EP0523215B1 - Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it - Google Patents

Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it Download PDF

Info

Publication number
EP0523215B1
EP0523215B1 EP92903582A EP92903582A EP0523215B1 EP 0523215 B1 EP0523215 B1 EP 0523215B1 EP 92903582 A EP92903582 A EP 92903582A EP 92903582 A EP92903582 A EP 92903582A EP 0523215 B1 EP0523215 B1 EP 0523215B1
Authority
EP
European Patent Office
Prior art keywords
pressure
hollow body
deformation
bushing
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92903582A
Other languages
German (de)
French (fr)
Other versions
EP0523215A1 (en
Inventor
Wilhelm Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
hde Metallwerk GmbH
Original Assignee
hde Metallwerk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by hde Metallwerk GmbH filed Critical hde Metallwerk GmbH
Publication of EP0523215A1 publication Critical patent/EP0523215A1/en
Application granted granted Critical
Publication of EP0523215B1 publication Critical patent/EP0523215B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/28Making tube fittings for connecting pipes, e.g. U-pieces
    • B21C37/283Making U-pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure

Definitions

  • the invention relates to a method for the hydrostatic shaping of hollow bodies made of cold-formable metal beyond the clear initial width of the hollow body within a mold cavity of a die, pressure fluid being fed into the hollow body from the outside, a deformation region of the hollow body being moved relative to the mold cavity only by means of the pressure fluid and the hollow body wall is pressed onto the engraving of the mold cavity and the hollow body is received outside of the deformation area in at least one support or pressure fluid-conducting connection area of at least one rigid sleeve essentially free of axial force and axially displaceable with a sliding fit.
  • the aforementioned method which is known from NL-C-80 878, deals with the production of elbows from thin-walled, metallic tubes of circular cross-section, and thus relates in the broadest sense to a bending method for such tubes.
  • the peculiarity of that known method is first of all to reduce the axial compression pressure (and thus the formation of folds) when bending on the inside of the neutral fiber to a negligibly small value in that the tube walls are pressed tightly against one another via the bending path, that is to say the tube is flattened is (see NL-C-80 878 column 1, lines 39-50, and column 2, lines 1-9, in connection with Figs. 1-6).
  • a calibration is then carried out in the die under hydrostatic internal pressure, in which a pipe end is anchored in the die, while the inlet end of the pipe for the hydraulic medium is given the opportunity to freely slide back and forth in the die.
  • the purpose of this calibration work is obviously to restore the tube diameter reduced by the mechanical bending process as a result of stretching and at the same time to press the outer curvature of the tubular workpiece exactly against the die engraving (see NL-C-80 878 column 4, lines 16-41).
  • the NL-C-80 878 therefore essentially only shows a precision bending process with which Pipe bends (for example for musical wind instruments) can be produced without falsifying the cross-sectional shape (for example circular shape) of the starting tubular body.
  • the tubular workpiece is provided on the inside and outside of the pipe with protuberances that are placed in such a way that two separating cuts made through the protuberances result in a 90 ° elbow with a short and a long elbow end.
  • the method according to GB-A-835 259 is felt to be disadvantageous because the achievable degree of expansion of the hollow body is too small and that according to Expansion of wall thickness can be felt as random.
  • the known hydroforming process is always limited to workpieces in which the force-action lines for the introduction of the axial forces, that is to say the ram and the longitudinal central axis of the tube, coincide exactly.
  • the longitudinal axis of the protuberance which is produced sectorally in accordance with the die engraving, runs transversely to the force line of the press ram and the pipe (see "Industrial Indicator", see page 17, Figures 4 and 8).
  • connection area for supplying the hydrostatic pressure fluid is formed by an opening (see Fig. 2.2. A) and c) position p) of a housing surrounding the die.
  • the die has two seals integrated in both die halves, which encompass the two pipe ends in order to avoid hydraulic pressure compensation. It should therefore be prevented that hydrostatic pressure fluid can creep around the outside of the tubular workpiece to be deformed. During the hydrostatic forming, the tubular workpiece can move axially relative to the two seals.
  • EP-A3-03 47 369 describes a method with which a more or less theoretical attempt is made to deform hollow bodies solely under the action of the pressure medium and also to produce curved moldings.
  • each rigid sleeve has a closed toroidal hollow seal on the inside, which is always subjected to a sealing pressure which is considerably 10-20% higher than the forming pressure acting on the hollow profile on the inside (cf. EP -A3-03 47 369 column 2, lines 44-49, column 3, lines 51-58, and column 4, lines 42-64).
  • the invention is based on the object of specifying a hydrostatic expansion method, which, irrespective of the course of the longitudinal axis of the tubular workpiece, permits a greater degree of expansion than before, and at the same time allows targeted wall thickness control.
  • this object has been achieved in that the hollow body wall is accommodated at each support and connection area essentially free of axial force and axially displaceably with a sliding fit in the sleeve, and in that at the points at which a hydrostatic thinning of the hollow body wall is to be produced, specifically Distance between the outer surface of the hollow body wall and the inner surface of the engraving is left and that the distance is dimensioned essentially proportional to the degree of deformation to be achieved.
  • the hollow body is accommodated at each support or connection area essentially free of axial force and axially displaceable with a sliding fit in the sleeve.
  • the invention first of all creates the precondition for the production of hollow bodies of any basic shape, including those with an arbitrarily curved, intricate shape.
  • the invention uses the exclusive sliding seat mounting of the workpiece for the possibility of a large degree of expansion, since a sufficient amount of material can flow into the actual forming zone during the hydrostatic forming.
  • the method according to the invention also allows wall thickness control.
  • This is according to the invention achieved that at the points at which a hydrostatic thinning of the hollow body wall is to be generated, a distance is left between the outer surface of the hollow body wall and the inner surface of the engraving, the distance being dimensioned essentially proportional to the degree of deformation to be achieved.
  • the invention accordingly deliberately places the movement of the hollow body wall relative to the die that occurs during the forming process in a dependence on the desired thickness of the hollow body wall.
  • the movement of the hollow body wall relative to the die should be understood to mean any movement of any point on the hollow body wall relative to the engraving of the mold cavity.
  • the residual wall thickness between the outer and inner bends of a pre-bent pipe blank is automatically compensated for by the fact that the hydrostatic pressure, due to the larger effective area in the outer bend, leads to the blank initially engaging the engraving in the area of the outer bend.
  • the thicker wall of the inner arch is then pressed against the engraving opposite the inner arch, due to the higher pressure over time. This is basically done in such a way that each inner radius can be chosen freely and at the same time the remaining wall thickness is minimized.
  • the hydrostatic shaping in each die takes place in such a way that, before the hydrostatic shaping begins, the hydraulic fluid is first introduced into the hollow body with a filling pressure and then the fluid pressure is increased to a forming pressure whose pressure level is a multiple of the filling pressure.
  • the height of the forming pressure can be approximately 30 to 50 times the level of the filling pressure.
  • An essential aim of the method according to the invention is to be able to produce hollow bodies with a high manufacturing identity precisely. It is important here that the material always lies precisely against the engraving of the mold cavity during the forming process, even if there are partial material tolerances.
  • a development of the invention provides that the forming pressure required for forming a hollow body is increased by an additional pressure.
  • the invention therefore works with a pressure reserve. For example, if a forming pressure of 1350 bar would suffice for forming a hollow body, the invention provides for an increase in pressure to, for example, 1500 bar.
  • the additional pressure of 150 bar ensures that the wall of the hollow body always lies evenly, richly and without resetting against the engraving of the mold cavity.
  • a special feature of the method according to the invention is that during the hydrostatic shaping, the air previously located in the hollow body is preferably compressed at the same time by means of the pressure fluid, that after the shaping has been completed, the pressure supply for the pressure fluid is switched off, whereupon the compressed air relaxes and the pressure fluid thereby expires is pushed out of the hollow body.
  • an embodiment of the invention provides that after each completed transformation stage, for example within a separate die, before the subsequent separate forming in the next die, the hollow body is recrystallized by normalizing .
  • the Temperature for normalizing or normalizing about 920-930 ° C.
  • the invention also includes a purely mechanical intermediate forming in the event that the basic shape would have to be changed in a conspicuous manner after hydrostatic forming has already taken place.
  • each sleeve is translationally movable back and forth relative to the die is, and that each sleeve for receiving a respective support or connection area of the hollow body forms an encompassing sliding seat.
  • the pressure-tight reception of each support or connection area on the hollow body side ensures that the hollow body as a whole is kept essentially free of axial force.
  • This axial force-free sliding seat posture ensures in a particularly advantageous manner that the deformation area on the hollow body side can deform both axially and radially under the action of the hydrostatic internal pressure within the die in the manner of a stretching deformation and in this case automatically "pull" material out of the holding areas.
  • a schematically partially illustrated hydrostatic forming device is designated overall by the reference number 10.
  • the forming device 10 has a press 11 with a fixed press table 12 and a press upper part 13 which can be moved up and down in accordance with the double arrow denoted by y, on the lower surface of which a die upper part 14 of a die 16 is fastened in a uniform movement.
  • the die 16 also has a lower die part (lower die) 15.
  • a mold cavity half 18 of the upper die 14 and a mold cavity half 19 of the lower die 15 complement each other to form a mold cavity 17.
  • the surface forming the inner surface of the mold cavity 17, that is to say the engraving, is generally designated by the reference number 20.
  • the die 17 is delivered by moving the upper press part 13 downward.
  • a tube (tubular hollow body) 21 is received, which is made of a cold-formable metal, e.g. consists of St 34 or St 38 or another suitable formable material.
  • the tube 21, hereinafter referred to as a tubular hollow body regardless of its degree of deformation, is provided with a tube plate 22 on its one end face in the exemplary embodiment according to FIG. 1, while an open end face 23 is present at the other end.
  • the tubular hollow body 21 has end faces 23 which are open at both ends.
  • the feed sleeve 24 is translationally movable back and forth along the double arrow denoted by x.
  • the feed sleeve 24 sealingly encompasses the support or connection region 26 of the tubular hollow body 21 with a grooved collar 27 the feed sleeve 24 is blocked with respect to its direction of movement x, so that hydraulic fluid can be introduced from a hydraulic fluid source, not shown, via the feed lines 28, 29 into the sleeve cavity 30 and then can be introduced into the tubular hollow body via the respective open end face 23.
  • the tubular hollow body 21 is deformed in such a way that it rests on the engraving 20 of the die 16 with plastic deformation and thus assumes the contour of the engraving.
  • the tubular hollow body 21 is identified by dashed subdivisions T, which are intended to distinguish fundamentally from the fact that the tubular hollow body 21 consists of a support or connection area 26 and a deformation area 31.
  • tubular hollow body according to FIG. 1 is provided with the bottom 22 on one end face, only one supporting or connecting region 26 cooperating with the feed sleeve 24 is consequently provided, whereas in the case of a tubular hollow body 21 which is open at both ends (at 23), the deformation region 31 has both ends is limited by support or connection areas 26 corresponding to the dashed lines T shown in dashed lines.
  • both feed sleeves 24 are moved towards each other in synchronism before the hydrostatic shaping by means of the pressure fluid, whereupon the pressure fluid can be introduced via both feed sleeves 24.
  • an analog blind sleeve which is pressure-tightly sealed to the outside and therefore, with its grooved collar 27, encompasses the support or connection area 26 shown on the left in FIG. 2 and thus can at least assume the function of the tube sheet 22 according to FIG. 1. Except for its pressure-tight seal, a blind sleeve 24 does not differ from the feed sleeve 24.
  • the feed sleeve 24 has a sleeve body 32 with an external thread 34, which interacts with the internal thread 33 of a union nut 35.
  • the union nut 35 is provided with an insertion opening 36 which is delimited by a truncated cone-shaped inner surface 37.
  • the continuously ring-shaped ring nut 27 made of a flexible material, in particular of largely dimensionally stable plastic, is inserted.
  • the grooved collar 27 has an annular groove 40 which is open backwards in the direction of the pressure medium supply and which is delimited on the inside by an annular lip 42 which is integrally integrally connected to the grooved collar 27 and on the outside by an annular lip 41 which is also integrally integral component of the grooved collar 27.
  • the grooved collar 27 can therefore automatically expand in a gap-sealing manner under the action of the hydraulic fluid.
  • the feed sleeve 24 moves to the left along the direction x and continues to move via the intermediate position shown in dash-dotted lines until the union nut 35 lies snugly overall in the die-side receiving cavity 25. In this case, the grooved collar 27 passes over the support or connection area 26. Then the feed sleeve 24 is blocked with respect to the direction of movement x, whereupon a pressure medium (expediently an aqueous emulsion which is suitable for Hydraulic purposes is suitable) is introduced into the interior 43 of the tubular hollow body 21, after which its expanding hydrostatic deformation, which is a stretching deformation, takes place.
  • a pressure medium expediently an aqueous emulsion which is suitable for Hydraulic purposes is suitable
  • the tubular hollow body 21 shown in FIG. 4 is bent to a pipe bend of 180 ° by means of a conventional pipe bending device, not shown.
  • the pipe bending device can work, for example, according to the principle set out in AT-A-272 072.
  • the tube 21 behaves differently along its neutral axis (longitudinal central axis).
  • a thickening 45 caused by compression occurs in the inner wall area and a certain thinning 46 of the hollow body wall, designated overall by 47, in the outer tube wall area.
  • the bend results in a longitudinal groove-like sinking point 48 extending along the longitudinal direction of the tube.
  • a part of the lower die 15 is shown, which represents a plan view of the die division plane E.
  • the area of the die division plane is marked with an oblique line for better emphasis.
  • the pipe bend 21 is inserted into the lower mold cavity half 19 from above. Then the die 16 is delivered analogously to the representations in FIGS. 1 and 2 and two feed sleeves 24, not shown, slide over the two support or connection areas 26 of the pipe bend 21, the end faces 23 of which are open. The two feed sleeves 24, of which a blind sleeve can be, are then blocked against displacement. The arrangement is now ready to introduce the hydrostatic pressure fluid.
  • the hydrostatic pressure fluid is introduced in accordance with the pressure curve shown in FIGS. 10 and 11. 10, the pressure acting in the interior 43 of the tubular hollow part 21 to be deformed is plotted over time. 11 shows an enlarged detail of the pressure curve according to FIG. 10.
  • the pipe bend 21 according to FIG. 4 is first subjected to a filling pressure which, according to FIG. 11, reaches a pressure level of approximately 65 bar.
  • a filling pressure which, according to FIG. 11, reaches a pressure level of approximately 65 bar.
  • the filling pressure is generated in a separate low pressure section.
  • the filling pressure is increased by a steeply increasing forming pressure (generated in a separate high-pressure part), the maximum of which in the present case is approximately 1500 bar, but in principle up to 3000 bar and higher can be increased.
  • the pipe bend 21 is drawn completely into the mold cavity 17 along the direction A, the longitudinal groove-like incidence point 48 (see FIG. 4a) initially moving to the position 20 A of the engraving 20 outwards.
  • the pipe cross section assumes approximately the shape shown in FIG. 5a.
  • Fig. 5 clearly shows that the outer surface of the pipe bend has already largely applied to the engraving 20 at 20 A.
  • the dashed subdivisions T are also entered, which are intended to differentiate approximately the support or connection regions 26 from the deformation region 31 of the pipe bend 21.
  • FIGS. 4-6 only reproduce the entire forming process in stages, which overall runs continuously smoothly and without stagnation.
  • the increasing forming pressure finally ensures that the tube wall 47 located in the deformation area 31 fits snugly against the engraving 20, with an expansion of the tube 21 with simultaneous stretching of the tube wall 47.
  • the thickening 45 which can still be clearly seen in FIGS. 5 and 5a, bears against the direction A, namely in direction B, against the inner engraving region 20B with simultaneous stretching deformation, while the outer pipe bend is being applied overall on the outer contour of the engraving 20, so also at 20 A.
  • the tube 21 thus transformed finally has a uniform ring cross section corresponding to FIGS. 6 and 6a.
  • the tube bend 21 due to the larger effective area in the outer bend area, the tube bend 21 first moves in direction A into the mold cavity and is supported on the engraving area 20A. The thicker wall area 45 of the inner sheet is then pressed against the engraving area 20B opposite the inner sheet (at 45), due to the higher pressure in accordance with FIGS. 10 and 11 over time. It is therefore clear that, overall, the remaining wall thickness of the hollow body wall 47 is automatically compensated. This is basically done in such a way that each inner radius (ie in the area of the inner pipe bend, see also Fig. 8 Item 49) can be freely selected and at the same time the remaining wall thickness can be minimized.
  • a maximum forming pressure of approximately 1350 bar would have been sufficient.
  • the sufficient forming pressure is e.g. 150 bar increased to 1500 bar.
  • FIGS. 7-9 similarly to FIGS. 4-6, the cutting lines designated IVa-IVa, Va-Va and VIa-VIa are also entered, so that in principle also for the representations according to FIGS. 7-9-bis to scale differences - essentially the cross-sections according to FIGS. 4a, 5a and 6a apply.
  • the deformation paths F and G corresponding to the deformation path directions A and B also apply analogously to the exemplary embodiment according to FIGS. 7-9.
  • the 90 ° elbow according to FIG. 7 was also pre-formed with a mechanical pipe bending tool.
  • a longitudinal groove-like sink 48 is shown in FIG. 7.

