EP0523349A1 - Selbsteinstellungsmechanismus mit exzentrischem Drehpunkt - Google Patents

Selbsteinstellungsmechanismus mit exzentrischem Drehpunkt Download PDF

Info

Publication number
EP0523349A1
EP0523349A1 EP92108561A EP92108561A EP0523349A1 EP 0523349 A1 EP0523349 A1 EP 0523349A1 EP 92108561 A EP92108561 A EP 92108561A EP 92108561 A EP92108561 A EP 92108561A EP 0523349 A1 EP0523349 A1 EP 0523349A1
Authority
EP
European Patent Office
Prior art keywords
pivot
eccentric
seat back
eccentric member
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92108561A
Other languages
English (en)
French (fr)
Other versions
EP0523349B1 (de
Inventor
Richard A. Hein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoover Universal Inc
Original Assignee
Hoover Universal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoover Universal Inc filed Critical Hoover Universal Inc
Publication of EP0523349A1 publication Critical patent/EP0523349A1/de
Application granted granted Critical
Publication of EP0523349B1 publication Critical patent/EP0523349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/22Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable
    • B60N2/235Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable by gear-pawl type mechanisms
    • B60N2/2352Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable by gear-pawl type mechanisms with external pawls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20636Detents
    • Y10T74/20654Gear

