EP0523211B1 - Mechanical coupling for multiple path containers for viscous fluids - Google Patents

Mechanical coupling for multiple path containers for viscous fluids Download PDF

Info

Publication number
EP0523211B1
EP0523211B1 EP92903406A EP92903406A EP0523211B1 EP 0523211 B1 EP0523211 B1 EP 0523211B1 EP 92903406 A EP92903406 A EP 92903406A EP 92903406 A EP92903406 A EP 92903406A EP 0523211 B1 EP0523211 B1 EP 0523211B1
Authority
EP
European Patent Office
Prior art keywords
coupling
valve
fluid
hydraulically
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92903406A
Other languages
German (de)
French (fr)
Other versions
EP0523211A1 (en
Inventor
Reinhard Plehn
Wolfgang SCHÖN
Ulrich Temme
Rainer Brückner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Tecalemit GmbH
Original Assignee
Deutsche Tecalemit GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19914102875 external-priority patent/DE4102875A1/en
Application filed by Deutsche Tecalemit GmbH filed Critical Deutsche Tecalemit GmbH
Publication of EP0523211A1 publication Critical patent/EP0523211A1/en
Application granted granted Critical
Publication of EP0523211B1 publication Critical patent/EP0523211B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • B67D7/0288Container connection means
    • B67D7/0294Combined with valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants

