and higher-frequency values of the power density can be between four and twenty times, for industrial tanks and the like. Like. Are even above it.
  • the interference frequencies that occur are first determined when the tank is empty, stored in the microprocessor 13 and taken into account in the arithmetic signal processing.
  • the bandpass filter has a lower cut-off frequency to dampen the low-frequency interference that occurs during measurement.
  • the cut-off frequency of the high-pass filter 9 and low-pass filter 10 are expediently designed in such a way that, at a maximum fill level, the relatively small output signal £ f is passed almost without attenuation, while the lowest cut-off frequency of the high-pass filter 9 occurs due to that which occurs when the tank is empty Frequency shift is determined.
  • the minimum sampling frequency of the A / D converter 12 is determined by the Shannon relationship.
  • a cut-off frequency can be chosen so that it corresponds to the low-frequency frequency shift ⁇ f at a fill level at which the distance between the liquid surface and the antenna is approximately 0.1 to 3.0 m.
  • the high-pass filter 9 is assigned a plurality of adjustable cut-off frequencies in order to adapt to different operating conditions and interference.
  • the high-pass filter 9 is preferably controlled by the microprocessor 13, that is to say a controllable high-pass filter is used. This allows a by changing operating conditions, for. B. suppression or the like. Increase interference as much as possible, the microprocessor 13 calculating such changes from the power density values and adapting the cut-off frequency of the high-pass filter 9 accordingly.
  • the associated control line is designated 14 in FIG. 1.
  • the A / D converter is to be protected against overdriving, which is caused by the maximum values of the low-frequency signals and which lead to poor resolution.
  • an amplifier stage 11 which is controlled by the microprocessor 13 via a line 15 and which prevents the A / D converter 12 from oversteering, is provided before or in or after the bandpass filter.
  • the fill level is essentially the same, it may be expedient to select a higher cut-off frequency of the bandpass filter. This can also be done through the adjustability or control of the cutoff frequency.
  • the power density spectrum does not consist of a discrete spectral line, but usually contains adjacent lines. Since a line corresponds to a discrete distance, the secondary lines can be used to calculate the fill level, for example by weighting the amplitudes of the secondary lines. A linear weighting would be suitable in the flat range of the frequency characteristic. If the frequency lines are in a non-constant area of the filter, the "roll-off" must be considered as a factor in the weighting. If the frequency output of the measuring section is known, the correction in the interpolation of the discrete spectral lines can be taken into account for very precise measurements.

Abstract

Un circuit électrique est décrit pour un appareil de mesure de niveau de citernes industrielles et similaires ayant une partie électronique d'émission et de réception de micro-ondes et un guide d'ondes pourvu d'une fenêtre et d'une antenne. Le signal réfléchi par la surface du liquide et le signal d'émission sont transmis à un étage mélangeur (8) dont le signal de sortie basse fréquence est fourni par un convertisseur analogique/numérique (12) à un microprocesseur (13) qui calcule le niveau de remplissage. Afin de réduire l'influence de fréquences parasites générées par réflexion des micro-ondes dans la fenêtre optique ou similaire, un filtre passe-bande (9, 10) dont la fréquence limite inférieure amortit des fréquences parasites de basse fréquence est agencé entre l'étage mélangeur (8) et le convertisseur analogique/numérique (12). La fréquence limite inférieure peut être ajustée par le microprocesseur (13), ou le filtre passe-bande (9, 10) peut être réglé sur plusieurs fréquences limites sélectionnables. Afin d'éviter la saturation du convertisseur analogique/numérique, un étage amplificateur (11) commandé par le microprocesseur (13) est associé au filtre passe-bande (9, 10).
EP92902706A 1991-02-12 1992-01-21 Circuit electrique pour appareils de mesure du niveau de citernes industrielles et similaires Withdrawn EP0524275A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4104146 1991-02-12
DE4104146 1991-02-12

Publications (1)