Definitions

  • the present invention pertains to a self adjusting eccentric pivot mechanism and in particular to a pivot mechanism for a vehicle seat recliner assembly to eliminate backlash in the recliner assembly gears.
  • a typical application is a geared system comprising a drive gear and a driven gear.
  • the output loading is relatively constant, i.e. where the resistance to rotation of the driven gear remains constant, contact is maintained between the drive and driven gears by this output loading.
  • variable output loading or variable input conditions can cause intermittent loss of contact between the drive and driven gears. This loss of contact can produce undesirable consequences such as variations in the output velocity, uneven wear on the contact surfaces or undesirable noise patterns.
  • Loss of contact can be due to various reasons such as processing variations in the manufacture of the elements or gears in the system such as the eccentricity of the input or output gears, variations in the distance between input and output gears and variations in the pivot axis location.
  • Typical gearing systems are designed with a small clearance between the engaging gear teeth called backlash to allow for process variations. In some applications this clearance is manually adjusted at assembly to maintain a predetermined clearance without creating binding or excessive wear of the gear teeth.
  • a gear system is a seat back recliner of a vehicle seat assembly.
  • the seat back is carried by a pair of support arms pivotally mounted to the lower seat frame or seat cushion.
  • the support arm at least on one side of the seat assembly, forms a sector gear portion with a number of gear teeth positioned in an arc about the seat back pivot axis.
  • a pinion gear rotatably carried by the seat frame has teeth meshing with the teeth of the sector gear portion.
  • the seat back is locked in place by a lock mechanism that prevents rotation of the pinion gear. This lock is selectively releasable to allow the pinion gear, and hence the seat back support arm, to both rotate about their respective axes to adjust the reclined position of the seat back.
  • One solution to the vibration and noise problem is to provide an eccentric pivot for either the seat back arm or the pinion gear which is used to set the location of the pivot axis of one of the two gears at the time of assembly to provide the minimum backlash necessary for proper operation of the mechanism. While this eliminates excessive backlash, the solution is not a complete solution. Some backlash must remain to prevent binding of the gear teeth. In addition, since the gears themselves may not be concentric, the minimum backlash at one position of the gears may provide excessive backlash at a second position of the gears or may cause binding of the gears.
  • the gear engaging force must be sufficient to prevent vibration of the seat back during road conditions expected to be encountered by the vehicle.
  • the self adjusting pivot includes a pivot pin with an eccentric member rotatably carried thereon.
  • the eccentric member has an outer periphery that is eccentric relative to the axis of the pivot pin. It is upon this eccentric shoulder that one of the two gear members is rotated.
  • a biasing spring is coupled to the eccentric member to rotate the eccentric member in a direction tending to urge the eccentric axis into a position disposed between the axis of the first pivot and the axis of the other gear such that the two gears are forced toward one another.
  • the biasing spring enables the eccentric member to rotate and move the sector gear either toward or away from the pinion gear as the gears are rotated to accommodate variations in the gears themselves to avoid binding.
  • the recliner assembly 10 shown in Figure 1 includes the self adjusting eccentric pivot mechanism of the present invention.
  • Recliner assembly 10 includes outboard support plate 12 and inboard support plate 14.
  • the designations inboard and outboard are given merely to define relative location on a seat assembly and to distinguish one plate from another and are not to be construed as limitations.
  • the support plates are connected together by two or more pins such as pins 16 and 18.
  • the support plates 12 and 14 are secured to a lower seat frame (not shown). As such, the support plates 12 and 14 form a portion of the lower seat frame.
  • the seat back frame includes two downwardly extending arms with one arm on each side of the seat assembly.
  • the support arm 20 shown in Figure 1 is on one side of the seat assembly and forms a part of the recliner assembly 10.
  • Support arm 20 is mounted for rotation about pivot 22 to enable the seat back to rotate relative to the lower seat cushion.
  • a static pivot accepts the seat back arm on the opposite side of the seat assembly.
  • the seat back support arm 20 is formed with a plurality of gear teeth 26 in a circular arc forming a sector gear portion on the seat back support arm 20.
  • a pinion gear 28, having teeth 30, is fixed to a pivot shaft 32 carried by the two support plates 12 and 14.
  • the axis 34 of pivot shaft 32 is generally parallel to the lateral axis 24 about which the seat back is rotated.
  • a locking gear 36 is fixed to the pinion gear 28 through pivot shaft 32 so that the locking gear and pinion gear rotate together about axis 34.
  • the majority of the periphery of locking gear 36 is formed with teeth or serrations 38.