Abstract

PCT No. PCT/DE92/00060 Sec. 371 Date Sep. 23, 1992 Sec. 102(e) Date Sep. 23, 1992 PCT Filed Jan. 31, 1992 PCT Pub. No. WO92/13653 PCT Pub. Date Aug. 20, 1992.A hollow workpiece having a tubular end portion is deformed by first fitting the workpiece into a die formed with a cavity adapted to receive the workpiece with the end portion of the workpiece projecting along an axis out of the die and then engaging over the projecting end portion of the workpiece a feed sleeve in a pressure-tight fit. The sleeve and workpiece are supported relative to each other such that the holding portion can slide in the sleeve and that the sleeve exerts substantially no axial force on the workpiece. Then an interior of the workpiece is pressurized through the sleeve and to deform the workpiece outward against an inner surface of the die.

Description

Die Erfindung betrifft ein Verfahren zum hydrostatischen Umformen von Hohlkörpern aus kaltumformbarem Metall über die lichte Ausgangsweite des Hohlkörpers hinaus innerhalb einer Formhöhlung eines Gesenks, wobei Druckflüssigkeit von außen in den Hohlkörper eingespeist, ein Verformungsbereich des Hohlkörpers nur mittels der Druckflüssigkeit relativ zur Formhöhlung bewegt und die Hohlkörperwand an die Gravur der Formhöhlung angedrückt wird und wobei der Hohlkörper außerhalb des Verformungsbereichs in mindestens einem Stütz- oder druckflüssigkeitsleitenden Anschlußbereich mindestens einer starren Muffe im wesentlichen axialkraftfrei und axialverschieblich mit Schiebesitz aufgenommen wird.The invention relates to a method for the hydrostatic shaping of hollow bodies made of cold-formable metal beyond the clear initial width of the hollow body within a mold cavity of a die, pressure fluid being fed into the hollow body from the outside, a deformation region of the hollow body being moved relative to the mold cavity only by means of the pressure fluid and the hollow body wall is pressed onto the engraving of the mold cavity and the hollow body is received outside of the deformation area in at least one support or pressure fluid-conducting connection area of at least one rigid sleeve essentially free of axial force and axially displaceable with a sliding fit.

Das vorgenannte Verfahren, welches durch die NL-C-80 878 bekannt ist, befaßt sich mit der Herstellung von Krümmern aus dünnwandigen, metallischen Rohren kreisförmigen Querschnitts, betrifft also im weitesten Sinne ein Biegeverfahren für solche Rohre. Die Eigenart jenes bekannten Verfahrens besteht zunächst darin, den axialen Stauchdruck (und damit eine Faltenbildung) beim Biegen auf der Innenseite der neutralen Faser dadurch auf einen vernachlässigbar kleinen Wert zu reduzieren, daß über die Biegestrecke die Rohrwandungen dicht gegeneinander gepreßt werden, das Rohr also abgeplattet wird (s. NL-C-80 878 Spalte 1, Zeilen 39-50, sowie Spalte 2, Zeilen 1-9, in Verbindung mit den Fig. 1-6).The aforementioned method, which is known from NL-C-80 878, deals with the production of elbows from thin-walled, metallic tubes of circular cross-section, and thus relates in the broadest sense to a bending method for such tubes. The peculiarity of that known method is first of all to reduce the axial compression pressure (and thus the formation of folds) when bending on the inside of the neutral fiber to a negligibly small value in that the tube walls are pressed tightly against one another via the bending path, that is to say the tube is flattened is (see NL-C-80 878 column 1, lines 39-50, and column 2, lines 1-9, in connection with Figs. 1-6).

Erst nach dem Zusammenpressen der Rohrwandungen wird das Rohr auf einer Biegevorrichtung gebogen und sodann in ein Gesenk (vgl. NL-C-80 878 Fig. 9 und 10) eingesetzt. In dem Gesenk wird das Rohr mit einem hydrostatischen Innendruck beaufschlagt. Hierdurch erfolgt nur die Wiederherstellung des ursprünglichen Kreisquerschnittes, d.h. die Aufweitung des abgeplatteten Rohres auf den ursprünglichen Durchmesser, durch Einleitung von Druckflüssigkeit über eine starre Muffe in den Innenraum des rohrförmigen Werkstücks hinein. Bei diesem Aufweitvorgang sind beide Rohrenden fest im Gesenk verankert (vgl. NL-C-80 878 Spalte 3, Zeilen 55-75 sowie Spalte 4, Zeilen 1-15). Nach dieser Umformungsphase wird das rohrförmige Werkstück aus dem Gesenk entfernt, rekristallisiert und wieder in dasselbe Gesenk eingelegt. In dem Gesenk erfolgt sodann ein Kalibrieren unter hydrostatischem Innendruck, bei welchem ein Rohrende im Gesenk verankert wird, während dem Einlaßende des Rohres für das hydraulische Medium Gelegenheit gegeben wird, im Gesenk frei hin- und herzugleiten. Sinn dieser Kalibrierarbeit ist es offenbar, den durch den mechanischen Biegevorgang infolge Streckung reduzierten Rohrdurchmesser wiederherzustellen und zugleich die Außenkrümmung des rohrförmigen Werkstücks exakt gegen die Gesenkgravur zu drücken (vgl. NL-C-80 878 Spalte 4, Zeilen 16-41).Only after the tube walls have been pressed together is the tube bent on a bending device and then inserted into a die (cf. NL-C-80 878 FIGS. 9 and 10). A hydrostatic internal pressure is applied to the pipe in the die. This only restores the original circular cross-section, i.e. the widening of the flattened tube to the original diameter by introducing hydraulic fluid through a rigid sleeve into the interior of the tubular workpiece. In this expansion process, both pipe ends are firmly anchored in the die (see NL-C-80 878 column 3, lines 55-75 and column 4, lines 1-15). After this forming phase, the tubular workpiece is removed from the die, recrystallized and placed back in the same die. A calibration is then carried out in the die under hydrostatic internal pressure, in which a pipe end is anchored in the die, while the inlet end of the pipe for the hydraulic medium is given the opportunity to freely slide back and forth in the die. The purpose of this calibration work is obviously to restore the tube diameter reduced by the mechanical bending process as a result of stretching and at the same time to press the outer curvature of the tubular workpiece exactly against the die engraving (see NL-C-80 878 column 4, lines 16-41).

Mit der NL-C-80 878 ist daher im wesentlichen nur ein Präzisionsbiegeverfahren aufgezeigt, mit welchem Rohrbögen (beispielsweise für Musik-Blasinstrumente) hergestellt werden können, ohne die Querschnittsform (z.B. Kreisform) des Ausgangs-Rohrkörpers zu verfälschen.The NL-C-80 878 therefore essentially only shows a precision bending process with which Pipe bends (for example for musical wind instruments) can be produced without falsifying the cross-sectional shape (for example circular shape) of the starting tubular body.

Durch die GB-A-835 259 ist es bekannt, zur Herstellung eines 90°-Rohrkrümmers ein mechanisch vorgebogenes Rohr einzusetzen. Hierbei ist es erforderlich, das Rohr nicht etwa um 90°, sondern vielmehr nur um einen stumpfen Winkel zu biegen, der wesentlich größer als 90°, beispielsweise 129°, bemessen ist (vgl. GB-A-835 259 Seite 2, Zeilen 22-40). Das vorgebogene rohrförmige Werkstück wird sodann zur hydrostatischen Umformung mit beiden Rohrenden fest im Gesenk verankert (vgl. GB-A-835 259 Seite 2, Zeilen 102-104; Zeilen 127-130 sowie Seite 3, Zeilen 5-9 in Verbindung mit Fig. 1 und 2). Bei der hydrostatischen Aufweitung wird das rohrförmige Werkstück am Rohrinnen- und am Rohraußenbogen mit Ausstülpungen versehen, die so plaziert sind, daß zwei durch die Ausstülpungen hindurchgeführte Trennschnitte einen 90°-Krümmer mit einem kurzen und einem langen Krümmerende ergeben.From GB-A-835 259 it is known to use a mechanically pre-bent pipe to produce a 90 ° pipe elbow. It is necessary here not to bend the pipe by approximately 90 °, but rather only by an obtuse angle, which is dimensioned significantly larger than 90 °, for example 129 ° (cf. GB-A-835 259 page 2, lines 22 -40). The pre-bent tubular workpiece is then firmly anchored in the die for hydrostatic forming with both tube ends (cf. GB-A-835 259 page 2, lines 102-104; lines 127-130 and page 3, lines 5-9 in connection with Fig. 1 and 2). In the hydrostatic expansion, the tubular workpiece is provided on the inside and outside of the pipe with protuberances that are placed in such a way that two separating cuts made through the protuberances result in a 90 ° elbow with a short and a long elbow end.