Publication Number Publication Date
EP0524275A1 true EP0524275A1 (fr) 1993-01-27

Family

ID=6424836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92902706A Withdrawn EP0524275A1 (fr) 1991-02-12 1992-01-21 Circuit electrique pour appareils de mesure du niveau de citernes industrielles et similaires

Country Status (4)

Country Link
US (1) US5365178A (fr)
EP (1) EP0524275A1 (fr)
JP (1) JPH05505470A (fr)
WO (1) WO1992014124A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241910C2 (de) * 1992-12-11 1996-08-01 Endress Hauser Gmbh Co Mit Mikrowellen arbeitendes Füllstandsmeßgerät
DE4345242A1 (de) * 1993-09-15 1995-04-06 Endress Hauser Gmbh Co Frequenzumsetzungsschaltung für ein Radar-Abstandsmeßgerät
DE4332071C2 (de) * 1993-09-21 1995-09-07 Endress Hauser Gmbh Co Verfahren zur Füllstandsmessung nach dem Radarprinzip
DE4336494C2 (de) * 1993-10-26 1995-11-02 Endress Hauser Gmbh Co Vorrichtung zur Füllstandsmessung in Behältern
US5847567A (en) * 1994-09-30 1998-12-08 Rosemount Inc. Microwave level gauge with remote transducer
US5614831A (en) * 1995-02-13 1997-03-25 Saab Marine Electronics Ab Method and apparatus for level gauging using radar in floating roof tanks
DE19531540C2 (de) * 1995-08-25 1999-05-27 Krohne Messtechnik Kg Verfahren zur Messung des Füllstandes einer Flüssigkeit
ATE274707T1 (de) * 1997-06-27 2004-09-15 Eads Deutschland Gmbh Füllstandmessradargerät
DE19801511C2 (de) * 1998-01-16 2001-12-06 Wieland Werke Ag Verfahren zur Konturerfassung mittels Mikrowellen und Vorrichtung zur Durchführung des Verfahrens
DE19810601A1 (de) * 1998-03-12 1999-09-16 Daimler Benz Aerospace Ag Anordnung zur Füllstandsmessung
ATE356978T1 (de) * 1998-03-18 2007-04-15 Grieshaber Vega Kg Mikrowellen-füllstandsmessgerät geeignet zum betrieb bei hohen temperaturen und/oder hohen drücken und/oder chemisch agressiver umgebung
US6477474B2 (en) 1999-01-21 2002-11-05 Rosemount Inc. Measurement of process product dielectric constant using a low power radar level transmitter
US6782328B2 (en) * 1999-01-21 2004-08-24 Rosemount Inc. Measurement of concentration of material in a process fluid
US6320532B1 (en) * 1999-05-27 2001-11-20 Rosemount Inc. Low power radar level transmitter having reduced ground loop errors
DE59905200D1 (de) * 1999-09-07 2003-05-28 Endress & Hauser Gmbh & Co Kg Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter
US6295018B1 (en) 1999-09-27 2001-09-25 Rosemount Inc. Low power radar level instrument with enhanced diagnostics
DE10007187A1 (de) * 2000-02-17 2001-08-23 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Bestimmung des Füllstandes eines Füllguts in einem Behälter
US6561693B1 (en) 2000-09-21 2003-05-13 Lockheed Martin Corporation Remote temperature sensing long wave length modulated focal plane array
DE10049995A1 (de) * 2000-10-10 2002-04-11 Endress Hauser Gmbh Co Füllstandsmessgerät
US6672155B2 (en) * 2000-10-14 2004-01-06 Endress + Hauser Gmbh + Co. Apparatus for determining the filling level of a filling material in a container
DE10056353A1 (de) * 2000-11-14 2002-05-23 Grieshaber Vega Kg Verfahren und Anordnung zur Füllstandsmessung
US6677891B2 (en) 2001-01-19 2004-01-13 Vega Grieshaber Kg Method and device for transmitting and receiving electromagnetic waves
US6734819B2 (en) * 2001-02-14 2004-05-11 Endress + Hauser Gmbh + Co. Level measuring device operating with microwaves
KR100433518B1 (ko) * 2001-03-10 2004-05-31 삼성전자주식회사 유량 측정 장치 및 방법
WO2003085365A1 (fr) * 2002-04-10 2003-10-16 Vega Grieshaber Kg Appareil de mesure de niveau renfermant de l'equipement electronique et une antenne dans un boitier
US6915689B2 (en) * 2002-11-21 2005-07-12 Saab Rosemount Tank Radar Ab Apparatus and method for radar-based level gauging
US6956382B2 (en) * 2002-11-22 2005-10-18 Saab Rosemount Tank Radar Ab Isolation circuit
US7479787B2 (en) * 2004-09-01 2009-01-20 Siemens Milltronics Process Instruments, Inc. Current regulator for loop powered time of flight and level measurement systems
US7453393B2 (en) * 2005-01-18 2008-11-18 Siemens Milltronics Process Instruments Inc. Coupler with waveguide transition for an antenna in a radar-based level measurement system
US7372397B2 (en) * 2005-06-03 2008-05-13 Rosemount Tank Radar Ab Energy storage in a radar level gauge
US7498974B2 (en) * 2006-09-21 2009-03-03 Rosemount Tank Radar Ab Radar level gauge with a galvanically isolated interface
DE102006058852B4 (de) * 2006-12-13 2014-01-02 Vega Grieshaber Kg Verfahren und Vorrichtung zur Korrektur nichtidealer Zwischenfrequenzsignale bei Abstandsmessgeräten nach dem FMCW-Prinzip
DE102007026389A1 (de) * 2007-06-06 2008-12-18 Vega Grieshaber Kg Antenne für ein Füllstandsradar für Hochtemperatur- und/oder Hochdruckanwendungen
DE102007042042B4 (de) * 2007-09-05 2020-03-26 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
US8869612B2 (en) 2011-03-08 2014-10-28 Baxter International Inc. Non-invasive radio frequency liquid level and volume detection system using phase shift
US10393565B2 (en) * 2014-06-03 2019-08-27 Vega Grieshaber Kg Determination of container and interference point profiles
US9285475B1 (en) * 2015-03-24 2016-03-15 Utilis Israel Ltd. System and method of underground water detection
US10514341B2 (en) 2015-03-24 2019-12-24 Utilis Israel Ltd. System and method of detecting underground gas leakage
US9945942B2 (en) 2015-03-24 2018-04-17 Utilis Israel Ltd. System and method of underground water detection
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
DE102016204005A1 (de) * 2016-03-11 2017-09-14 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Radarsensors
DE102022127132A1 (de) 2022-10-17 2024-04-18 Vega Grieshaber Kg Adaptives SFC-Filter für Füllstandsensoren