Definitions

  • the invention relates to a mechanical coupling, one coupling half A of which is arranged on a reusable container and the other coupling half B of which is part of a dispensing system for viscous fluids (e.g. lubricating oils) according to the preamble of claim 1.
  • viscous fluids e.g. lubricating oils
  • viscosity index In contrast to the liquids mentioned above, these fluids represent a different class of substances, with completely different physical and chemical properties, which in particular have considerable effects on their hydraulic capacity, which in turn depends on the operating temperature and - in the present case negligible - the operating pressure and their Expressed in the respective viscosity / temperature behavior ("viscosity index"). These viscous properties are assigned to every liquid and gaseous substance; they are undesirable per se for conveying processes with higher viscosities, but must be accepted in terms of material. Their temperature dependence for lubricants can only be influenced to a limited extent, for example by special additives for multi-grade and low-viscosity oils.
  • viscosity is a substance quantity for the internal resistance of a flow, which is caused by a velocity gradient in a plane perpendicular to Flow direction (adhesion of the fluid to the wall of a pipe or full flow velocity in the middle of the pipe) arises and results in a shear stress in the transverse direction ("shear flow”).
  • This internal resistance contains an internal friction, leads to internal warming and thus to a loss of energy (“dissipation”); technically it manifests itself in a pressure loss in the pipeline along the flow direction; this loss can be considerable, depending on the viscosity, among other things.
  • the containers on which these couplings have so far been arranged are used for the transport, storage and removal of these low-viscosity liquids.
  • the lengthwise and / or branching of such dispensing systems with which the containers are coupled and their dispensing quantities per unit of time are relatively small (for example beer dispensers).
  • the working pressure required depends, among other things, on the operating viscosity. It is therefore sufficient to put such a reusable container under the pressure of an external pressure source in order to effect a conveying process (eg carbon dioxide bottle when dispensing beer). If the pressure bottle is empty, the delivery is zero; is also a such equipment is difficult to automate and represents a certain potential hazard if used improperly.
  • the energy input is arranged behind the container and is usually automated (e.g. full hose system for calibrated fuel delivery). Due to the almost constant working pressure required for the delivery, pressure relief valves can be easily arranged on the pressure side as hydraulic safety devices; their opening pressure only has to be higher than the required working pressure. If the system is now exposed to external heat (e.g. due to solar radiation), the static pressure in the system increases and the pressure relief valve may open. This pressure-side proper function of such a pressure relief valve is not given for fluids with temperature-dependent viscosity; this hydraulic arrangement would result in a hydraulic short circuit, in which the fluid would not reach the delivery point, but would instead be returned to the container.
  • a coupling known as a KEG fitting, for low-viscosity beer in a small dispensing system is recorded in the document DE-OS 1657209.
  • the energy is introduced by pressurizing a barrel with carbon dioxide.
  • the coupling On the barrel side, the coupling has only one check valve that can be unlocked during the coupling process.
  • a "manually operated valve or tap of conventional design can be provided" in the discharge line or in the carbon dioxide inlet, if desired.
  • an exchangeable air filter of a filling device for liquid containers is mentioned; how this should work when dispensing liquid remains open, since any check valves or the like. Not are provided.
  • a hydraulic safety device is claimed as a parallel expansion vessel on the pressure side in a full hose system.
  • a safety valve whose opening pressure is higher than the working pressure; where and how this valve is hydraulically switched remains completely open. It is by no means a component of the vacuum side of the system, which, moreover, does not have a coupling, since it is usually a container in the form of a stationary collection tank (eg underground tank).
  • a dispensing device according to the full hose principle for low-viscosity fuels is detected with a safety valve which is hydraulically connected in parallel to the pump between its pressure and suction side; its opening pressure must be higher than the working pressure of the full hose system.
  • the hydraulic resistance in the full hose system can increase so much that the working pressure is higher than the opening pressure of the valve and it leads to a hydraulic short circuit.
  • a coupling of the fluid container and the delivery system is not mentioned there.
  • the task is solved in a structural unit in the form of a mechanical fluid coupling, which consists of two coupling halves A and B; this coupling is arranged on the suction side in the complete fluid system on the reusable container; it is the interface of this container, which is interchangeable, and the stationary delivery system.
  • the coupling half A is an integral part of the transportable and exchangeable reusable container; the coupling half B, on the other hand, is generally mounted once in the suction line of the delivery system. Through the coupling process, the check valve in coupling half A is opened mechanically through coupling half B.
  • the 2nd check valve (suction valve) in the Coupling half B is only opened and only during the respective dispensing process by the suction effect of the pump in the dispensing system, otherwise it is closed, in particular also when no reusable container is coupled; it prevents the suction line of the delivery system from running dry.
  • Hydraulically connected in parallel to this valve in coupling half B is the back-relief valve on the suction side, which in the static state of the delivery system may reduce hydraulic pressures (e.g. in the event of expansion of the fluid due to heat effects) via coupling half A in the reusable container, which could lead to the bursting of a delivery line .
  • a ventilation and / or a moisture filter is integrated in the coupling half B, which in the coupled state is hydraulically / pneumatically connected to the reusable container via the coupling half A; it prevents dirt and / or moisture from entering the reusable container when it is in operation.
  • two reusable containers can be arranged hydraulically in parallel with two complete couplings on the suction side in front of the feed pump. This valve can be operated manually or also, electrically controlled, automatically electrically.
  • the hydraulic operating circuit of the complete fluid system (3) is shown in its simplest version with a tap (20) as a delivery point. It consists of a hydraulic conveyor (18) with a pump (21) and a drive motor (22); behind it is the pressure side (19) of the delivery system. In front of the conveyor (20) is the suction side (2) with the system suction line (10) and the coupling half B (9), the latter with the coupling half A (4), which is arranged on the container (5), the assembly of the coupling (1) forms.
  • the coupling half A (4) forms the reusable container (24) with the container (5) and the integrated ventilation valve (8); the hydraulic connection from the lowest point of the container (5) to the coupling half A (4) represents the container suction line (7);
  • the fluid (25) to be delivered is located in the container (5).
  • the container (23) in the mechanically and hydraulically coupled state of the coupling unit (1) and the reusable container (24) in the generic sense represents the fully functional (23); it is in turn part of the suction side (2) of the fluid system (3).
  • the coupling halves A (4) and eB (9) have the parting line (27).
  • the coupling half A (4) has a ventilation valve (8) and a shut-off valve (6), which are automatically mechanically opened during the coupling process with the coupling half B (9) via the coupling device (17); during storage and transport of the Reusable container (24) they are closed.
  • both valves (6 and 8) which are provided by a mechanically rigid connection (78), which in turn are returned to their closed end position by a spring (79), are open; the ventilation valve (8) also serves as a ventilation valve.
  • the manual mechanical coupling process of the coupling half B (9) to the coupling half A (4) is symbolized by the actuating device (16) with the coupling device (17).
  • the coupling half B (9) contains a ventilation duct (13) which leads to the filter unit (48), which consists of the moisture (14) and the ventilation filter (15);
  • An essential hydraulic component is the suction valve (11) and the parallel relief valve (12).
  • FIG. 2 the hydraulic circuit diagram of an extended complete fluid system (3) with three taps (20) as delivery points and a 3/2-way valve (26) with the alternative hydraulic switchover option of two containers (23) is exemplary with analog components such as shown in Fig. 1 (see description Fig. 1), with one exception. It relates to the ventilation valve (8), which has only one function of ventilation, which, in contrast to FIG. 1, is not mechanically coupled to its shut-off valve (6) and one has a separate spring (79) and is opened during the coupling process.
  • the ventilation valve (8) which has only one function of ventilation, which, in contrast to FIG. 1, is not mechanically coupled to its shut-off valve (6) and one has a separate spring (79) and is opened during the coupling process.
  • the pressure relief valve (80) Hydraulically connected in parallel, but with the opposite direction of action, is the pressure relief valve (80), which only responds to an internal pressure and opens accordingly; it can be connected to the atmosphere in various relief ways, in the present case it is connected to the line of the relief valve. It is also conceivable for the reusable container (24) to be relieved of overpressure directly into the atmosphere, ie without via the coupling half B (9), which would also mean securing the barrel, for example during transport.
  • Fig. 3 takes place in the parting line (27) of the coupling half A (4), as part of the reusable container (24) with the container (5), the fluid and the container suction line (7), and the coupling half B. (9), with the system suction line connection (28) the mechanical coupling; it is locked by a horizontal sliding seat (38).
  • the subsequent hydraulic unlocking is carried out by vertically depressing the hand lever (29) against the force of the actuating spring (31) and then turning it for fixing in the recess (39).
  • the sliding body (32) with the sliding sleeve (33) is guided downward against the force of the actuating spring (31), presses on the coupling seal (34) and at the same time opens the suction channel (35) by externally running over the suction holes (36) of the containers -Suction line (7), which represents the opening of the shut-off valve (6), and opens the sealing seat (37) of the ventilation valve (8) and prevents the outer diameter of the container suction line (7) by the sealing effect of the inner diameter of the coupling seal (34) Short circuit of the hydraulic suction side with the pneumatic ventilation side of the coupling.
  • the ventilation duct (13) leads to the combined moisture (14) and ventilation filter (15).
  • the coupling seal (34), the sealing seat (37) and the Sealing spring (49) ensures that the reusable container (24) in all states of its transport and storage, as long as the fluid coupling (54) is activated by coupling the coupling halves A (4) and B (9), the leakage of Fluid (25) and / or the penetration of dirt or the like prevented.
  • the hydraulic connection to the system suction line connection (28) is made from the suction channel (35) via the suction seat (39) and the suction spring (40) of the suction valve (11).
  • the back relief valve (12) with the valve ball (42) and the relief spring (43) are integrated in the plate (41) of the suction valve (11).
  • the hand lever (29) is used exclusively for screwing the coupling half B (9) onto the coupling half A (4) by means of a screw thread (44). Due to the axial movement when screwing on, the coupling is mechanically connected and at the same time semi-automatically hydraulically unlocked.
  • FIG. 6 shows the two coupling halves A (4), which is integrated on the container (5), and B (9), which has an exit to the system (64).
  • a bayonet lock (45) is used by depressing the coupling half B (9), against the force of the actuating spring (31) of the coupling half A (4) and its subsequent turning, for mechanical coupling and simultaneous semi-automatic unlocking; both coupling halves A (4) and B (9) have a common parting line (27); the further hydraulic function can be found in the description of FIG. 3.
  • a ring (60) which belongs to coupling half A (4); this has at least one recess (61) on its outer diameter.
  • At least one bolt (62) sits in the overlapping housing part (65) of the coupling half B (9) and engages in the corresponding recess (61) in the properly coupled state.
  • the pin (62) is guided via a pin (66) to the outer diameter of the housing part (65), where at least one actuating button (67) is seated;
  • the end position of the bolt (62) is ensured in the locked state by means of a spring (68).
  • the actuating button (67) also serves as a handle for introducing a torque during the coupling process;
  • a corresponding second handle button (69) serves the same purpose; if necessary, it can be designed as a second actuation button (contrary to the illustration according to FIG. 1, the ring (60) can alternatively also be arranged below the parting line (70); accordingly, the overlapping housing part (65) has to be designed accordingly.
  • Fig. 8 the developed bolt guide track (63) is shown in a side view, on which the bolt (62) is positively guided during the coupling process until it reaches its end position in the corresponding recess (61), shown in the simplest geometric circular shape , has reached.
  • the guideway (63) is not continuous here, but has an intermediate point (76), which in particular in the case of incorrect coupling in the end position inevitably results in a stable intermediate layer which prevents the coupling from being opened accidentally; the intermediate layer also serves to relieve the container in a controlled manner if a pneumatic overpressure should build up in it; in addition, the intermediate position in manual coupling results in a positive note for those who are coupling, in the sense of increasing the safety for the coupling process.
  • a sleeve (71) Opposed to the swivel sleeve is a sleeve (71) which has only an operating, but no security and / or identification function. Nevertheless, there is an identical recess (61) in the coupling half A (4), which ensures that, with each coupling operation with the arrangement of only one bolt (62), the bolt has the correct recess (61), at least in its end position. finds.
  • FIG. 10 shows the fluid coupling (54), consisting of the coupling half A (4) and the coupling half B (9) with the container (5) as part of a mobile fluid system (3) for a delivery point; the reusable container (24) in turn consists of the coupling half A (4) and the container (5). All parts of the fluid system (3) are integrated in or on the housing (50); Wheels (51) in particular make the system movable, the energy supply is provided by an electrical connector (52) and a cable (53).
  • a tap (55) with a hose (56) serves as a dispensing element, a quantity display (57) and a quantity preselection (58) complete the external appearance of the system, which is shown as an example for self-service operation in the present illustration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • External Artificial Organs (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Reciprocating Pumps (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Pens And Brushes (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