Mit dem durch die GB-A-835 259 bekannten Verfahren ergibt sich auch eine umformungsbedingte Wandverdünnung, und zwar durch Streckverformung (vgl. GB-A-835 259 Seite 3, Zeilen 35-46).The process known from GB-A-835 259 also results in a thinning of the wall due to the deformation, namely by stretching (see GB-A-835 259 page 3, lines 35-46).

Das Verfahren gemäß der GB-A-835 259 wird als nachteilig empfunden, weil das erzielbare Maß einer Hohlkörperaufweitung als zu gering und die nach der Aufweitung erzielte Wandstärke als zufällig empfunden werden.The method according to GB-A-835 259 is felt to be disadvantageous because the achievable degree of expansion of the hollow body is too small and that according to Expansion of wall thickness can be felt as random.

Während demnach die Verfahren gemäß NL-C-80 878 und der GB-A-835 259 Präzisionsbiegeverfahren zur Herstellung faltenfreier Rohrkrümmer betreffen, bei denen eine Aufweitung nur unter dem Gesichtswinkel der Kalibrierung geschieht, bedient man sich in der Praxis bei der Herstellung größerer Aufweitungen an rohrförmigen Hohlteilen anderer bekannter Verfahren.Accordingly, while the processes according to NL-C-80 878 and GB-A-835 259 relate to precision bending processes for the production of wrinkle-free pipe elbows, in which expansion occurs only from the calibration point of view, in practice one makes use of the production of larger expansions tubular hollow parts of other known methods.

Ein solches anderes bekanntes Verfahren ist z.B. im "Industrie-Anzeiger" Nr. 20 vom 9.3.1984 / 106. Jg. S. 16 und 17 beschrieben. Zu einem hohen hydrostatischen Druck innerhalb des im Gesenk befindlichen, zu verformenden rohrförmigen Werkstücks tritt bei diesem Verfahren gesondert ein axialer Druck hinzu, der auf die Rohrstirnflächen einwirkt. Jener Axialdruck und die gleichzeitige Wirkung des inneren Drucks haben zur Folge, daß sich die erheblich erweiternde Hohlkörperwand an die Gravur der Form bzw. des Gesenks anlegt. Bei diesem bekannten Verfahren wird ein gerades Rohr in die Formteilungsebene zwischen Ober- und Untergesenk eingelegt und das Gesenk zugestellt. Zwischen Ober- und Untergesenk bleibt aber genügend Raum für zwei diametral gegenüberliegend koaxial zueinander angeordnete horizontal liegende Preßstempel, deren freie Stirnflächen das mit den Preßstempeln fluchtende, zu verformende Werkstück zwischen sich aufnehmen. Es erfolgt sodann die Umformung durch Einführen von Druckflüssigkeit in den Rohrinnenraum bei gleichzeitiger Anwendung des Axialdrucks, wobei die beiden Preßstempel aufeinanderzu bewegt werden.Such another known method is described, for example, in "Industrie-Anzeiger" No. 20 of March 9, 1984/106, pp. 16 and 17. In addition to a high hydrostatic pressure within the tubular workpiece to be deformed in the die, this method is accompanied by an axial pressure which acts on the pipe end faces. That axial pressure and the simultaneous effect of the internal pressure have the consequence that the considerably widening hollow body wall bears against the engraving of the mold or the die. In this known method, a straight tube is inserted into the mold parting plane between the upper and lower dies and the die is fed. Between the upper and lower dies, however, there remains sufficient space for two diametrically opposed, horizontally arranged pressing dies, the free end faces of which accommodate the workpiece to be deformed, which is in alignment with the pressing dies. It is then formed by introducing hydraulic fluid into the interior of the pipe while using the Axialdrucks, wherein the two rams are moved towards each other.

Indes wird das bekannte Innenhochdruck-Umformverfahren (s. "Industrie-Anzeiger" a.a.O.), welches zwar größere Aufweitungen zuläßt, als nachteilig empfunden, weil eine gewisse Mindestdicke der Hohlkörperwand nicht unterschritten werden kann. Dies liegt im wesentlichen daran, daß der zu verformende Hohlkörper zur Aufnahme des auf seine Stirnflächen einwirkenden relativ hohen Axialdrucks angemessen formsteif ausgebildet sein muß, was nur über den Weg einer hinreichenden Wanddicke zu bewerkstelligen ist.In the meantime, the well-known hydroforming process (see "Industrial Indicator", cited above), which allows larger widenings, is perceived as disadvantageous because a certain minimum thickness of the hollow body wall cannot be undercut. This is essentially due to the fact that the hollow body to be deformed must be suitably dimensionally stable to accommodate the relatively high axial pressure acting on its end faces, which can only be achieved by way of a sufficient wall thickness.

Außerdem ist das bekannte Innenhochdruck-Umformverfahren immer nur auf Werkstücke beschränkt, bei welchen die Kraftwirkungsgeraden zur Einleitung der Axialkräfte, also Preßstempel und Längsmittelachse des Rohres, exakt koinzidieren. Auf diese Weise können höchstens seitliche sektorielle Ausstülpungen zur Herstellung z.B. von Kreuzstücken oder T-Stücken erzeugt werden. Hierbei verläuft die Längsachse der jeweils in Anpassung an die Gesenk-Gravur sektoriell erzeugten Ausstülpung quer zur gemeinsamen Kraftwirkungsgeraden der Preßstempel und dem Rohres (s. "Industrie-Anzeiger" a.a.O. Seite 17 Bild 4 und 8).In addition, the known hydroforming process is always limited to workpieces in which the force-action lines for the introduction of the axial forces, that is to say the ram and the longitudinal central axis of the tube, coincide exactly. In this way, at most lateral sectoral protuberances for the production e.g. of cross pieces or T pieces. Here, the longitudinal axis of the protuberance, which is produced sectorally in accordance with the die engraving, runs transversely to the force line of the press ram and the pipe (see "Industrial Indicator", see page 17, Figures 4 and 8).

Mit dem bekannten Innenhochdruck-Umformverfahren ist demnach bereits eine gewissen Anzahl von Formen zu erzeugen, welche aber stets an die Rahmenbedingung einer gemeinsamen Kraftwirkungsgeraden der Preßstempel und des zu verformenden Rohres, also an eine grundsätzlich gerade Grundform, gebunden sind. Analog arbeitet ein Innenhochdruck-Umformverfahren, welches durch die EP-B1-0086 480 bekanntgeworden ist. Ebenso arbeitende Verfahren sind in der Zeitschrift "Werkstatt und Betrieb" 1990, Seiten 241-243 (s. dort Seite 242 linke Spalte Abs. 1) sowie in der Zeitschrift "MECHANICAL ENGINEERING" April 1966 Seite 39 (s. dort Fig. 8, rechte Spalte Zeilen 3 und 4) beschrieben. Eine Variante der letztgenannten Verfahren zeigt die DE-A-2118207, wonach während des hydrostatischen Aufweitvorganges sowohl die beide Enden des rohrförmigen Werkstücks umgreifenden Muffen als auch die beiden in Axialrichtung aufeinanderzu beweglichen Gesenkhälften einen zusätzlichen äußeren Axialdruck auf das Werkstück ausüben.With the known hydroforming process, a certain number of shapes can already be produced, which, however, always depends on the general conditions of a common force line of the press ram and the pipe to be deformed straight basic form, are bound. An internal high-pressure forming process, which has become known from EP-B1-0086 480, works analogously. Likewise working methods are in the magazine "Werkstatt und Betrieb" 1990, pages 241-243 (see there page 242 left column, paragraph 1) and in the magazine "MECHANICAL ENGINEERING" April 1966 page 39 (see there Fig. 8, right column lines 3 and 4). A variant of the latter method is shown in DE-A-2118207, according to which during the hydrostatic expansion process both the sleeves encompassing both ends of the tubular workpiece and the two die halves which are movable towards one another in the axial direction exert an additional external axial pressure on the workpiece.

Aus der russischen Veröffentlichung "Hydroplastische Metallbearbeitung", erschienen bei Leningrad "Maschinostroenie", Leningrader Filiale 1988 Sofia "Technika" 1988 ist es gemäß Seite 27 Fig. 2.2. a) und c) von einer keine Muffen aufweisenden Anordnung bekannt, Rohrenden allein durch hydrostatischen Innendruck ringförmig aufzuweiten (Fig. 2.2. a)) oder einseitig mit einer Ausstülpung (Fig. 2.2. c)) zu versehen. Bei der bekannten Anordnung ist der Anschlußbereich zur Zuführung der hydrostatischen Druckflüssigkeit von einer Öffnung (s.Fig. 2.2. a) und c) Position p) eines das Gesenk umgebenden Gehäuses gebildet. Das Gesenk weist zwei in beiden Gesenkhälften integrierte Dichtungen auf, welche die beiden Rohrenden umgreifen, um einen hydraulischen Druckausgleich zu vermeiden. Es soll also verhindert werden, daß hydrostatische Druckflüssigkeit das zu verformende rohrförmige Werkstück außen umkriechen kann. Während der hydrostatischen Umformung kann sich das rohrförmige Werkstück relativ zu den beiden Dichtungen axial verschieben.From the Russian publication "Hydroplastic Metalworking", published by Leningrad "Maschinostroenie", Leningrad branch 1988 Sofia "Technika" 1988 it is according to page 27 Fig. 2.2. a) and c) of an arrangement without sleeves known to expand pipe ends in a ring shape solely by hydrostatic internal pressure (FIG. 2.2. a)) or to provide a protuberance on one side (FIG. 2.2. c)). In the known arrangement, the connection area for supplying the hydrostatic pressure fluid is formed by an opening (see Fig. 2.2. A) and c) position p) of a housing surrounding the die. The die has two seals integrated in both die halves, which encompass the two pipe ends in order to avoid hydraulic pressure compensation. It should therefore be prevented that hydrostatic pressure fluid can creep around the outside of the tubular workpiece to be deformed. During the hydrostatic forming, the tubular workpiece can move axially relative to the two seals.

In einer anderen Druckschrift, der EP-A3-03 47 369, ist ein Verfahren beschrieben, mit welchem mehr oder weniger theoretisch versucht wird, Hohlkörper allein unter der Wirkung des Druckmittels zu verformen und auch gebogene Formteile herzustellen. Gemäß der EP 03 47 369 A3 weist jede starre Muffe innen eine geschlossene toroidartige hohle Dichtung auf, die stets mit einem Dichtungsdruck beaufschlagt wird, welcher erheblich, und zwar 10-20 %, höher ist als der das Hohlprofil innen beaufschlagende Umformungsdruck (vgl. EP-A3-03 47 369 Spalte 2, Zeilen 44-49, Spalte 3, Zeilen 51-58, sowie Spalte 4, Zeilen 42-64). Dies bedeutet bei jenem bekannten Verfahren eine quasi zangenförmige feste unverschiebliche Aufnahme des Hohlprofils innerhalb der Stütz- und Anschlußbereiche.Another publication, EP-A3-03 47 369, describes a method with which a more or less theoretical attempt is made to deform hollow bodies solely under the action of the pressure medium and also to produce curved moldings. According to EP 03 47 369 A3, each rigid sleeve has a closed toroidal hollow seal on the inside, which is always subjected to a sealing pressure which is considerably 10-20% higher than the forming pressure acting on the hollow profile on the inside (cf. EP -A3-03 47 369 column 2, lines 44-49, column 3, lines 51-58, and column 4, lines 42-64). In this known method, this means a quasi pincer-shaped, fixed, immovable receptacle of the hollow profile within the support and connection areas.

Im übrigen ist es von einer nicht zur erfindungsgemäßen Gattung zählenden Anlage (DE-C2-31 05 735) zur druckdichten Befestigung eines Rohres in einem Rohrboden bekannt, über einen muffenlosen Druckaufbaudorn ein Druckmittel in zwei unmittelbar ineinander übergehenden Druckstufen in das zu verformende Rohr einzuleiten.For the rest, it is known from a system not belonging to the type according to the invention (DE-C2-31 05 735) for the pressure-tight fastening of a tube in a tube sheet, to introduce a pressure medium into the tube to be deformed in two directly merging pressure stages via a sleeve-free pressure build-up mandrel.