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307182A (en) * 1964-08-28 1967-02-28 Christopher M Morrow Radar system
US3688188A (en) * 1970-12-21 1972-08-29 Bendix Corp Means for measuring the density of fluid in a conduit
SE381745B (sv) * 1973-11-20 1975-12-15 Saab Scania Ab Sett och anordning for avstandsmetning med frekvensmodulerade kontinuerliga mikrovagor
US4030015A (en) * 1975-10-20 1977-06-14 International Business Machines Corporation Pulse width modulated voltage regulator-converter/power converter having push-push regulator-converter means
JPS53118161A (en) * 1977-03-25 1978-10-16 Sumitomo Metal Ind Measuring method of slug forming by micro wave level meter
US4268828A (en) * 1979-09-19 1981-05-19 Ford Aerospace & Communications Corporation Swept frequency radar system employing phaseless averaging
GB2077545B (en) * 1980-05-29 1984-03-07 Hawker Siddeley Dynamics Eng Level gauging systems using microwave radiation
US4443792A (en) * 1980-08-29 1984-04-17 Coal Industry (Patents) Limited Electromagnetic position detector employing fast fourier transform analysis
FR2496274A1 (fr) * 1980-12-12 1982-06-18 Trt Telecom Radio Electr Procede de mesure de distance par radar a onde entretenue modulee en frequence, appareil pour la mise en oeuvre du procede et application a la determination precise du niveau de liquide dans un reservoir
US4435709A (en) * 1981-05-26 1984-03-06 Rca Corporation Radar ranging system for use with sloping target
US4495807A (en) * 1983-02-24 1985-01-29 The United States Of America As Represented By The United States Department Of Energy Precision liquid level sensor
JPS59196483A (ja) * 1983-04-21 1984-11-07 Kobe Steel Ltd 電磁波による測距方法
US4489601A (en) * 1983-07-18 1984-12-25 Sperry Corporation Apparatus and method of measuring the level of a liquid
SE456538B (sv) * 1984-06-01 1988-10-10 Saab Marine Electronics Sett och anordning for nivametning med mikrovagor
US4847623A (en) * 1986-02-19 1989-07-11 Idea, Inc. Radar tank gauge
US5083089A (en) * 1991-02-20 1992-01-21 Spatial Dynamics, Ltd. Fluid mixture ratio monitoring method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9214124A1 *