The invention relates to a device for securing an unlockable coupling for multiple path containers for viscous fluids (e.g. lubricating oil) mechanically during the coupling procedure and hydraulically once coupled. The coupling consists of a section A (4) into which several valves (6, 8) on the multiple path container (5) are integrated and a section B (9) which is fitted in the dispensing system with several valves (11, 12).

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine mechanische Kupplung, deren eine Kupplungshälfte A an einem Mehrwegbehältnis angeordnet ist und deren andere Kupplungshälfte B Bestandteil eines Abgabesystems für viskose Fluide (z.B. Schmieröle) gemäß des Oberbegriffs nach Anspruch 1 ist.The invention relates to a mechanical coupling, one coupling half A of which is arranged on a reusable container and the other coupling half B of which is part of a dispensing system for viscous fluids (e.g. lubricating oils) according to the preamble of claim 1.

Stand der TechnikState of the art

Bekannt ist, mechanische Kupplungen für niedrigviskose Flüssigkeiten und Getränke (wie Bier) an Fässern als sog. KEG-Verschluß auszubilden; deren viskose Stoffeigenschaften sind nahezu unabhängig von der jeweiligen Betriebstemperatur und werden deshalb i.a. vernachlässigt. Unbekannt sind bislang Lösungen für hoch- bis scheinviskose Fluide, wie Schmieröle oder Fließfette, z.B. Motoren- und/oder Getriebeöle bzw. Fließfette auf der Basis von Mineralölen oder teilsynthetischen, synthetischen oder nativen Ölen, letztere z.B. als Rapsöl, sowie als Grundöle für Fließfette. Diese Fluide stellen im Gegensatz zu den o.a. Flüssigkeiten eine andere Stoffklasse dar, mit gänzlich anderen physikalischen und chemischen Eigenschaften, die insbesondere erhebliche Auswirkungen auf ihre hydraulische Förderfähigkeit besitzen, die ihrerseits von der Betriebstemperatur und - im vorliegenden Fall vernachlässsigbar - vom Betriebsdruck abhängig ist und ihren Ausdruck im jeweiligen Viskosität-/Temperaturverhalten ("Viskositätsindex") findet. Diese viskosen Eigenschaften sind jedem flüssigen und gasförmigen Stoff zugeordnet; sie sind für Fördervorgänge bei höheren Viskositäten ansich unerwünscht, müssen jedoch stofflich akzeptiert werden. Sie können in ihrer Temperaturabhängigkeit für Schmierstoffe nur in beschränktem Rahmen beeinflußt werden, z.B. durch spezielle Additive bei Mehrbereichs- und Leichtlaufölen. Gemäß ihrer Definition ist die Viskosität eine Stoffgröße für den inneren Widerstand einer Strömung, der durch ein Geschwindigkeitsgefälle in eine Ebene senkrecht zur Strömungsrichtung (Haften des Fluids an der Wand eines Rohres bzw. volle Strömungsgeschwindigkeit in der Rohrmitte) entsteht und in einer Schubspannung in der Querrichtung resultiert ("Schubströmung"). Dieser innere Widerstand beinhaltet eine innere Reibung, führt zu einer inneren Erwärmung und damit zu einem Energieverlust ("Dissipation"); er äußert sich technisch auch in einem Druckverlust in der Rohrleitung längs der Strömungsrichtung; dieser Verlust kann - u.a. in Abhängigkeit von der Viskosität - erheblich sein.It is known to design mechanical couplings for low-viscosity liquids and beverages (such as beer) on barrels as so-called KEG closures; Their viscous material properties are almost independent of the respective operating temperature and are therefore generally neglected. So far, solutions for highly viscous fluids, such as lubricating oils or fluid greases, e.g. motor and / or gear oils or fluid greases based on mineral oils or semi-synthetic, synthetic or native oils, the latter for example as rapeseed oil, and as base oils for fluid greases are unknown. In contrast to the liquids mentioned above, these fluids represent a different class of substances, with completely different physical and chemical properties, which in particular have considerable effects on their hydraulic capacity, which in turn depends on the operating temperature and - in the present case negligible - the operating pressure and their Expressed in the respective viscosity / temperature behavior ("viscosity index"). These viscous properties are assigned to every liquid and gaseous substance; they are undesirable per se for conveying processes with higher viscosities, but must be accepted in terms of material. Their temperature dependence for lubricants can only be influenced to a limited extent, for example by special additives for multi-grade and low-viscosity oils. According to their definition, viscosity is a substance quantity for the internal resistance of a flow, which is caused by a velocity gradient in a plane perpendicular to Flow direction (adhesion of the fluid to the wall of a pipe or full flow velocity in the middle of the pipe) arises and results in a shear stress in the transverse direction ("shear flow"). This internal resistance contains an internal friction, leads to internal warming and thus to a loss of energy ("dissipation"); technically it manifests itself in a pressure loss in the pipeline along the flow direction; this loss can be considerable, depending on the viscosity, among other things.