Ausgehend vom Verfahren gemäß der NL-C-80 878, welches praktisch nur eine Rohraufweitung zum Zwecke der Kalibrierung im Sinne eines ursprünglichen Rohrdurchmessers offenbart, liegt der Erfindung die Aufgabe zugrunde, ein hydrostatisches Aufweitverfahren anzugeben, welches unabhängig vom Verlauf der Längsachse des rohrförmigen Werkstücks einen größeren Aufweitungsgrad als bisher und auch zugleich eine gezielte Wanddickensteuerung gestattet.Starting from the method according to NL-C-80 878, which practically only discloses a tube expansion for the purpose of calibration in the sense of an original tube diameter, the invention is based on the object of specifying a hydrostatic expansion method, which, irrespective of the course of the longitudinal axis of the tubular workpiece, permits a greater degree of expansion than before, and at the same time allows targeted wall thickness control.

Entsprechend der Erfindung ist diese Aufgabe dadurch gelöst worden, daß die Hohlkörperwand an jedem Stütz- und Anschlußbereich im wesentlichen axialkraftfrei und axialverschieblich mit Schiebesitz in der Muffe aufgenommen ist und daß an den Stellen, an denen eine hydrostatische Verdünnung der Hohlkörperwand erzeugt werden soll, gezielt ein Abstand zwischen der Außenfläche der Hohlkörperwand und der Innenfläche der Gravur belassen wird und daß der Abstand im wesentlichen proportional dem zu erzielenden Umformungsgrad bemessen wird.According to the invention, this object has been achieved in that the hollow body wall is accommodated at each support and connection area essentially free of axial force and axially displaceably with a sliding fit in the sleeve, and in that at the points at which a hydrostatic thinning of the hollow body wall is to be produced, specifically Distance between the outer surface of the hollow body wall and the inner surface of the engraving is left and that the distance is dimensioned essentially proportional to the degree of deformation to be achieved.

Entsprechend der Erfindung ist der Hohlkörper an jedem Stütz- oder Anschlußbereich im wesentlichen axialkraftfrei und axialverschieblich mit Schiebesitz in der Muffe aufgenommen. Hierdurch schafft die Erfindung zunächst die Voraussetzung dazu, daß Hohlkörper jeglicher Grundform, auch solche mit beliebig gekrümmter verwickelter Gestalt, hergestellt werden können. Zugleich nutzt die Erfindung die ausschließliche Schiebesitzlagerung des Werkstückes für die Möglichkeit eines großen Aufweitungsgrades, da so während der hydrostatischen Umformung hinreichend viel Werkstoff in die eigentliche Umformungszone nachfließen kann.According to the invention, the hollow body is accommodated at each support or connection area essentially free of axial force and axially displaceable with a sliding fit in the sleeve. In this way, the invention first of all creates the precondition for the production of hollow bodies of any basic shape, including those with an arbitrarily curved, intricate shape. At the same time, the invention uses the exclusive sliding seat mounting of the workpiece for the possibility of a large degree of expansion, since a sufficient amount of material can flow into the actual forming zone during the hydrostatic forming.

Das erfindungsgemäße Verfahren gestattet zudem eine Wanddickensteuerung. Dies wird erfindungsgemäß dadurch erzielt, daß an den Stellen, an denen eine hydrostatische Verdünnung der Hohlkörperwand erzeugt werden soll, gezielt ein Abstand zwischen der Außenfläche der Hohlkörperwand und der Innenfläche der Gravur belassen wird, wobei der Abstand im wesentlichen proportional dem zu erzielenden Umformungsgrad bemessen wird. Die Erfindung stellt demnach die während des Umformvorgangs auftretende Bewegung der Hohlkörperwand relativ zum Gesenk bewußt in eine Abhängigkeit zur gewünschten Dicke der Hohlkörperwand. Unter der Bewegung der Hohlkörperwand relativ zum Gesenk soll dabei jede Bewegung eines beliebigen Punktes der Hohlkörperwand relativ zur Gravur der Formhöhlung verstanden werden.The method according to the invention also allows wall thickness control. This is according to the invention achieved that at the points at which a hydrostatic thinning of the hollow body wall is to be generated, a distance is left between the outer surface of the hollow body wall and the inner surface of the engraving, the distance being dimensioned essentially proportional to the degree of deformation to be achieved. The invention accordingly deliberately places the movement of the hollow body wall relative to the die that occurs during the forming process in a dependence on the desired thickness of the hollow body wall. The movement of the hollow body wall relative to the die should be understood to mean any movement of any point on the hollow body wall relative to the engraving of the mold cavity.

Ein selbsttätiger Ausgleich der Restwandstärke zwischen Außen- und Innenbogen eines vorgebogenen Rohr-Rohlings erfolgt dadurch, daß der hydrostatische Druck, bedingt durch die größere Wirkfläche im Außenbogen, dazu führt, daß sich der Rohling zunächst im Bereich des Außenbogens an die Gravur anlegt. Die dickere Wand des Innenbogens wird sodann, bedingt durch den im zeitlichen Verlauf höheren Druck, an die dem Innenbogen gegenüberliegende Gravur gepreßt. Dies geschieht grundsätzlich derart, daß jeder Innenradius frei gewählt werden kann und gleichzeitig die Restwandstärke minimiert wird.The residual wall thickness between the outer and inner bends of a pre-bent pipe blank is automatically compensated for by the fact that the hydrostatic pressure, due to the larger effective area in the outer bend, leads to the blank initially engaging the engraving in the area of the outer bend. The thicker wall of the inner arch is then pressed against the engraving opposite the inner arch, due to the higher pressure over time. This is basically done in such a way that each inner radius can be chosen freely and at the same time the remaining wall thickness is minimized.

Die hydrostatische Umformung in jedem Gesenk erfolgt derart, daß vor Beginn der hydrostatischen Umformung die Druckflüssigkeit zunächst mit einem Fülldruck in den Hohlkörper hineingegeben und sodann eine Erhöhung des Flüssigkeitsdrucks auf einen Umformungsdruck erfolgt, dessen Druckhöhe ein Vielfaches des Fülldrucks beträgt.The hydrostatic shaping in each die takes place in such a way that, before the hydrostatic shaping begins, the hydraulic fluid is first introduced into the hollow body with a filling pressure and then the fluid pressure is increased to a forming pressure whose pressure level is a multiple of the filling pressure.

Hierbei kann die Höhe des Umformungsdrucks etwa das 30- bis 50-fache der Höhe des Fülldrucks betragen.The height of the forming pressure can be approximately 30 to 50 times the level of the filling pressure.

Ein wesentliches Ziel des erfindungsgemäßen Verfahrens besteht darin, Hohlkörper großer Fertigungidentität präzise herstellen zu können. Hierbei ist es wichtig, daß der Werkstoff während der Umformung auch bei etwaigen partiellen Werkstofftoleranzen stets genau und ohne Rückstellung an der Gravur der Formhöhlung anliegt. Um dies mit Sicherheit zu erreichen, sieht eine Weiterbildung der Erfindung vor, daß der zur Umformung eines Hohlkörpers erforderliche Umformungsdruck durch einen Zusatzdruck erhöht ist. Die Erfindung arbeitet demnach mit einer Druckreserve. Wenn beispielsweise zur Umformung eines Hohlkörpers an sich ein Umformungsdruck von 1350 Bar genügen würde, sieht die Erfindung eine Druckerhöhung auf beispielsweise 1500 Bar vor. Der Zusatzdruck in Höhe von 150 Bar gewährleistet, daß die Wand des Hohlkörpers stets gleichmäßig, satt und rückstellfrei an der Gravur der Formhöhlung anliegt.An essential aim of the method according to the invention is to be able to produce hollow bodies with a high manufacturing identity precisely. It is important here that the material always lies precisely against the engraving of the mold cavity during the forming process, even if there are partial material tolerances. To achieve this with certainty, a development of the invention provides that the forming pressure required for forming a hollow body is increased by an additional pressure. The The invention therefore works with a pressure reserve. For example, if a forming pressure of 1350 bar would suffice for forming a hollow body, the invention provides for an increase in pressure to, for example, 1500 bar. The additional pressure of 150 bar ensures that the wall of the hollow body always lies evenly, richly and without resetting against the engraving of the mold cavity.

Eine Besonderheit des erfindungsgemäßen Verfahrens besteht auch darin, daß während der hydrostatischen Umformung die zuvor im Hohlkörper befindliche Luft vorzugsweise zugleich mittels der Druckflüssigkeit komprimiert wird, daß nach abgeschlossener Umformung die Druckversorgung für die Druckflüssigkeit abgeschaltet wird, worauf die komprimierte Luft entspannt und dadurch die Druckflüssigkeit aus dem Hohlkörper hinausgedrängt wird.A special feature of the method according to the invention is that during the hydrostatic shaping, the air previously located in the hollow body is preferably compressed at the same time by means of the pressure fluid, that after the shaping has been completed, the pressure supply for the pressure fluid is switched off, whereupon the compressed air relaxes and the pressure fluid thereby expires is pushed out of the hollow body.

Wie bereits erwähnt, lassen sich innerhalb desselben Gesenks nur begrenzte Umformungsgrade erzielen, so daß bei größeren Umformungsgraden mehrere Gesenke erforderlich sind, in denen die Umformung fortschreitend stufenweise vorgenommen wird. Bei allen kaltumformbaren Metallen, die einer an sich wünschenswerten Kaltverfestigung nach jeder Verformungsstufe unterliegen, sieht ein Ausführungsbeispiel der Erfindung vor, daß nach jeder abgeschlossenen Umformungsstufe, z.B. innerhalb eines gesonderten Gesenks, vor der nachfolgenden gesonderten Umformung im nächsten Gesenk eine Rekristallisation des Hohlkörpers durch Normalglühen erfolgt. Bei St 34 bzw. St 37 beträgt die Temperatur für ein Normalglühen bzw. für eine Normalisierung etwa 920-930°C.As already mentioned, only limited degrees of deformation can be achieved within the same die, so that with larger degrees of deformation several dies are required in which the deformation is carried out progressively in stages. In the case of all cold-formable metals which are subject to a strain hardening, which is desirable per se, after each deformation stage, an embodiment of the invention provides that after each completed transformation stage, for example within a separate die, before the subsequent separate forming in the next die, the hollow body is recrystallized by normalizing . For St 34 or St 37 the Temperature for normalizing or normalizing about 920-930 ° C.

Selbstverständlich bezieht die Erfindung zwischen zwei hydrostatischen Umformungsstufen auch eine rein mechanische Zwischenumformung für den Fall mit ein, daß die Grundform nach bereits erfolgter hydrostatischer Umformung zusätzlich in auffälliger Weise verändert werden müßte.Of course, between two hydrostatic forming stages, the invention also includes a purely mechanical intermediate forming in the event that the basic shape would have to be changed in a conspicuous manner after hydrostatic forming has already taken place.

Ausgehend von der Vorrichtung gemäß der NL-C-80 878, betrifft die Erfindung außerdem eine Vorrichtung zur Durchführung des Verfahrens entsprechend dem Oberbegriff des Anspruchs 9. Eine solche vorteilhafte Vorrichtung wird erfindungsgemäß dadurch bereitgestellt, daß jede Muffe relativ zum Gesenk translatorisch hin- und herbeweglich ist, und daß jede Muffe zur Aufnahme je eines Stütz- oder Anschlußbereichs des Hohlkörpers einen umgreifenden Schiebesitz bildet. Die druckdichte Aufnahme eines jeden hohlkörperseitigen Stütz- oder Anschlußbereichs stellt sicher, daß der Hohlkörper insgesamt im wesentlichen axialkraftfrei gehalten ist. Diese axialkraftfreie Schiebesitzhaltung gewährleistet in besonders vorteilhafter Weise, daß sich der hohlkörperseitige Verformungsbereich unter der Wirkung des hydrostatischen Innendrucks innerhalb des Gesenk nach Art einer Streckverformung sowohl axial als auch radial verformen und hierbei selbsttätig Werkstoff aus den Haltebereichen "nachziehen" kann.Starting from the device according to NL-C-80 878, the invention also relates to a device for carrying out the method according to the preamble of claim 9. Such an advantageous device is provided according to the invention in that each sleeve is translationally movable back and forth relative to the die is, and that each sleeve for receiving a respective support or connection area of the hollow body forms an encompassing sliding seat. The pressure-tight reception of each support or connection area on the hollow body side ensures that the hollow body as a whole is kept essentially free of axial force. This axial force-free sliding seat posture ensures in a particularly advantageous manner that the deformation area on the hollow body side can deform both axially and radially under the action of the hydrostatic internal pressure within the die in the manner of a stretching deformation and in this case automatically "pull" material out of the holding areas.

Weitere Einzelheiten der Erfindung begeben sich aus den Unteransprüchen.Further details of the invention emerge from the subclaims.