  • a pawl 40 is rotatably mounted to the support plates 12 and 13 about the pin 16.
  • the pawl 40 has a serrated portion 42 for engagement with the serrations 38 of the locking gear.
  • a release lever 44 having a cam portion 46 is mounted for rotation about one shoulder of pivot pin 48, about pivot axis 24.
  • the cam portion 46 engages a cam surface 50 of the pawl 40 to force the pawl serrations into engagement with the serrations of the locking gear.
  • a biasing spring 52 coupled to the release lever 44 pulls the handle 54 of the release lever down urging the cam portion 46 of the lever into engagement with the cam surface 50 of the pawl forcing the pawl serrations into locking engagement with the locking gear.
  • the release lever 44 is rotated clockwise by upper motion of the handle 54. This causes the cam portion 46 to disengage from the cam surface of the pawl and to contact pawl release finger 56, rotating the pawl out of engagement with the locking gear. This frees the pivot shaft 32 for rotation about its axis, enabling the pinion gear 28 and consequently the seat back support arm 20 to rotate about their respective axes.
  • the handle 54 is released and spring 52 returns the release lever and cam to a position in which the pawl reengages with the locking gear to hold the seat back in place.
  • An arcuate slot 58 is formed in the seat back support arm 20 with the pin 18 extending through the slot. The ends of the slot contact the pin 18 to limit travel of the seat back support arm in each direction.
  • the locking gear 36 includes peripheral portion 60 that does not include the serrations 38. This smooth portion engages the pawl when the seat back is rotated forward to a dump position. In the forward dump position, the pawl does not act to hold the locking gear in place after the lever 44 has been released. This enables the seat back to be rotated rearwardly from the forward dump position without the necessity of first operating the release lever.
  • the locking gear is free to rotate until the seat back has returned to its forwardmost locked position when the pawl will once again engage the serrations of a locking gear.
  • a clock spring 62 is coupled to the pivot shaft 32 and to the support plate 12 at 64 to urge the pivot shaft 32 to rotate in the proper direction to rotate the seat back forward when the pawl 40 is disengaged.
  • the seat occupant rotates the release lever upward and applies pressure to the seat back to overcome the spring 62 and move the seat back rearward.
  • the occupant rotates the release lever upward and relieves pressure on the seat back allowing the spring 62 to rotate the seat back forward.
  • the sector gear teeth 26 are allowed to move slightly relative to the pinion gear teeth 30 with the result that the seat back can vibrate when the seat is unoccupied and certain road conditions are encountered. Due to the length of the seat back, the upper end of the seat back can move a considerable distance as the seat back vibrates. Along with the vibration, noise is created that can be a nuisance to vehicle occupants and can result in customer complaints to the vehicle manufacturer.
  • the pivot 22 is formed by a pivot pin 48 concentric about the lateral axis 24 and an eccentric member 66 rotatably carried by the pivot pin 48.
  • the eccentric member has a peripheral surface 68 which is eccentric about the pivot pin 48 creating an eccentric or moving axis 70.
  • the support arm 20 is rotatable about the eccentric member 66.
  • the eccentric member includes an axially extending finger 72 which protrudes through an arcuate aperture 71 in support plate 14.
  • One end of a C-shaped biasing spring 74 has been wrapped around axial finger 72.
  • the opposite end of the spring 74 is wrapped around a raised tab 76 extending from the support plate 14.
  • the C-spring 74 is formed so as to expand, tending to separate the finger 72 of the eccentric member from the tab 76 of the support plate.
  • the biasing spring by attempting to open, causes the eccentric member 66 to rotate in a clockwise direction as viewed in Figure 1. In other words, the eccentric member is biased in a direction tending to move the eccentric axis 70 toward the pivot shaft axis 34.
  • the C-spring 74 has been chosen as a bias means for its compact size, relatively low internal stress and relatively high output per unit volume. Other springs can also be used as well as any mechanical energy storage means, pneumatic, hydraulic, etc.
  • the self adjusting eccentric pivot overcomes the problems associated with the gear tooth backlash to prevent vibration and rattle of the seat back and does so in a superior manner compared to an eccentric pivot that is fixed and set at the time of assembly of the mechanism.
  • the self adjusting pivot does not require a separate operation to fix the position of the eccentric pivot and in addition can self adjust to accommodate variations along the range of motion of the gear system to ensure that backlash is eliminated regardless of the reclined position of the seat back.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chairs For Special Purposes, Such As Reclining Chairs (AREA)
EP92108561A 1991-06-27 1992-05-21 Selbsteinstellungsmechanismus mit exzentrischem Drehpunkt Expired - Lifetime EP0523349B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/722,250 US5150632A (en) 1991-06-27 1991-06-27 Self adjusting eccentric pivot mechanism
US722250 1991-06-27