Diese physikalischen Zusammenhänge müssen insbesondere bei hochviskosen Fluiden beachtet werden und finden ihren Niederschlag in der Gestaltung und der Anordnung der Bauelemente in einem realen hydraulischen System (z.B. der Strömungsquerschnitte). Je höher nun die Viskostität während des Fördervorgangs ist (z.B. durch Kälteeinwirkung), um so bedeutsamer ist, diese Notwendigkeit auch in ihrer Auswirkung auf die äußere und innere Gestaltung zu beachten, z.B. auch unter dem Gesichtspunkt der Betriebs- und Arbeitssicherheit, wegen der erforderlichen höheren hydraulischen Drücke.These physical relationships have to be taken into account especially with highly viscous fluids and are reflected in the design and arrangement of the components in a real hydraulic system (e.g. the flow cross-sections). The higher the viscosity during the conveying process (e.g. due to exposure to cold), the more important it is to consider this necessity in terms of its impact on the external and internal design, e.g. also from the point of view of operational and occupational safety, because of the required higher hydraulic pressures.

Die Behältnisse, an denen diese Kupplungen bislang angeordnet sind, dienen zum Transport, zur Lagerung und Entnahme dieser niedrigviskosen Flüssigkeiten. Die längenmäßige Erstreckung und/oder Verzweigung solcher Abgabesysteme, mit denen die Behältnisse gekuppelt werden und deren Abgabemengen pro Zeiteinheit sind verhältnismäßig gering (z.B. Zapfanlagen für Bier). Dementsprechend gering sind die erforderlichen hydraulischen Leistungen N, definiert durch das Produkt Arbeitsdruck p mal Förderstrom V (N = p x V)

Figure imgb0001
. Der erforderliche Arbeitsdruck ist u.a. von der Betriebsviskosität abhängig. So genügt, ein solches Mehrwegbehältnis unter den Druck einer fremden Druckquelle zu setzen, um einen Fördervorgang zu bewirken (z.B. Kohlensäureflasche bei der Bierabgabe). Wenn die Druckflasche leer ist ist die Abgabe null; zudem ist eine solche Einrichung schlecht automatisierbar und stellt ein gewisses Gefahrenpotential bei unsachgemäßem Umgang dar.The containers on which these couplings have so far been arranged are used for the transport, storage and removal of these low-viscosity liquids. The lengthwise and / or branching of such dispensing systems with which the containers are coupled and their dispensing quantities per unit of time are relatively small (for example beer dispensers). The required hydraulic power N, defined by the product working pressure p times the flow rate, is correspondingly low V (N = px V)
Figure imgb0001
. The working pressure required depends, among other things, on the operating viscosity. It is therefore sufficient to put such a reusable container under the pressure of an external pressure source in order to effect a conveying process (eg carbon dioxide bottle when dispensing beer). If the pressure bottle is empty, the delivery is zero; is also a such equipment is difficult to automate and represents a certain potential hazard if used improperly.

Bei Abgabesystemen, auch größeren Umfangs, für Fluide niedriger Viskositäten, die i.a. nur gering von der Temperatur abhängig sind, ist i.a. die Energieeinbringung hinter den Behältnis angeordnet und in der Regel automatisiert (z.B. Vollschlauchsystem zur geeichten Abgabe von Kraftstoffen). Aufgrund des nahezu gleichbleibenden erforderlichen Arbeitsdruckes für die Förderung können Überdruckventile als hydraulische Sicherheitsorgane ohne weiteres druckseitig angeordnet werden; ihr Öffnungsdruck muß nur höher sein als der jeweils erforderliche Arbeitsdruck. Wenn es nun im Ruhezustand der Anlage zu einer äußeren Wärmeeinwirkung kommt (z.B. infolge Sonneneinstrahlung), erhöht sich der statische Druck in der Anlage und das Überdruckventil kann sich ggf. öffnen. Diese druckseitige ordnungsgemäße Funktion eines solchen Überdruckventils ist bei Fluiden mit temperaturabhängiger Viskosität nicht gegeben; es entstünde bei dieser hydraulischen Anordnung ein hydraulischer Kurzschluß, bei dem das Fluid nicht zur Abgabestelle gelangte, sondern in das Behältnis zurückgeleitet würde.For dispensing systems, even larger ones, for fluids with low viscosities, which generally are only slightly dependent on the temperature, the energy input is arranged behind the container and is usually automated (e.g. full hose system for calibrated fuel delivery). Due to the almost constant working pressure required for the delivery, pressure relief valves can be easily arranged on the pressure side as hydraulic safety devices; their opening pressure only has to be higher than the required working pressure. If the system is now exposed to external heat (e.g. due to solar radiation), the static pressure in the system increases and the pressure relief valve may open. This pressure-side proper function of such a pressure relief valve is not given for fluids with temperature-dependent viscosity; this hydraulic arrangement would result in a hydraulic short circuit, in which the fluid would not reach the delivery point, but would instead be returned to the container.