In den Zeichnungen sind das erfindungsgemäße Verfahren und die Vorrichtung zur Durchführung des Verfahrens anhand von bevorzugten Ausführungsbeispielen im einzelnen dargelegt, hierbei zeigt,

  • Fig. 1 einen schematischen Längsschnitt durch eine Vorrichtung entsprechend einer ersten Ausführungsform,
  • Fig. 2 in Anlehnung an Fig. 1 einen schematischen Längsschnitt einer zweiten Ausführungsform,
  • Fig. 3 einen teilweisen Längsschnitt entsprechend der mit III bezeichneten Einkreisung in Fig. 2 in vergrößerter Darstellung,
  • Fig. 4 mit Fig. 4a, Fig. 5 mit Fig. 5a und Fig. 6 mit Fig. 6a die Umformung eines 180°-Rohrkrümmers in einem Gesenk mit diesbezüglichen Querschnitten des Rohrkrümmers,
  • Fig. 7-9 die Umformung eines 90°-Rohrkrümmers,
  • Fig. 10 den gesamten Druckverlauf bei der Umformung eines Werkstückes und
  • Fig. 11 ein vergrößertes Detail entsprechend der in Fig. 10 mit XI bezeichneten Einkreisung.
In the drawings, the inventive method and the device for performing the Method explained in detail using preferred exemplary embodiments, here shows
  • 1 shows a schematic longitudinal section through a device according to a first embodiment,
  • 2, based on FIG. 1, a schematic longitudinal section of a second embodiment,
  • 3 is a partial longitudinal section corresponding to the encirclement designated III in Fig. 2 in an enlarged view,
  • 4 with Fig. 4a, Fig. 5 with Fig. 5a and Fig. 6 with Fig. 6a the forming of a 180 ° pipe elbow in a die with related cross sections of the pipe elbow,
  • 7-9 the forming of a 90 ° elbow,
  • 10 shows the entire pressure profile during the forming of a workpiece and
  • 11 shows an enlarged detail corresponding to the encirclement designated XI in FIG. 10.

In den Fig. 1 und 2 ist eine schematisch teilweise dargestellte hydrostatische Umformvorrichtung insgesamt mit der Bezugsziffer 10 bezeichnet.1 and 2, a schematically partially illustrated hydrostatic forming device is designated overall by the reference number 10.

Die Umformvorrichtung 10 weist eine Presse 11 mit einem raumfesten Pressentisch 12 und einen hierzu entsprechend dem mit y bezeichneten Doppelpfeil auf - und abbewegliches Pressenoberteil 13 auf, an dessen Unterfläche ein Gesenkoberteil 14 eines Gesenks 16 bewegungseinheitlich befestigt ist. Das Gesenk 16 weist korrelierend zum Gesenkoberteil (Obergesenk) 14 noch ein Gesenkunterteil (Untergesenk) 15 auf.The forming device 10 has a press 11 with a fixed press table 12 and a press upper part 13 which can be moved up and down in accordance with the double arrow denoted by y, on the lower surface of which a die upper part 14 of a die 16 is fastened in a uniform movement. Corresponding to the upper die part (upper die) 14, the die 16 also has a lower die part (lower die) 15.

Eine Formhöhlungshälfte 18 des Obergesenks 14 und Formhöhlungshälfte 19 des Untergesenks 15 ergänzen sich insgesamt zu einer Formhöhlung 17. Die die Innenfläche der Formhöhlung 17, also die Gravur, bildende Fläche ist insgesamt mit der Bezugsziffer 20 bezeichnet.A mold cavity half 18 of the upper die 14 and a mold cavity half 19 of the lower die 15 complement each other to form a mold cavity 17. The surface forming the inner surface of the mold cavity 17, that is to say the engraving, is generally designated by the reference number 20.

Gemäß Fig. 1 ist das Gesenk 17 durch Abwärtsbewegung des Pressenoberteils 13 zugestellt. In der Formhöhlung 17 ist ein Rohr (rohrförmiger Hohlkörper) 21 aufgenommen, welches aus einem kaltumformbarem Metall, z.B. aus St 34 oder St 38 bzw. aus einem anderen geeigneten umformbarem Werkstoff besteht.1, the die 17 is delivered by moving the upper press part 13 downward. In the mold cavity 17, a tube (tubular hollow body) 21 is received, which is made of a cold-formable metal, e.g. consists of St 34 or St 38 or another suitable formable material.

Das Rohr 21, im folgenden unabhängig von seinem Umformungsgrad stets als rohrförmiger Hohlkörper bezeichnet, ist beim Ausführungsbeispiel gemäß Fig. 1 an seiner einen Endstirnseite mit einem Rohrboden 22 versehen, während andernends eine offene Stirnseite 23 vorhanden ist.The tube 21, hereinafter referred to as a tubular hollow body regardless of its degree of deformation, is provided with a tube plate 22 on its one end face in the exemplary embodiment according to FIG. 1, while an open end face 23 is present at the other end.

Beim Ausführungsbeispiel gemäß Fig. 2 weist der rohrförmige Hohlkörper 21 beidendig offene Stirnseiten 23 auf.In the exemplary embodiment according to FIG. 2, the tubular hollow body 21 has end faces 23 which are open at both ends.

Zur Beaufschlagung der rohrförmigen Hohlkörper 21 ist eine Einspeisungsmuffe 24 vorhanden, die als Detail in Fig. 3 vergrößert dargestellt ist.To act upon the tubular hollow body 21, there is a feed sleeve 24, which is shown enlarged as a detail in FIG. 3.

Die Einspeisungsmuffe 24 ist entlang dem mit x bezeichneten Doppelpfeil translatorisch hin- und herbeweglich.The feed sleeve 24 is translationally movable back and forth along the double arrow denoted by x.

Wenn nun die Einspeisungsmuffe 24 so weit nach links verschoben wird, bis sie in einer gesenkseitigen Aufnahmehöhlung 25 satt aufgenommen ist, umgreift die Einspeisungsmuffe 24 den Stütz- oder Anschlußbereich 26 des rohrförmigen Hohlkörpers 21 dichtend mit einer Nutringmanschette 27. Wenn dieser Zustand eingetreten ist, wird die Einspeisungsmuffe 24 bezüglich ihrer Bewegungsrichtung x blockiert, so daß Druckflüssigkeit von einer nicht dargestellten Druckflüssigkeitsquelle über die Zuleitungen 28, 29 in den Muffenhohlraum 30 eingeführt und sodann über die jeweilige offene Stirnseite 23 in den rohrförmigen Hohlkörper hineingeleitet werden kann.If the feed sleeve 24 is now shifted to the left until it is snugly received in a die-side receiving cavity 25, the feed sleeve 24 sealingly encompasses the support or connection region 26 of the tubular hollow body 21 with a grooved collar 27 the feed sleeve 24 is blocked with respect to its direction of movement x, so that hydraulic fluid can be introduced from a hydraulic fluid source, not shown, via the feed lines 28, 29 into the sleeve cavity 30 and then can be introduced into the tubular hollow body via the respective open end face 23.

Unter der Wirkung der Druckflüssigkeit wird - wie im einzelnen weiter unten noch näher dargestellt - der rohrförmige Hohlkörper 21 so umgeformt, daß er sich unter plastischer Verformung an die Gravur 20 des Gesenks 16 anlegt und so die Kontur der Gravur annimmt.Under the action of the pressure fluid - as will be shown in more detail below - the tubular hollow body 21 is deformed in such a way that it rests on the engraving 20 of the die 16 with plastic deformation and thus assumes the contour of the engraving.

Der rohrförmige Hohlkörper 21 ist gemäß den Fig. 1 und 2 mit gestrichelten Unterteilungen T gekennzeichnet, welche grundsätzlich unterscheiden sollen, daß der rohrförmige Hohlkörper 21 aus einem Stütz- oder Anschlußbereich 26 und aus einem Verformungsbereich 31 besteht.1 and 2, the tubular hollow body 21 is identified by dashed subdivisions T, which are intended to distinguish fundamentally from the fact that the tubular hollow body 21 consists of a support or connection area 26 and a deformation area 31.

Da der rohrförmige Hohlkörper gemäß Fig. 1 an einer Endstirnseite mit dem Boden 22 versehen ist, ist folglich nur ein mit der Einspeisungsmuffe 24 kooperierender Stütz- oder Anschlußbereich 26 vorgesehen, während bei einem beidendig (bei 23) offenen rohrförmigen Hohlkörper 21 der Verformungsbereich 31 beidendig durch Stütz- oder Anschlußbereiche 26 entsprechend den gestrichelt dargestellten Trennlinien T begrenzt ist.Since the tubular hollow body according to FIG. 1 is provided with the bottom 22 on one end face, only one supporting or connecting region 26 cooperating with the feed sleeve 24 is consequently provided, whereas in the case of a tubular hollow body 21 which is open at both ends (at 23), the deformation region 31 has both ends is limited by support or connection areas 26 corresponding to the dashed lines T shown in dashed lines.

Entsprechend Fig. 2 werden vor der hydrostatischen Umformung mittels der Druckflüssigkeit beide Einspeisungsmuffen 24 im Gleichtakt aufeinanderzu gefahren, worauf die Einleitung der Druckflüssigkeit über beide Einspeisungsmuffen 24 erfolgen kann. Grundsätzlich ist es auch möglich, beispielsweise anstelle der links in Fig. 2 dargestellten Einspeisungsmuffe 24 eine analog ausgebildete Blindmuffe vorzusehen, welche nach außen hin druckfest abgedichtet ist und daher mit ihrer Nutringmanschette 27 den links in Fig. 2 dargestellten Stütz- oder Anschlußbereich 26 dichtend umgreifen und so in etwa wenigstens die Funktion des Rohrbodens 22 gemäß Fig. 1 übernehmen kann. Bis auf ihre druckfeste Abdichtung unterscheidet sich eine Blindmuffe 24 nicht von der Einspeisungsmuffe 24.According to FIG. 2, both feed sleeves 24 are moved towards each other in synchronism before the hydrostatic shaping by means of the pressure fluid, whereupon the pressure fluid can be introduced via both feed sleeves 24. In principle, it is also possible, for example, to provide, instead of the feed sleeve 24 shown on the left in FIG. 2, an analog blind sleeve which is pressure-tightly sealed to the outside and therefore, with its grooved collar 27, encompasses the support or connection area 26 shown on the left in FIG. 2 and thus can at least assume the function of the tube sheet 22 according to FIG. 1. Except for its pressure-tight seal, a blind sleeve 24 does not differ from the feed sleeve 24.

In Fig. 3 ist die Einspeisungsmuffe 24 deutlicher zu erkennen. Die Einspeisungsmuffe 24 weist einen Muffenkörper 32 mit Außengewinde 34 auf, welches mit dem Innengewinde 33 einer Überwurfmutter 35 zusammenwirkt. Die Überwurfmutter 35 ist mit einer Einführöffnung 36 versehen, welche von einer kegelstumpfförmigen Innenmantelfläche 37 begrenzt ist. In eine zwischen der Überwurfmutter 35 und dem Muffenkörper 32 gebildeten ringförmigen Innennut 38 ist die durchgehend ringförmige Nutringmanschette 27 aus begrenzt flexiblem Werkstoff, insbesondere aus weitestgehend formstabilem Kunststoff, eingesetzt. Die Nutringmanschette 27 weist eine rückwärts in Richtung Druckmittelversorgung offene Ringnut 40 auf, welche innenseitig von einer einstückig stoffschlüssig mit der Nutringmanschette 27 verbundenen Ringlippe 42 und außenseitig von einer Ringlippe 41 begrenzt ist, welche ebenfalls einstückig stoffschlüssiger Bestandteil der Nutringmanschette 27 ist. Die Nutringmanschette 27 kann sich daher unter der Wirkung der Druckflüssigkeit selbsttätig spaltabdichtend verspreizen.3, the feed sleeve 24 can be seen more clearly. The feed sleeve 24 has a sleeve body 32 with an external thread 34, which interacts with the internal thread 33 of a union nut 35. The union nut 35 is provided with an insertion opening 36 which is delimited by a truncated cone-shaped inner surface 37. In a ring-shaped inner groove 38 formed between the union nut 35 and the sleeve body 32, the continuously ring-shaped ring nut 27 made of a flexible material, in particular of largely dimensionally stable plastic, is inserted. The grooved collar 27 has an annular groove 40 which is open backwards in the direction of the pressure medium supply and which is delimited on the inside by an annular lip 42 which is integrally integrally connected to the grooved collar 27 and on the outside by an annular lip 41 which is also integrally integral component of the grooved collar 27. The grooved collar 27 can therefore automatically expand in a gap-sealing manner under the action of the hydraulic fluid.