Publications (2)

Publication Number Publication Date
EP0523349A1 true EP0523349A1 (de) 1993-01-20
EP0523349B1 EP0523349B1 (de) 1995-07-19

Family

ID=24901068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92108561A Expired - Lifetime EP0523349B1 (de) 1991-06-27 1992-05-21 Selbsteinstellungsmechanismus mit exzentrischem Drehpunkt

Country Status (4)

Country Link
US (1) US5150632A (de)
EP (1) EP0523349B1 (de)
DE (1) DE69203547T2 (de)
ES (1) ES2074763T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687354A1 (fr) * 1992-02-13 1993-08-20 Ihm Engineering Ltd Mecanisme d'inclinaison de siege et siege muni d'un tel mecanisme.
EP0609480A1 (de) * 1992-03-31 1994-08-10 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugsitz
US8434823B2 (en) 2009-07-17 2013-05-07 Ford Global Technologies Reclining seat assembly

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678870B1 (fr) * 1991-07-10 1993-12-17 Faure Automobile Bertrand Verin monogalet permettant le verrouillage de deux elements articules entre eux.
FR2714339B1 (fr) * 1993-12-23 1996-03-15 Cesa Articulation sans jeu pour siège à dossier basculable et son application à un siège à dossier aussi inclinable.
CA2161068C (en) * 1994-10-21 2007-04-24 David L. Robinson Seat recliner for reducing chucking
US5590932A (en) * 1994-11-07 1997-01-07 Fisher Dynamics Corporation Anti-chuck seat recliner
JP2943051B2 (ja) * 1995-02-21 1999-08-30 池田物産株式会社 可動ヘッドレスト
US5749625A (en) * 1996-03-28 1998-05-12 Fisher Dynamics Corporation Seat recliner for reducing chucking
DE19829372C2 (de) * 1998-07-01 2000-05-04 Keiper Gmbh & Co Verstellbeschlag für die Rückenlehne von Fahrzeugsitzen, insbesondere Kraftfahrzeugsitzen
US6224081B1 (en) * 1999-07-30 2001-05-01 Harley-Davidson Motor Company Adjustable backrest for a motorcycle
DE19948000B4 (de) * 1999-10-06 2005-07-07 Faurecia Autositze Gmbh & Co. Kg Verriegelungsvorrichtung
JP3833936B2 (ja) * 2001-12-25 2006-10-18 アイシン精機株式会社 シート装置
AU2003275436A1 (en) * 2002-10-04 2004-05-04 Johnson Controls Technology Company Recliner mechanism
US6890034B2 (en) 2003-01-28 2005-05-10 Fisher Dynamics Corporation Compact recliner with locking cams
US20050168034A1 (en) * 2004-01-21 2005-08-04 Scott Fast Disc recliner with dual cams
US7025422B2 (en) * 2004-03-11 2006-04-11 Fisher Dynamics Corporation Round recliner assembly with rear folding latch
US7097253B2 (en) * 2004-03-11 2006-08-29 Fisher Dynamics Corporation Round recliner assembly with rear folding latch
DE102005054503B3 (de) * 2005-11-16 2007-06-06 Faurecia Autositze Gmbh Kraftfahrzeugsitz mit Sitzhöhenverstellvorrichtung
US7878593B2 (en) * 2008-06-23 2011-02-01 Lear Corporation Anti back drive device for a seat recliner
US7775594B2 (en) * 2008-08-01 2010-08-17 Bae Industries, Inc. Power seat assembly with motor actuated spring release and rewind of a seatback sector and with the motor removed from an inertial load path such as during an impact event
CN103038094B (zh) * 2010-06-24 2015-08-05 约翰逊控制技术公司 机电推压按钮式车辆座椅致动机构
US20120153698A1 (en) * 2010-12-21 2012-06-21 Imasen Electric Industrial Co., Ltd. Reclining apparatus
US10857910B2 (en) * 2018-12-17 2020-12-08 Lear Corporation Vehicle seating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422786A (en) * 1972-05-20 1976-01-28 Turner Willenhall Ltd H R Mechanism for reclining seats
DE3234305A1 (de) * 1981-09-16 1983-03-24 American Safety Equipment Corp., 48084 Troy, Mich. Verfahren und vorrichtung zur verstellung der neigung der rueckenlehne eines fahrzeugsitzes
EP0234438A2 (de) * 1986-02-24 1987-09-02 Itt Industries, Inc. Handversteller für unbegrenzt schwenkbare Sitzlehne
DE3839741A1 (de) * 1988-11-24 1990-05-31 Rentrop Hubbert & Wagner Neigungsverstellvorrichtung fuer rueckenlehnen von kraftfahrzeugsitzen
FR2649942A1 (fr) * 1989-07-20 1991-01-25 Keiper Recaro Gmbh Co Ferrure d'articulation pour sieges, en particulier pour sieges de vehicules automobiles comportant un dossier reglable et susceptible de pivoter librement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA518988A (en) * 1955-11-29 S. Jandus Herbert Foot operated brake lever
US2507997A (en) * 1946-05-25 1950-05-16 Gen Motors Corp Parking brake
US3459065A (en) * 1967-09-25 1969-08-05 Universal American Corp Parking brake actuator and control mechanism
JPS4928467A (de) * 1972-07-14 1974-03-13
FR2374186A1 (fr) * 1976-12-17 1978-07-13 Keiper Automobiltechnik Gmbh Siege pour vehicules, en particulier pour vehicules automobiles
US4875735A (en) * 1984-03-30 1989-10-24 Moyer George A Seatback recliner mechanism
WO1986005958A1 (en) * 1985-04-12 1986-10-23 Fuji Kiko Kabushiki Kaisha Seat reclining structure
CA1293681C (en) * 1988-12-28 1991-12-31 George Croft Adjustable latching device with memory feature for vehicle seat assemblies
US4946223A (en) * 1989-09-15 1990-08-07 George Croft Redundant seat locking mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422786A (en) * 1972-05-20 1976-01-28 Turner Willenhall Ltd H R Mechanism for reclining seats
DE3234305A1 (de) * 1981-09-16 1983-03-24 American Safety Equipment Corp., 48084 Troy, Mich. Verfahren und vorrichtung zur verstellung der neigung der rueckenlehne eines fahrzeugsitzes
EP0234438A2 (de) * 1986-02-24 1987-09-02 Itt Industries, Inc. Handversteller für unbegrenzt schwenkbare Sitzlehne
DE3839741A1 (de) * 1988-11-24 1990-05-31 Rentrop Hubbert & Wagner Neigungsverstellvorrichtung fuer rueckenlehnen von kraftfahrzeugsitzen
FR2649942A1 (fr) * 1989-07-20 1991-01-25 Keiper Recaro Gmbh Co Ferrure d'articulation pour sieges, en particulier pour sieges de vehicules automobiles comportant un dossier reglable et susceptible de pivoter librement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687354A1 (fr) * 1992-02-13 1993-08-20 Ihm Engineering Ltd Mecanisme d'inclinaison de siege et siege muni d'un tel mecanisme.
EP0609480A1 (de) * 1992-03-31 1994-08-10 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugsitz
US8434823B2 (en) 2009-07-17 2013-05-07 Ford Global Technologies Reclining seat assembly