Als Lösungsvorschlag dieser Art wird in der Druckschrift DE-OS 1657209 eine als KEG-Armatur bezeichnete Kupplung für niedrigviskoses Bier in einem kleinen Abgabesystem erfaßt. Die Energieeinbringung erfolgt durch eine Druckbeaufschlagung eines Fasses mit Kohlensäure. Die Kupplung weist faßseitig nur ein beim Kupplungsvorgang entsperrbares Rückschlagventil auf. Außerhalb der Kupplung kann "gewünschtenfalls" ein handbetätigtes Ventil oder Hahn herkömmlicher Bauart je in der Abgabeleitung bzw. im Kohlensäureeinlaß vorgesehen werden. - In der Druckschft DE-GM 8320134 ist ein austauschbares Luftfilter eines Befüllgeräts für Flüssigkeitsbehälter erwähnt; wie dieses dagegen bei der Flüssigkeitsabgabe funktionieren soll, bleibt offen, da irgendwelche Rückschlagventile o.ä. nicht vorgesehen sind. - In der Druckschrift DE-OS 3022672 einer Zapfsäule für niedrigviskoses Flüssiggas wird eine hydraulische Sicherheitseinrichtung als parallelgeschaltetes Ausdehnungsgefäß druckseitig in einem Vollschlauchsystem beansprucht. Dort wird ersatzweise auch ein Sicherheitsventil erwähnt, dessen Öffnungsdruck höher als der Arbeitsdruck ist; wo und wie dieses Ventil hydraulisch geschaltet ist, bleibt vollkommen offen. Es ist keinesfalls Bestandteil der Unterdruckseite des Systems, das im übrigen keine Kupplung besitzt, da es sich in der Regel um ein Behältnis in Form eines stationären Sammeltanks (z.B. Erdtank) handelt. - In der Druckschrift FR-OS 2527195 wird eine Abgabeeinrichtung nach dem Vollschlauchprinzip für niedrigviskose Kraftstoffe mit einem Sicherheitsventil erfaßt, das hydraulisch parallel zur Pumpe zwischen deren Druck- und Saugseite angeschlossen ist; sein Öffnungsdruck muß höher als der Arbeitsdruck des Vollschlauchsystems sein. Bei der Kälteeinwirkung auf temperaturabhängig-viskose Fluide kann der hydraulische Widerstand im Vollschlauchsystem so stark ansteigen, daß der Arbeitsdruck höher als der Öffnungsdruck des Ventils liegt und es führt zu einem hydraulischen Kurzschluß. Eine Kupplung von Fluidbehältnis und Abgabesystem ist dort nicht erwähnt.As a solution of this type, a coupling, known as a KEG fitting, for low-viscosity beer in a small dispensing system is recorded in the document DE-OS 1657209. The energy is introduced by pressurizing a barrel with carbon dioxide. On the barrel side, the coupling has only one check valve that can be unlocked during the coupling process. Outside the coupling, a "manually operated valve or tap of conventional design can be provided" in the discharge line or in the carbon dioxide inlet, if desired. - In the Druckschft DE-GM 8320134 an exchangeable air filter of a filling device for liquid containers is mentioned; how this should work when dispensing liquid remains open, since any check valves or the like. Not are provided. - In the publication DE-OS 3022672 a dispenser for low-viscosity liquid gas, a hydraulic safety device is claimed as a parallel expansion vessel on the pressure side in a full hose system. As a substitute there is also mentioned a safety valve whose opening pressure is higher than the working pressure; where and how this valve is hydraulically switched remains completely open. It is by no means a component of the vacuum side of the system, which, moreover, does not have a coupling, since it is usually a container in the form of a stationary collection tank (eg underground tank). - In the publication FR-OS 2527195 a dispensing device according to the full hose principle for low-viscosity fuels is detected with a safety valve which is hydraulically connected in parallel to the pump between its pressure and suction side; its opening pressure must be higher than the working pressure of the full hose system. In the cold effect on temperature-dependent viscous fluids, the hydraulic resistance in the full hose system can increase so much that the working pressure is higher than the opening pressure of the valve and it leads to a hydraulic short circuit. A coupling of the fluid container and the delivery system is not mentioned there.

Die ErfindungThe invention

Ausgehend von diesem Stand der Technik kommen für professionelle industrielle Abgabesysteme für viskose Fluide, insbesondere, wenn deren Betriebsviskositäten in Abhängigkeit von der Temperatur hoch bis sehr hoch sein können (z.B. bei Getriebeölen unter Kälteeinwirkung) die folgende Aufgabenstellung für Mehrweggebinde in Frage.