Also Published As

Publication number Publication date
JPH05505470A (ja) 1993-08-12
WO1992014124A1 (fr) 1992-08-20
US5365178A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
EP0524275A1 (fr) Circuit electrique pour appareils de mesure du niveau de citernes industrielles et similaires
DE112006002310B4 (de) Verarbeitung des Tanksignals in einem Radarfüllstandsmesssystem
EP1412710B1 (fr) Procede pour evaluer les signaux de mesure d'un appareil de mesure fonctionnant selon le principe du temps de propagation
EP0882957B1 (fr) Procédé de mesure du niveau d'un matériau dans un réservoir suivant le principe radar
EP2035790B1 (fr) Dispositif de détermination et/ou de surveillance du niveau de remplissage d'une substance
EP0676037B1 (fr) Dispositif permettant de mesurer le niveau de remplissage de contenants
DE60027644T2 (de) Messung der dielektrizitätskonstante eines prozessproduktes mittels eines schwachstrom-radar-füllstandsmessumformers
EP0879413B1 (fr) Detecteur de liquide a ondes de surface
DE102013108490A1 (de) Dispersionskorrektur für FMCW-Radar in einem Rohr
DE102014101904A1 (de) Effiziente Dispersionskorrektur für FMCW-Radar in einem Rohr
DE102005063079B4 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter
DE112006002933T5 (de) Radarfüllstandmesssystem und Übertragungsleitungssonde für die Verwendung in einem solchen System
DE102005021358A1 (de) Laufzeitmessverfahren zur Ermittelung der Distanz
WO1995008128A1 (fr) Telemetre-radar
DE102007060579A1 (de) Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälter
DE19501379A1 (de) Verfahren und Vorrichtung zur Bandbreitensyntheseradarpegelmessung
EP0535196A1 (fr) Procede et dispositif pour la mesure de distance selon le principe de la retroreflection.
DE102014119589B4 (de) Zweistufiges Glättungsverfahren für Echokurven und Füllstandsmessgerät
DE4306193B4 (de) Füllstandssensor
DE19961855B4 (de) Verfahren und Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter
DE4331353C2 (de) Radar-Abstandsmeßgerät
EP1049945B1 (fr) Procédé de mesure de distance et dispositif pour la mise en oeuvre du procédé
EP1186869A2 (fr) Dispositif de mesure du niveau d' un fluide
DE19820839A1 (de) Füllstand-Meßvorrichtung
DE914632C (de) Elektrischer Abstands- und Geschwindigkeitsmesser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 19960108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19960418