Zur Aufnahme des hohlkörperseitigen Stütz- oder Anschlußbereichs 26 fährt die Einspeisungsmuffe 24 entlang der Richtung x nach links und bewegt sich über die strichpunktiert dargestellte Zwischenstellung weiter, bis die Überwurfmutter 35 insgesamt satt in der gesenkseitigen Aufnahmehöhlung 25 einliegt. Hierbei überfährt die Nutringmanschette 27 den Stütz- oder Anschlußbereich 26. Sodann wird die Einspeisungsmuffe 24 bezüglich der Bewegungsrichtung x blockiert, worauf über 28, 29, 30, 23 ein Druckmittel (zweckmäßig eine wässrige Emulsion, die für Hydraulikzwecke geeignet ist) in den Innenraum 43 des rohrförmigen Hohlkörpers 21 eingeleitet wird, wonach dessen aufweitende hydrostatische Verformung, die eine Streckverformung darstellt, erfolgt.To accommodate the support or connection area 26 on the hollow body side, the feed sleeve 24 moves to the left along the direction x and continues to move via the intermediate position shown in dash-dotted lines until the union nut 35 lies snugly overall in the die-side receiving cavity 25. In this case, the grooved collar 27 passes over the support or connection area 26. Then the feed sleeve 24 is blocked with respect to the direction of movement x, whereupon a pressure medium (expediently an aqueous emulsion which is suitable for Hydraulic purposes is suitable) is introduced into the interior 43 of the tubular hollow body 21, after which its expanding hydrostatic deformation, which is a stretching deformation, takes place.

Es ist vorstellbar, daß die hydrostatische Verformung auch außerhalb des Gesenks bis in die trichterförmige Einführöffnung 36 hinein vonstatten geht, wodurch eine an letztere angeformte kegelstumpfförmige Aufwölbung 44 entsteht, wie sie etwa in den Fig. 6 sowie 8 und 9 dargestellt ist.It is conceivable that the hydrostatic deformation also takes place outside of the die into the funnel-shaped insertion opening 36, whereby a frustoconical bulge 44 formed on the latter, as is shown, for example, in FIGS. 6, 8 and 9.

Für den Fall, daß - wie vorerwähnt - die Einspeisungsmuffe 24 als Blindmuffe ausgebildet sein soll, genügt es, den der Druckmittelquelle zugewandten hinteren Teil des Muffenhohlraums 30 geschlossen auszubilden, wie es rechts in Fig. 3 im Zusammenhang mit der Bezugsziffer 39 und dem gestrichelten Bezugspfeil angedeutet ist.In the event that - as mentioned above - the feed sleeve 24 is to be designed as a blind sleeve, it suffices to form the closed rear part of the sleeve cavity 30 facing the pressure medium source, as shown on the right in FIG. 3 in connection with the reference number 39 and the dashed arrow is indicated.

Die vorstehenden Erläuterungen sollen auch zeigen, daß die Muffen 24, seien sie als Blindmuffen oder als Einspeisungsmuffen ausgebildet, die Stütz- oder Anschlußbereiche 26 zwar dichtend umschließen, dennoch aber eine Bewegung des rohrförmigen Hohlkörpers 21 relativ zur Muffe 24 zulassen. Diese Relativbewegung, die allein durch den hydrostatischen Umformdruck der Druckflüssigkeit initiiert wird, macht das erfindungsgemäße Verfahren unabhängig von einer externen axialen mechanischen Krafteinleitung z.B. mittels Preßstempel und gestattet daher dünnwandige Werkstücke 21 mit praktisch beliebig gekrümmter - und selbstverständlich auch gerader - Form.The above explanations are also intended to show that the sleeves 24, whether they are designed as blind sleeves or as feed sleeves, enclose the support or connection areas 26 in a sealing manner, but nevertheless allow the tubular hollow body 21 to move relative to the sleeve 24. This relative movement, which is initiated solely by the hydrostatic forming pressure of the hydraulic fluid, makes the method according to the invention independent of an external axial mechanical force application, for example by means of a press ram, and therefore permits thin-walled workpieces 21 with virtually any desired number curved - and of course straight - shape.

Anhand der Fig. 4-6 mit zugehörigen Querschnitten 4a-6a soll die erfindungsgemäße hydrostatische Umformung im einzelnen erläutert werden, wobei sich analoge Vorgänge auch im Zusammenhang mit den Fig. 7-9 ergeben, was durch die Übernahme identischer Bezugsziffern für analoge Einzelheiten deutlich wird.4-6 with associated cross sections 4a-6a, the hydrostatic shaping according to the invention is to be explained in detail, analogous processes also occurring in connection with FIGS. 7-9, which is clear from the adoption of identical reference numbers for analog details .

Der in Fig. 4 dargestellte rohrförmige Hohlkörper 21 ist mittels einer nicht gezeigten üblichen Rohr-Biegevorrichtung zu einem Rohrbogen von 180° gebogen. Die Rohrbiegevorrichtung kann beispielsweise entsprechend dem in der AT-A-272 072 dargelegten Prinzip arbeiten.The tubular hollow body 21 shown in FIG. 4 is bent to a pipe bend of 180 ° by means of a conventional pipe bending device, not shown. The pipe bending device can work, for example, according to the principle set out in AT-A-272 072.

Bei dem mechanischen Biegevorgang verhält sich das Rohr 21 entlang seiner neutralen Achse (Längsmittelachse) unterschiedlich. So entsteht im Innenwandbereich eine durch Stauchung bedingte Verdickung 45 und im Rohrwand-Außenbereich eine gewisse Verdünnung 46 der insgesamt mit 47 bezeichneten Hohlkörperwand. Im Rohraußenbereich (Rohraußenbogen) resultiert aus der Biegung eine sich entlang der Rohrlängsrichtung erstreckende längsnutartige Einfallstelle 48.In the mechanical bending process, the tube 21 behaves differently along its neutral axis (longitudinal central axis). Thus, a thickening 45 caused by compression occurs in the inner wall area and a certain thinning 46 of the hollow body wall, designated overall by 47, in the outer tube wall area. In the outer tube area (outer tube bend), the bend results in a longitudinal groove-like sinking point 48 extending along the longitudinal direction of the tube.

Bei der Herstellung des Rohrbogens ist man bemüht, nach Möglichkeit Fältelungen im Rohrinnenbogen weitestgehend zu vermeiden.When manufacturing the pipe bend, efforts are made to avoid wrinkling in the pipe inner bend as far as possible.

In den Fig. 4-6 ist gezeigt, wie die hydrostatische Umformung geschieht.4-6 show how the hydrostatic deformation takes place.

Dargestellt ist ein Teil des Untergesenks 15, welches eine Draufsicht auf die Gesenkteilungsebene E darstellt. Die Fläche der Gesenkteilungsebene ist zur besseren Hervorhebung mit einer Schrägschaffur gekennzeichnet.A part of the lower die 15 is shown, which represents a plan view of the die division plane E. The area of the die division plane is marked with an oblique line for better emphasis.

Der Rohrbogen 21 wird gemäß Fig. 4 von oben in die untere Formhöhlungshälfte 19 hineingelegt. Sodann wird das Gesenk 16 analog zu den Darstellungen in den Fig. 1 und 2 zugestellt und zwei nicht dargestellte Einspeisungsmuffen 24 schieben sich über die beiden Stütz- oder Anschlußbereiche 26 des Rohrbogens 21, dessen Stirnseiten 23 offen sind. Die beiden Einspeisungsmuffen 24, von denen eine Blindmuffe sein kann, werden sodann gegen Verschiebung blockiert. Die Anordnung ist nun bereit zur Einleitung der hydrostatischen Druckflüssigkeit.4, the pipe bend 21 is inserted into the lower mold cavity half 19 from above. Then the die 16 is delivered analogously to the representations in FIGS. 1 and 2 and two feed sleeves 24, not shown, slide over the two support or connection areas 26 of the pipe bend 21, the end faces 23 of which are open. The two feed sleeves 24, of which a blind sleeve can be, are then blocked against displacement. The arrangement is now ready to introduce the hydrostatic pressure fluid.

Die Einleitung der hydrostatischen Druckflüssigkeit geschieht entsprechend dem in den Fig. 10 und 11 gezeichneten Druckverlauf. In Fig. 10 ist der im Innenraum 43 des zu verformenden rohrförmigen Hohlteils 21 wirkende Druck über der Zeit aufgetragen. Hierbei stellt Fig. 11 ein vergrößertes Detail der Druckverlaufskurve gemäß Fig. 10 dar.The hydrostatic pressure fluid is introduced in accordance with the pressure curve shown in FIGS. 10 and 11. 10, the pressure acting in the interior 43 of the tubular hollow part 21 to be deformed is plotted over time. 11 shows an enlarged detail of the pressure curve according to FIG. 10.

Der Rohrbogen 21 gemäß Fig. 4 wird zunächst mit einem Fülldruck beaufschlagt, der gemäß Fig. 11 eine Druckhöhe von ca. 65 Bar erreicht. Während der Fülldruck-Phase beginnt der Rohrbogen 21 bereits, sich in Richtung A in die Formhöhlung 10 einzubewegen. Der Fülldruck wird in einem gesonderten Niederdruckteil erzeugt. Wie aus den Fig. 10 und 11 deutlich zu ersehen ist, wird der Fülldruck durch einen steil ansteigenden Umformungsdruck (erzeugt in einem gesonderten Hochdruckteil) erhöht, dessen Maximum im vorliegenden Fall insgesamt bei etwa 1500 Bar liegt, grundsätzlich aber bis auf 3000 Bar und höher gesteigert werden kann.The pipe bend 21 according to FIG. 4 is first subjected to a filling pressure which, according to FIG. 11, reaches a pressure level of approximately 65 bar. During the filling pressure phase, the pipe bend 21 already begins to collapse to move in direction A into the mold cavity 10. The filling pressure is generated in a separate low pressure section. As can be clearly seen from FIGS. 10 and 11, the filling pressure is increased by a steeply increasing forming pressure (generated in a separate high-pressure part), the maximum of which in the present case is approximately 1500 bar, but in principle up to 3000 bar and higher can be increased.

Während der Erhöhung des Umformungsdrucks wird der Rohrbogen 21 gänzlich entlang der Richtung A in die Formhöhlung 17 hineingezogen, wobei sich zunächst die längsnutartige Einfallstelle 48 (s. Fig. 4a) zur Stelle 20 A der Gravur 20 nach außen bewegt. Dabei nimmt der Rohrquerschnitt etwa die in Fig. 5a dargestellte Gestalt an. Fig. 5 zeigt deutlich, daß sich die Rohrbogen-Außenfläche bereits weitestgehend bei 20 A an die Gravur 20 angelegt hat. Auch in den Fig. 5 und 6 sind übrigens die gestrichelten Unterteilungen T eingetragen, welche in etwa die Stütz- oder Anschlußbereiche 26 vom Verformungsbereich 31 des Rohrbogens 21 unterscheiden sollen.During the increase in the forming pressure, the pipe bend 21 is drawn completely into the mold cavity 17 along the direction A, the longitudinal groove-like incidence point 48 (see FIG. 4a) initially moving to the position 20 A of the engraving 20 outwards. The pipe cross section assumes approximately the shape shown in FIG. 5a. Fig. 5 clearly shows that the outer surface of the pipe bend has already largely applied to the engraving 20 at 20 A. 5 and 6, the dashed subdivisions T are also entered, which are intended to differentiate approximately the support or connection regions 26 from the deformation region 31 of the pipe bend 21.

Es muß hervorgehoben werden, daß die Fig. 4-6 den gesamten Umformungsvorgang nur stufenweise wiedergeben, der insgesamt kontinuierlich gleitend und ohne Stockung verläuft.It must be emphasized that FIGS. 4-6 only reproduce the entire forming process in stages, which overall runs continuously smoothly and without stagnation.

Der sich erhöhende Umformungsdruck sorgt schließlich dafür, daß die im Verformungsbereich 31 befindliche Rohrwand 47 sich insgesamt satt an die Gravur 20 anlegt, wobei eine Aufweitung des Rohres 21 unter gleichzeitiger Streckung der Rohrwand 47 erfolgt. Dies bedeutet, daß sich insbesondere die Verdickung 45, welche in den Fig. 5 und 5a noch deutlich zu erkennen ist, entgegen der Richtung A, und zwar in Richtung B, an den inneren Gravurbereich 20 B unter gleichzeitiger Streckverformung anlegt, während sich der Rohraußenbogen insgesamt an der äußeren Kontur der Gravur 20, so auch bei 20 A, abstützt. Das so umgebildete Rohr 21 weist schließlich einen gleichmäßigen Ringquerschnitt entsprechend den Fig. 6 und 6a auf.The increasing forming pressure finally ensures that the tube wall 47 located in the deformation area 31 fits snugly against the engraving 20, with an expansion of the tube 21 with simultaneous stretching of the tube wall 47. This means that, in particular, the thickening 45, which can still be clearly seen in FIGS. 5 and 5a, bears against the direction A, namely in direction B, against the inner engraving region 20B with simultaneous stretching deformation, while the outer pipe bend is being applied overall on the outer contour of the engraving 20, so also at 20 A. The tube 21 thus transformed finally has a uniform ring cross section corresponding to FIGS. 6 and 6a.