  • Der Leistungsteil des hydraulischen Systems ist hinter der Schnittstelle (Kupplung) des Mehrwegbehälters zu der/den Abgabestelle(n) angeordnet (z.B. automatisierbare elektrisch betriebene Zahnradpumpe entsprechender Leistung).
  • Die hydraulische Schnittstelle (Kupplung) liegt im saugseitigen Ast des Abgabesystems, der ein Mehrwegbehältnis vorgeschaltet ist.
  • Die Schnittstelle (Kupplung) ist in ihrer einen Hälfte Bestandteil des Mehrwegbehältnisses (KupplungshΣlfte A), in der anderen Bestandteil der zur Pumpe führenden Saugleitung (Kupplungshälfte B).
  • Zur hydraulischen Absicherung wird saugseitig parallelgeschaltet in der Kupplungshälfte B ein statisches Rückentlastungsventil integriert; sein Öffnungsdruck ist wesentlich niedriger als der Arbeitsdruck des Systems und damit vollkommen unabhängig von diesem.
  • Mit dem mechanischen Kupplungsvorgang wird (für) die Schnittstelle
    • * automatisch hydraulisch aktiviert,
    • * zusätzlich mechanisch gegen Lösen oder Fehlbedienung abgesichert,
    • * zusätzlich mechanisch eine geometrische Kennung eingeführt, die verhindert, daß nicht zur Kupplung vorgesehene Kupplungshälften A und B, gekuppelt werden.
Based on this state of the art, the following task for reusable containers can be considered for professional industrial delivery systems for viscous fluids, especially if their operating viscosities can be high to very high depending on the temperature (e.g. with gear oils under the influence of cold).
  • The power section of the hydraulic system is located behind the interface (coupling) of the reusable container to the delivery point (s) (e.g. automatable, electrically operated gear pump of the appropriate power).
  • The hydraulic interface (coupling) is in the suction side branch of the delivery system, which is preceded by a reusable container.
  • One half of the interface (coupling) is part of the reusable container (coupling half A), the other part of the suction line leading to the pump (coupling half B).
  • For hydraulic protection, a static back-relief valve is integrated in the coupling half B on the suction side; its opening pressure is significantly lower than the working pressure of the system and therefore completely independent of it.
  • With the mechanical coupling process, the interface becomes (for)
    • * automatically activated hydraulically,
    • * additionally mechanically secured against loosening or incorrect operation,
    • * In addition, a geometrical identifier has been introduced mechanically, which prevents coupling halves A and B that are not intended for coupling from being coupled.

Die Lösung dieser Aufgabenstellung erfolgt mit den Merkmalen des Kennzeichnungsteils von Anspruch 1.This task is solved with the features of the labeling part of claim 1.

Die Aufgabenstellung wird in einer Baueinheit in Form einer mechanischen Fluidkupplung, die aus zwei Kupplungshälften A und B besteht, gelöst; diese Kupplung ist saugseitig im vollständigen Fluidsystem am Mehrwegbehältnis angeordnet; sie ist die Schnittstelle dieses Behältnisses, das austauschbar ist, und des stationären Abgabesystems. Hierbei ist die Kupplungshälfte A integrierter Bestandteil des jeweiligen transport- und austauschfähigen Mehrwegbehältnisses; die Kupplungshälfte B dagegen ist i.a. einmalig in der Saugleitung des Abgabesystems montiert. Durch den Kupplungsvorgang wird das Rückschlagventil in der Kupplungshälfte A mechanisch durch die Kupplungshälfte B geöffnet. Das 2. Rückschlagventil (Saugventil) in der Kupplungshälfte B wird dagegen erst und nur beim jeweiligen Abgabevorgang durch die Saugwirkung der Pumpe im Abgabesystem geöffnet, ansonsten ist es geschlossen, insbesondere auch dann, wenn gar kein Mehrwegbehältnis gekuppelt ist; es verhindert so ein Leerlaufen der Saugleitung des Abgabesystems. Hydraulisch parallel geschaltet zu diesem Ventil in der Kupplungshälfte B ist das saugseitige Rückentlastungsventil, das im statischen Zustand des Abgabesystems evtl. hydraulische Überdrücke (z.B. bei Ausdehnungen des Fluids durch Wärmeeinwirkungen) über die Kupplungshälfte A in des Mehrwegbehältnis abbaut, die zum Bersten einer Abgabeleitung führen könnten. Aus Belüftungsgründen des Mehrwegbehältnisses ist in der Kupplungshälfte B ein Belüftungs- und/oder ein Feuchtigkeitsfilter integriert, das im gekuppelten Zustand über die Kupplungshälfte A mit dem Mehrwegbehältnis hydraulisch/pneumatisch verbunden ist; es verhindert im Betriebszustand das Eindringen von Schmutz und/oder Feuchtigkeit in das Mehrwegbehältnis. Um die Betriebsunterbrechnung der Abgabe von Fluiden bei leerem Mehrwegbehältnis zu vermeiden, können ggf. saugseitig vor der Förderpumpe zwei Mehrwegbehältnisse hydraulisch parallel mit je zwei kompletten Kupplungen angeordnet werden, deren Abgangsleitungen über ein 3/2-Wegeventil alternativ geschaltet werden können; dieses Ventil kann manuell oder auch, elektrisch angesteuert, automatisch elektrisch betätigt werden.The task is solved in a structural unit in the form of a mechanical fluid coupling, which consists of two coupling halves A and B; this coupling is arranged on the suction side in the complete fluid system on the reusable container; it is the interface of this container, which is interchangeable, and the stationary delivery system. The coupling half A is an integral part of the transportable and exchangeable reusable container; the coupling half B, on the other hand, is generally mounted once in the suction line of the delivery system. Through the coupling process, the check valve in coupling half A is opened mechanically through coupling half B. The 2nd check valve (suction valve) in the Coupling half B, on the other hand, is only opened and only during the respective dispensing process by the suction effect of the pump in the dispensing system, otherwise it is closed, in particular also when no reusable container is coupled; it prevents the suction line of the delivery system from running dry. Hydraulically connected in parallel to this valve in coupling half B is the back-relief valve on the suction side, which in the static state of the delivery system may reduce hydraulic pressures (e.g. in the event of expansion of the fluid due to heat effects) via coupling half A in the reusable container, which could lead to the bursting of a delivery line . For ventilation reasons of the reusable container, a ventilation and / or a moisture filter is integrated in the coupling half B, which in the coupled state is hydraulically / pneumatically connected to the reusable container via the coupling half A; it prevents dirt and / or moisture from entering the reusable container when it is in operation. In order to avoid the interruption of the operation of the delivery of fluids when the reusable container is empty, two reusable containers can be arranged hydraulically in parallel with two complete couplings on the suction side in front of the feed pump. this valve can be operated manually or also, electrically controlled, automatically electrically.