Also Published As

Publication number Publication date
DE69203547T2 (de) 1996-03-21
EP0523349B1 (de) 1995-07-19
US5150632A (en) 1992-09-29
DE69203547D1 (de) 1995-08-24
ES2074763T3 (es) 1995-09-16

Similar Documents

Publication Publication Date Title
US5150632A (en) Self adjusting eccentric pivot mechanism
EP0617676B1 (de) Sitzverstellvorrichtung mit doppelt enthüllender schnecke und schneckenrad
US5156439A (en) Recliner mechanism for a seat assembly having an eccentric pivot pin
EP0773132B1 (de) Neigungsverstellvorrichtung für Sitze
US5590932A (en) Anti-chuck seat recliner
CA1183441A (en) Infinitely variable seat back recliner
EP1614582B1 (de) Neigungverstellvorrichtung
US5718482A (en) Simplified linear recliner
US4747641A (en) Seat recliner mechanism
US6805650B2 (en) Planocentric disc recliner
US4457557A (en) Reclining device for use in a vehicle
US5205609A (en) Eccentric gear backlash take-up mechanism for seat latches
US5622410A (en) Seat recliner for reducing chucking
US5749625A (en) Seat recliner for reducing chucking
US20040221670A1 (en) Step down gear train for an adjusting device of an automotive vehicle seat
EP0187933B1 (de) Manuelle Sitzverstellvorrichtung
US4576412A (en) Seat reclining mechanism
US4781415A (en) Reclining infinitely variable seat latch with dual locking mechanisms apparatus and method
US3833965A (en) Adjustable seat inclination fitting
US5016940A (en) Seat reclining mechanism
US6976738B2 (en) Recliner adjuster
US3807797A (en) Seat construction
US4720144A (en) Manual seat recliner
WO1998002329A1 (en) Seat reclining mechanism
JP2000189267A (ja) 車両シ―ト用リクライナ―

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19930512

17Q First examination report despatched

Effective date: 19940620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69203547

Country of ref document: DE

Date of ref document: 19950824

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2074763

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960415

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960423

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960425

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960514

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970522

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050521