Im einzelnen betrachtet, geschieht bei der Umformung des Rohrbogens 21 folgendes: Bedingt durch die größere Wirkfläche im Außenbogenbereich, bewegt sich der Rohrbogen 21 zunächst in Richtung A in die Formhöhlung hinein und stützt sich hierbei am Gravurbereich 20 A ab. Der dickere Wandbereich 45 des Innenbogens wird sodann, bedingt durch den im zeitlichen Verlauf höheren Druck entsprechend den Fig. 10 und 11, an den dem Innenbogen (bei 45) gegenüberliegenden Gravurbereich 20 B gepreßt. Es wird also deutlich, daß insgesamt ein selbsttätiger Ausgleich der Restwandstärke der Hohlkörperwand 47 vorgenommen wird. Dieses geschieht grundsätzlich derart, daß jeder Innenradius (also im Bereich des Rohrinnenbogens s. ebenfalls Fig. 8 Pos. 49) frei gewählt und hierbei gleichzeitig die Restwandstärke minimiert werden kann.Considered in detail, the following occurs when the tube bend 21 is formed: due to the larger effective area in the outer bend area, the tube bend 21 first moves in direction A into the mold cavity and is supported on the engraving area 20A. The thicker wall area 45 of the inner sheet is then pressed against the engraving area 20B opposite the inner sheet (at 45), due to the higher pressure in accordance with FIGS. 10 and 11 over time. It is therefore clear that, overall, the remaining wall thickness of the hollow body wall 47 is automatically compensated. This is basically done in such a way that each inner radius (ie in the area of the inner pipe bend, see also Fig. 8 Item 49) can be freely selected and at the same time the remaining wall thickness can be minimized.

Es ist vorstellbar, daß man durch gezielte Wahl der Abstände der jeweiligen Rohraußenwandfläche zum gegenüberliegenden Gravurbereich gewissermaßen eine Steuerung der Wanddicke über den Verformungsweg vornehmen kann. Jene Abstände sind beispielsweise in den Fig. 4 und 5 mit F und G bezeichnet.It is conceivable that one can by selective choice of the distances of the respective tube outer wall surface opposite engraving area can to a certain extent control the wall thickness via the deformation path. Those distances are denoted by F and G in FIGS. 4 and 5, for example.

Zu ergänzen bleibt noch, daß die Durchmesser der Stütz- oder Anschlußbereiche 26 während der Umformung unverändert bleiben. Um einen gleichgestalteten Nutzen (nutzbares Werkstück) zu erhalten, würde man deshalb nach der Umformung die Stütz- oder Anschlußbereiche 26 gemeinsam mit den kegelstumpfförmigen Aufwölbungen 44 etwa bei den gestrichelten Linien T abtrennen.It remains to be added that the diameter of the support or connection areas 26 remain unchanged during the forming. In order to obtain an equivalent design (usable workpiece), one would therefore separate the support or connection areas 26 together with the frustoconical bulges 44 after the forming, for example at the dashed lines T.

Beim beschriebenen Beispiel gemäß den Fig. 4-6 hätte ein maximaler Umformungsdruck von etwa 1350 Bar genügt. Um aber Unregelmäßigkeiten des Ausgangswerkstoffes, insbesondere gewisse Werkstofftoleranzen aber auch ggf. durch die Biegung entstandene kleine Fältelungen im Bereich des Rohrinnenbogens auszugleichen, um also auf jeden Fall Bauteile großer Fertigungsidentität herstellen zu können, wird der an sich genügende Umformungsdruck um z.B. 150 Bar auf 1500 Bar erhöht.In the example described according to FIGS. 4-6, a maximum forming pressure of approximately 1350 bar would have been sufficient. However, in order to compensate for irregularities in the starting material, in particular certain material tolerances, but also any small folds in the area of the inner pipe bend caused by the bend, in order to be able to manufacture components with a high manufacturing identity, the sufficient forming pressure is e.g. 150 bar increased to 1500 bar.

Sobald der Maximaldruck von 1500 Bar erreicht ist, wird der Druck abgeschaltet und schlagartig auf atmosphärischen Druck umgeschaltet, was sich gemäß Fig. 10 in einem nahezu senkrechten Druckabfall bemerkbar macht. Der Umformungsvorgang beträgt unter Einbeziehung der Fülldruckphase insgesamt etwa 1 - 2,5 s.As soon as the maximum pressure of 1500 bar has been reached, the pressure is switched off and suddenly switched to atmospheric pressure, which, according to FIG. 10, manifests itself in an almost vertical pressure drop. The forming process, including the filling pressure phase, takes a total of about 1 - 2.5 s.

Die Umformung des 90°-Bogens entsprechend den Fig. 7-9 erfolgt praktisch analog zur Umformung gemäß den Fig. 4-6, mit dem Unterschied, daß gemäß Fig. 8 (abweichend zu Fig. 5) bereits die kegelstumpfförmigen Aufwölbungen 44 entstanden sind. Durch Streckverformung des Verdickungsbereichs 45 entsteht an der Stelle 49 der Rohrwand 47 gemäß Fig. 9 nahezu ein Nullradius. Dieser beinahe Nullradius entspricht dem Gravurverlauf bei 20 B.The forming of the 90 ° bend according to FIGS. 7-9 is practically analogous to the forming according to FIGS. 4-6, with the difference that according to FIG. 8 (deviating from FIG. 5) the frustoconical bulges 44 have already been created . Stretch deformation of the thickening region 45 almost creates a zero radius at point 49 of the tube wall 47 according to FIG. 9. This almost zero radius corresponds to the engraving process at 20 B.

In den Fig. 7-9 sind analog zu den Fig. 4-6 ebenfalls die mit IVa-IVa, Va-Va und VIa-VIa bezeichneten Schnittlinien eingetragen, so daß grundsätzlich auch für die Darstellungen gemäß den Fig. 7-9 - bis auf maßstäbliche Unterschiede - im wesentlichen die Querschnitte entsprechend den Fig. 4a, 5a und 6a gelten. Auch die Verformungswege F und G entsprechend den Verformungsweg-Richtungen A und B gelten analog für das Ausführungsbeispiel gemäß den Fig. 7-9.In FIGS. 7-9, similarly to FIGS. 4-6, the cutting lines designated IVa-IVa, Va-Va and VIa-VIa are also entered, so that in principle also for the representations according to FIGS. 7-9-bis to scale differences - essentially the cross-sections according to FIGS. 4a, 5a and 6a apply. The deformation paths F and G corresponding to the deformation path directions A and B also apply analogously to the exemplary embodiment according to FIGS. 7-9.

Auch der 90°-Krümmer gemäß Fig. 7 wurde mit einem mechanischen Rohrbiegewerkzeug vorgebildet. Eine längsnutartige Einfallstelle 48 ist aus Fig. 7 ersichtlich.The 90 ° elbow according to FIG. 7 was also pre-formed with a mechanical pipe bending tool. A longitudinal groove-like sink 48 is shown in FIG. 7.

Desgleichen gilt analog für das Ausführungsbeispiel gemäß den Fig. 7-9 der in den Fig. 10 und 11 dargestellte zeitliche Druckverlauf bei der Umformung.The same applies analogously to the exemplary embodiment according to FIGS. 7-9 of the time pressure curve during the forming shown in FIGS. 10 and 11.

Claims (16)

  1. Method of hydrostatically deforming hollow bodies (21) made of cold-formable metal beyond the original inside width of the hollow body (21) inside a mould cavity of a die (16), wherein pressure fluid is fed from outside into the hollow body (21), a deformation region of the hollow body (21) is moved solely by means of the pressure fluid relative to the mould cavity and the hollow body wall (47) is pressed against the engraving (20) of the mould cavity (17) and wherein the hollow body (21) outside of the deformation region (31) is accommodated by at least one supporting or pressure fluid-carrying connection region (26) in a substantially thrust-free and axially displaceable manner with sliding fit by means of at least one rigid bushing (24), characterized in that the hollow body wall (47) at each supporting or connection region (26) is accommodated in a substantially thrust-free and axially displaceable manner with sliding fit in the bushing (24) and that at the points (45), where a hydrostatic thinning of the hollow body wall (47) is to be produced, a distance (G) is purposefully left between the outer surface of the hollow body wall (47) and the inner surface (20B) of the engraving (20) and that the distance (G) is dimensioned so as to be substantially proportional to the degree of deformation to be achieved.
  2. Method according to claim 1, characterized in that the hollow body (21) is hydrostatically deformed in a plurality of successive, increasing pressure ranges or pressure stages of the pressure fluid.
  3. Method according to claim 2, characterized in that the transition from one pressure range or pressure stage to the next higher pressure range or pressure stage is effected in immediate succession in a substantially seamlessly smooth manner and that said hydrostatic deformation is effected in the same die (16).
  4. Method according to claim 2 or according to claim 3, characterized in that, prior to the start of hydrostatic deformation, the pressure fluid is introduced initially at a filling pressure into the hollow body (21) and then the fluid pressure is increased up to a deformation pressure, the maximum pressure value of which is a multiple of the maximum filling pressure value.
  5. Method according to claim 4, characterized in that the value of the deformation pressure is approximately 30 to 50 times the value of the filling pressure.
  6. Method according to claim 4 or 5, characterized in that the deformation pressure needed for hydrostatic deformation of a hollow body (21) is increased by an additional pressure.
  7. Method according to one of claims 2 to 6, characterized in that, during hydrostatic deformation, the air previously situated in the hollow body (21) is simultaneously compressed by means of the pressure fluid, that upon completion of hydrostatic deformation the pressure supply for the pressure fluid is disconnected, whereupon the compressed air is relieved and so the pressure fluid is displaced from the hollow body (21).
  8. Method according to one of claims 2 to 7, characterized in that the hydrostatic deformation of the hollow body (21) is effected in a plurality of different dies (16), in which the respective hydrostatic deformation is effected by means of at least one pressure range or by means of at least one pressure stage of the pressure fluid.
  9. Device for effecting the method of hydrostatically deforming hollow bodies (21) made of cold-formable metal beyond the original inside width of the hollow body (21), having a die (16) comprising a mould cavity (17), having at least one separate rigid bushing (24), which is lockable relative to the die and by means of which the hollow body (21) outside of its deformation region (31) may be accommodated by at least one supporting or pressure fluid-carrying connection region (26) in a pressure-tight as well as substantially thrust-free and axially displaceable manner with a sliding fit, which, upon feeding of the pressure fluid at hydrostatic deformation pressure, allows a movement of the tubular hollow body (21) relative to the bushing (24), the pressure fluid being introducible through at least one bushing (24) into the hollow body (21), characterized in that each bushing (24) is reciprocable in a translational manner (double arrow x) relative to the die (16) and that each bushing (24) for receiving one supporting or connection region (26) of the hollow body (21) forms an embracing sliding fit.
  10. Device according to claim 9, characterized in that the bushing (24), after closure of the die (16), is slidable onto the supporting or connection region (26) of the hollow body (21) up to full application (at 25) against the die (16).
  11. Device according to claim 9 or according to claim 10, characterized in that the bushing (24) comprises at least one sealing collar, such as slotted ring collar (27) or the like, which embraces the supporting or connection region (26) of the hollow body (21), is braced under the action of the pressure fluid around the hollow body (21) and is acted upon directly by the pressure fluid in the feed line (28, 29, 30) to the hollow body (21).
  12. Device according to one of claims 9 to 11, characterized in that, given two supporting or connection regions (26) of the hollow body, a bushing (24) with pressure fluid introduction is associated with each supporting or connection region (26).
  13. Device according to one of claims 9 to 11, characterized in that, given two supporting or connection regions (26) of the hollow body, a bushing (24) with pressure fluid feed is associated with the one supporting or connection region (26) and a blind bushing (24) is associated with the other supporting or connection region (26).
  14. Device according to one of claims 9 to 13, characterized in that each bushing (24) has an outwardly opening, truncated cone-shaped inner lateral surface (37) as an approximately funnel-shaped introduction opening (36) for the holding region (26) of the hollow body.
  15. Device according to claim 14, characterized in that the introduction opening (36) forms part of a union nut (35) which overlaps a bushing body (32).
  16. Device according to one of claims 9 to 15, characterized in that the sealing collar (24) is held internally between the union nut (35) and the bushing body (32).
EP92903582A 1991-02-01 1992-01-31 Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it Expired - Lifetime EP0523215B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4103082 1991-02-01
DE4103082A DE4103082A1 (en) 1991-02-01 1991-02-01 METHOD FOR THE HYDROSTATIC FORMING OF HOLLOW BODIES FROM COLD FORMABLE METAL AND DEVICE FOR IMPLEMENTING THE METHOD
PCT/DE1992/000060 WO1992013653A1 (en) 1991-02-01 1992-01-31 Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it