Kurzbeschreibung der AbbildungenBrief description of the pictures

Einige bevorzugte Ausbildungsformen werden in den Zeichnungen wie folgt gezeigt

Figur 1 .
Zeigt den hydraulischen Wirkschaltplan der gesamten Fluidkupplung (Kupplung geschlossen; eine Abgabestelle; Absperrventil und Be- und Entlüftungsventil mechanisch gekuppelt).
Figur 2 .
Zeigt den hydraulischen Wirkschaltplan des gesamten Fluidsystems mit zwei parallel angeordneten Mehrwegbehältnissen, die alternativ geschaltet werden können (Kupplungen geschlossen; drei Abgabestellen, Absperrventil und Belüftungsventil sowie Überdruckventil getrennt).
Figur 3 .
Zeigt eine Ausführungsform einer vollständigen Fluidkupplung im Längsschnitt, bei der die mechanische und hydraulische Kupplung getrennt ausgebildet sind (Schaltstellung: Mechanisch gekuppelt, hydraulisch gesperrt).
Figur 4 .
Zeigt die Fluidkupplung gemäß Fig. 3 in der Vorder- und Seitenansicht.
Figur 5 .
Zeigt im Längsschnitt die Fluidkupplung im konstruktiven Grundaufbau wie Fig. 3, jedoch mit einer mechanischen Kupplung durch eine Gewindeverbindung (Schaltstellung im Zwischenposition: Mechanisch noch nicht vollständig gekuppelt, hydraulisch noch gesperrt).
Figur 6 .
Zeigt eine bevorzugte Ausführungsform der vollständigen Kupplung wie Fig. 3 im Längsschnitt, jedoch mit einer mechanischen Kupplung durch Bajonettverschluß und gleichseitiger meπhanischer Sicherung mit einem Bolzen, τder radial betätigt wird. (Schaltstellung: Mechanisch gekuppelt, hydraulisch nicht gekuppelt).
Figur 7 .
Zeigt die Ausführungsform gemäß Fig. 6 in einer Schnittebene quer zur Kupplungsachse in der Trennfuge beider Kupplungshälften A und B mit einer Bolzen, der durch einen radial beweglichen Knopf betätigt wird.
Figur 8 .
Zeigt die abgewickelte Bolzenführungsbahn.
Figur 9 .
Zeigt eine teilweise Schnittebene quer durch die Trennfuge beider Kupplungshälften A und B mit einem Bolzen, der durch einen radial beweglichen Knopf betätigt wird.
Figur 10
Zeigt die Kupplung als Bestandteil eines mobilen vollständigen Fluidsystems als bevorzugte Ausführungsform eines konkreten Abgabegeräts.
Some preferred forms of training are shown in the drawings as follows
Figure 1
Shows the hydraulic circuit diagram of the entire fluid coupling (coupling closed; one delivery point; shut-off valve and ventilation valve mechanically coupled).
Figure 2.
Shows the hydraulic circuit diagram of the entire fluid system with two in parallel arranged reusable containers that can be switched alternatively (clutches closed; three delivery points, shut-off valve and ventilation valve and pressure relief valve separately).
Figure 3.
Shows an embodiment of a complete fluid coupling in longitudinal section, in which the mechanical and hydraulic coupling are formed separately (switching position: mechanically coupled, hydraulically locked).
Figure 4.
3 shows the fluid coupling according to FIG. 3 in the front and side view.
Figure 5.
3 shows, in longitudinal section, the fluid coupling in the basic construction as shown in FIG. 3, but with a mechanical coupling by means of a threaded connection (switching position in the intermediate position: mechanically not yet fully coupled, hydraulically still locked).
Figure 6.
3 shows a preferred embodiment of the complete coupling as shown in FIG. 3 in longitudinal section, but with a mechanical coupling by means of a bayonet lock and equilateral mechanical securing with a bolt which is actuated radially. (Switch position: mechanically coupled, hydraulically not coupled).
Figure 7.
6 shows in a sectional plane transverse to the coupling axis in the parting line of both coupling halves A and B with a bolt which is actuated by a radially movable button.
Figure 8.
Shows the developed bolt guideway.
Figure 9.
Shows a partial cutting plane across the joint of both coupling halves A and B with a bolt that is actuated by a radially movable button.
Figure 10
Shows the coupling as part of a mobile complete fluid system as a preferred embodiment of a specific delivery device.