Publications (2)

Publication Number Publication Date
EP0523215A1 EP0523215A1 (en) 1993-01-20
EP0523215B1 true EP0523215B1 (en) 1997-09-03

Family

ID=6424202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92903582A Expired - Lifetime EP0523215B1 (en) 1991-02-01 1992-01-31 Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it

Country Status (9)

Country Link
US (1) US5303570A (en)
EP (1) EP0523215B1 (en)
JP (1) JP2542320B2 (en)
AT (1) ATE157571T1 (en)
BR (1) BR9204114A (en)
DE (2) DE4103082A1 (en)
DK (1) DK0523215T3 (en)
ES (1) ES2109339T3 (en)
WO (1) WO1992013653A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337517A1 (en) * 1993-11-03 1995-05-04 Klaas Friedrich Process for the hydroforming of hollow stepped shafts made of cold-formable metal
DE4402673A1 (en) * 1994-01-29 1995-08-03 Huber & Bauer Gmbh Device for hydroforming
US5673470A (en) * 1995-08-31 1997-10-07 Benteler Automotive Corporation Extended jacket end, double expansion hydroforming
US5832766A (en) * 1996-07-15 1998-11-10 Crown Cork & Seal Technologies Corporation Systems and methods for making decorative shaped metal cans
US5746080A (en) * 1995-10-02 1998-05-05 Crown Cork & Seal Company, Inc. Systems and methods for making decorative shaped metal cans
US5557961A (en) * 1995-11-13 1996-09-24 General Motors Corporation Hydroformed structural member with varied wall thickness
JP3995281B2 (en) * 1995-11-15 2007-10-24 臼井国際産業株式会社 Fuel injection pipe for diesel engine and manufacturing method thereof
US5829290A (en) * 1996-02-14 1998-11-03 Crown Cork & Seal Technologies Corporation Reshaping of containers
JP3419195B2 (en) * 1996-04-10 2003-06-23 Jfeエンジニアリング株式会社 Bulge processing method and apparatus
US5938389A (en) * 1996-08-02 1999-08-17 Crown Cork & Seal Technologies Corporation Metal can and method of making
DE19713074C2 (en) * 1997-03-27 2001-06-21 Kendrion Rsl Germany Gmbh Method for producing the support body for a headrest of a motor vehicle seat
US5992197A (en) * 1997-03-28 1999-11-30 The Budd Company Forming technique using discrete heating zones
DE19715593C2 (en) * 1997-04-15 1999-05-20 Siempelkamp Pressen Sys Gmbh Method for operating a forming press for hydroforming and forming press for carrying out the method
UY25199A1 (en) * 1997-10-07 1999-04-07 Cosma Int Inc METHOD AND APPARATUS FOR WRINKLE FREE HYDROFORMATION OF OBLIQUE TUBULAR COMPONENTS
AT407500B (en) * 1997-12-01 2001-03-26 Vaillant Gmbh METHOD FOR PRODUCING A COMBUSTION CHAMBER
US5960658A (en) * 1998-02-13 1999-10-05 Jac Products, Inc. Method of blow molding
US6098437A (en) * 1998-03-20 2000-08-08 The Budd Company Hydroformed control arm
US6006568A (en) * 1998-03-20 1999-12-28 The Budd Company Multi-piece hydroforming tool
US6128936A (en) * 1998-09-09 2000-10-10 Kabushiki Kaisha Opton Bulging device and bulging method
US6032501A (en) * 1999-02-09 2000-03-07 The Budd Company Method of hydroforming multi-lateral members from round tubes
US6209372B1 (en) 1999-09-20 2001-04-03 The Budd Company Internal hydroformed reinforcements
EP1170069A1 (en) * 2000-07-05 2002-01-09 Alcan Technology & Management AG Device for internal high pressure forming of hollow profiles
DE10045641B4 (en) * 2000-09-15 2005-04-21 Audi Ag Hydromechanical forming device
US6912884B2 (en) * 2001-06-25 2005-07-05 Mohamed T. Gharib Hydroforming process and apparatus for the same
JP2003126923A (en) * 2001-10-24 2003-05-08 Honda Motor Co Ltd Method of forming tubular member
US6532785B1 (en) * 2001-11-20 2003-03-18 General Motors Corporation Method and apparatus for prefilling and hydroforming parts
EP1336439A1 (en) * 2002-02-13 2003-08-20 Schuler Hydroforming GmbH & Co. KG Method and apparatus for producing workpieces through hydroforming
US6601423B1 (en) * 2002-04-30 2003-08-05 General Electric Company Fabrication of bent tubing
DE10320106A1 (en) * 2003-05-05 2004-12-09 Carl Froh Gmbh Gas guide tube of metal for air bags of motor vehicles and method for its production
DE10329719A1 (en) * 2003-07-02 2005-01-20 Daimlerchrysler Ag Elbows
DE10347923B4 (en) * 2003-10-15 2005-07-28 Daimlerchrysler Ag Device for forming a circumferentially closed hollow profile by means of fluidic internal high pressure
DE10350279A1 (en) * 2003-10-25 2005-05-25 Eisen- Und Metallwerke Ferndorf Gmbh Process to test and modify the characteristics of a steel pipe subsequently used for the surface or sub-surface transmission of flammable gases
DE10351139B3 (en) * 2003-11-03 2004-09-02 Daimlerchrysler Ag Production of a twin-chambered hollow profile comprises bending a tubular hollow profile blank with a single hollow chamber to form two partial branches running almost parallel to each other
DE102004007757A1 (en) * 2004-02-18 2005-09-08 Saurer Gmbh & Co. Kg Drive roller for yarn winding machines has outer surface comprising thin-walled cylindrical tube with profiled surface which is produced by internal high pressure molding
DE102004013872B4 (en) * 2004-03-20 2006-10-26 Amborn, Peter, Dr.-Ing. Method and tool for forming a metallic hollow body in a forming tool under elevated temperature and under internal pressure
US20080061555A1 (en) * 2005-02-16 2008-03-13 Colin Knight Flared cone fitting
DE102005045712A1 (en) 2005-09-24 2007-03-29 Saurer Gmbh & Co. Kg Thread take-off roller for a textile machine producing cross-wound bobbins
DE102009010490A1 (en) 2009-02-25 2010-09-02 Amborn, Peter, Dr. Ing. Process for producing a hollow body by subjecting such a hollow body blank inserted in a cavity with internal pressure at elevated temperature
EP2907598B1 (en) * 2014-02-18 2016-06-15 C.R.F. Società Consortile per Azioni Method for manufacturing a camshaft for an internal combustion engine, by expanding a tubular element with a high pressure fluid and simultaneously compressing the tubular element axially
US9545657B2 (en) * 2014-06-10 2017-01-17 Ford Global Technologies, Llc Method of hydroforming an extruded aluminum tube with a flat nose corner radius
US20150315666A1 (en) 2014-04-30 2015-11-05 Ford Global Technologies, Llc Induction annealing as a method for expanded hydroformed tube formability

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL80878C (en) * 1900-01-01
DE272042C (en) *
US1542983A (en) * 1920-05-18 1925-06-23 Gustave R Thompson Drawn article and method for making the same
DE1068206B (en) * 1955-06-17 1959-11-05 Flexonics Corporation, Maywood, 111. (V. St. A.) Method for producing a curved pipe fitting
US3072085A (en) * 1959-05-08 1963-01-08 American Radiator & Standard Method and apparatus for producing hollow articles
JPS5314156A (en) * 1976-07-26 1978-02-08 Aizawa Tetsukoushiyo Kk Device for processing bulge
JPS5575834A (en) * 1978-12-02 1980-06-07 Sosuke Maeda Production of metal-made racket frame
JPS5584231A (en) * 1978-12-20 1980-06-25 Toshiba Corp Hydrostatic bulge forming method
DE3105735C2 (en) * 1981-02-17 1983-05-26 Wilfried 4630 Bochum Busse System for pressure-tight fastening of a pipe in a pipe sheet with the aid of a hydraulic fluid
US4484756A (en) * 1981-11-04 1984-11-27 Bridgestone Cycle Co., Ltd. Blank tube and main frame for two-wheeled vehicle
US4467630A (en) * 1981-12-17 1984-08-28 Haskel, Incorporated Hydraulic swaging seal construction
JPS58138525A (en) * 1982-02-15 1983-08-17 Isao Kimura Method for manufacturing one body system front fork material from central butted blank pipe
US4827747A (en) * 1986-05-21 1989-05-09 Hitachi, Ltd. Method for producing a bellows with oval cross section and apparatus for carrying out the method
US4928509A (en) * 1987-07-29 1990-05-29 Mitsui & Co., Ltd. Method for manufacturing a pipe with projections
DE3820952A1 (en) * 1988-06-16 1989-12-21 Mannesmann Ag METHOD AND DEVICE FOR HYDRAULICALLY EXPANDING HOLLOW PROFILES
IT1240233B (en) * 1990-02-02 1993-11-27 Europa Metalli Lmi PROCEDURE FOR THE PRODUCTION OF MONOLITHIC ELEMENTS CABLES IN METALLIC MATERIAL

Also Published As

Publication number Publication date
DE4103082C2 (en) 1993-09-16
US5303570A (en) 1994-04-19
DE4103082A1 (en) 1992-08-27
ATE157571T1 (en) 1997-09-15
DK0523215T3 (en) 1997-12-01
DE59208844D1 (en) 1997-10-09
JPH05504725A (en) 1993-07-22
ES2109339T3 (en) 1998-01-16
BR9204114A (en) 1993-06-08
JP2542320B2 (en) 1996-10-09
WO1992013653A1 (en) 1992-08-20
EP0523215A1 (en) 1993-01-20

Similar Documents

Publication Publication Date Title
EP0523215B1 (en) Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it
EP0758565A1 (en) Process and apparatus for realising perforations through double walls of structural members by the internal pressure forming method and a herewith manufactured transversal oscillating lever
EP0726823B1 (en) Process for forming hollow stepped shafts of cold-formable metal by internal high pressure
EP0759120B1 (en) Exhaust manifold for a multi-cylinder internal combustion engine
DE3716176A1 (en) Method and device for reshaping hollow bodies, and use of the method or the device and can body
DE19520099C2 (en) Pipe connection and process for its manufacture
DE19719629C2 (en) Method and device for manufacturing motor vehicle axle housings
EP1848554B1 (en) Method and device for producing components
DE102005036419B4 (en) Device for producing bulged hollow profiles, in particular gas generator housings for airbag devices
DE19518252A1 (en) Production of metallic hollow body using high internal pressure
DE3105538A1 (en) METAL CONTAINER
DE102021006400B3 (en) Hydroforming tool device and method for producing a hollow body by hydroforming
DE19751408C2 (en) Method and device for producing an integral housing for hydraulic steering
DE60007618T2 (en) METHOD FOR PRODUCING A THIN-WALLED METAL TUBE PIECE
DE3019592C2 (en) Device for processing steel pipes
DE102015108768A1 (en) Method and apparatus for obtaining large collar lengths
DE4004008C1 (en)
DE102004028078B4 (en) Method and apparatus for forming a collar portion on a workpiece
EP3253509A1 (en) Method and device for forming a collar on a workpiece
DE10044880A1 (en) Method for manufacturing specially shaped hollow metal bodies involves reforming workpiece using several radially acting kneading tools to produce intermediate body which is then plastically reformed through internal pressure
DE102004060218B4 (en) Method for producing reinforced tubular elements
DE19733476C2 (en) Process for the production of an appropriate mounting location on a hollow profile
DE4103078A1 (en) DEVICE FOR THE HYDROSTATIC FORMING OF HOLLOW BODIES MADE OF COLD-FORMING METAL
DE19706218C2 (en) Process for forming a curved component in the context of hydroforming technology and device for carrying out the process
EP1483069A1 (en) Method for shaping a bent single- or multiple-chamber hollow profile by internal high pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: 0508;84MIFCALVANI SALVI E VERONELLI S.R.

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 157571

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS KIEHL SAVOYE & CRONIN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970905

REF Corresponds to:

Ref document number: 59208844

Country of ref document: DE

Date of ref document: 19971009

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109339

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030528

Year of fee payment: 12

Ref country code: BE

Payment date: 20030528

Year of fee payment: 12

Ref country code: AT

Payment date: 20030528

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030530

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030605

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040130

Year of fee payment: 13

Ref country code: GB

Payment date: 20040130

Year of fee payment: 13

Ref country code: FR

Payment date: 20040130

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040206

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

BERE Be: lapsed

Owner name: *HDE METALLWERK G.M.B.H.

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050201