Ausführung der ErfindungImplementation of the invention

In der Figur 1 ist der hydraulische Wirkschaltkreis des vollständigen Fluidsystems (3) in seiner einfachsten Ausführung mit einem Zapfhahn (20) als Abgabestelle dargestellt. Es besteht aus einer hydraulischen Fördereinrichtung (18) mit einer Pumpe (21) und einem Antriebsmotor (22); hinter ihr schließt sich die Druckseite (19) des Abgabesystems an. Vor der Fördereinrichtung (20) befindet sich die Saugseite (2) mit der Systemsaugleitung (10) und der Kupplungshälfte B (9), wobei letztere mit der Kupplungshälfte A (4), die am Behälter (5) angeordnet ist, die Baueinheit der Kupplung (1) bildet. Die Kupplungshälfte A (4) bildet mit dem Behälter (5) und dem integrierten Belüftungsventil (8) das Mehrweg-Behältnis (24); die hydraulische Verbindung vom tiefsten Punkt des Behälters (5) zur Kupplungshälfte A (4) stellt die Behälter-Saugleitung (7) dar; im Behälter (5) befindet sich das zu fördernde Fluid (25). Das Behältnis (23) stellt in mechanisch und hydraulisch gekuppeltem Zustand der Baueinheit Kupplung (1) und des Mehrwegbehältnisses (24) im oberbegrifflichen Sinne das voll funktionsbereite (23) dar; es ist wiederum Bestandteil der Saugseite (2) des Fluidsystems (3). Die Kupplungshälften A (4) undeB (9) besitzen die Trennfuge (27). Die Kupplungshälfte A (4) besitzt ein Belüftungsventil (8) und ein Absperrventil (6), die beim Kupplungsvorgang mit der Kupplungshälfte B (9) über die Kupplungsvorrichtung (17) mechanisch zwangsläufig geöffnet werden; bei der Lagerung und beim Transport des Mehrweg-Behältnisses (24) sind sie geschlossen. In gekuppeltem Zustand sind beide Ventile (6 und 8), die durch eine mechanisch starre Verbindung (78) besitzen sind, die ihrerseits durch eine Feder (79) in ihre geschlossene Endlage zurückgeführt werden, geöffnet; so dient das Belüftungsventil (8) gleichermaßen als Entlüftungsventil. Der manuelle mechanische Kupplungsvorgang der Kupplungshälfte B (9) an die Kupplungshälfte A (4) wird durch die Betätigungsvorrichtung (16) mit der Kupplungsvorrichtung (17) symbolisiert. Die Kupplungshälfte B (9) enthält einen Belüftungskanal (13), der zur Filtereinheit (48) führt, die aus dem Feuchtigkeits- (14) und dem Belüftungsfilter (15) besteht; wesentlicher hydraulischer Bestandteil ist das Saugventil (11) und das parallelgeschaltete Rückentlastungsventil (12) Beim Betieb der Pumpe (21) öffnet das Saugventil (11), das Fluid (25) wird über die Behälter-Saugleitung (7) und die System-Saugleitung (10) angesaugt und über die Druckseite (19) am geöffneten Zapfhahn (20) abgegeben. Bei ruhender Pumpe (21) ist das Saugventil (11) geschlossen; gleichzeitig könnte durch äußere Wärmeeinwirkung auf das Fluidsystem (3) sich ein statischer Überdruck durch thermische Ausdehnung des Fluid aufbauen, der durch das sich hierbei öffnende Rückentlastungsventil (12) das Ausdehnungsvolumen in den Behälter (5) rückführt und diesen über das Be-/Entlüftungsventil (8) und den Belüftungskanal (13) und Filtereinheit (48) entlüftet.In Figure 1, the hydraulic operating circuit of the complete fluid system (3) is shown in its simplest version with a tap (20) as a delivery point. It consists of a hydraulic conveyor (18) with a pump (21) and a drive motor (22); behind it is the pressure side (19) of the delivery system. In front of the conveyor (20) is the suction side (2) with the system suction line (10) and the coupling half B (9), the latter with the coupling half A (4), which is arranged on the container (5), the assembly of the coupling (1) forms. The coupling half A (4) forms the reusable container (24) with the container (5) and the integrated ventilation valve (8); the hydraulic connection from the lowest point of the container (5) to the coupling half A (4) represents the container suction line (7); The fluid (25) to be delivered is located in the container (5). The container (23) in the mechanically and hydraulically coupled state of the coupling unit (1) and the reusable container (24) in the generic sense represents the fully functional (23); it is in turn part of the suction side (2) of the fluid system (3). The coupling halves A (4) and eB (9) have the parting line (27). The coupling half A (4) has a ventilation valve (8) and a shut-off valve (6), which are automatically mechanically opened during the coupling process with the coupling half B (9) via the coupling device (17); during storage and transport of the Reusable container (24) they are closed. In the coupled state, both valves (6 and 8), which are provided by a mechanically rigid connection (78), which in turn are returned to their closed end position by a spring (79), are open; the ventilation valve (8) also serves as a ventilation valve. The manual mechanical coupling process of the coupling half B (9) to the coupling half A (4) is symbolized by the actuating device (16) with the coupling device (17). The coupling half B (9) contains a ventilation duct (13) which leads to the filter unit (48), which consists of the moisture (14) and the ventilation filter (15); An essential hydraulic component is the suction valve (11) and the parallel relief valve (12). When the pump (21) is in operation, the suction valve (11) opens, the fluid (25) is fed through the container suction line (7) and the system suction line ( 10) sucked in and dispensed via the pressure side (19) at the open tap (20). When the pump (21) is stopped, the suction valve (11) is closed; At the same time, a static overpressure due to thermal expansion of the fluid could build up due to external heat influence on the fluid system (3), which returns the expansion volume into the container (5) through the opening back relief valve (12) and this via the ventilation valve ( 8) and the ventilation duct (13) and filter unit (48) vented.

In der Fig. 2 ist der hydraulische Wirkschaltplan eines erweiterten vollständigen Fluidsystems (3) mit drei Zapfhähnen (20) als Abgabestellen sowie einem 3/2-Wegeventil (26) mit der alternativen hydraulischen Umschaltmöglichkeit von zwei Behältnissen (23) beispielhaft mit analogen Bauelementen wie in Fig. 1 dargestellt (siehe Beschreibung Fig. 1), mit einer Ausnahme. Sie betrifft das Belüftungsventil (8), das nur eine Funktion der Belüftung besitzt, das, im Gegensatz zu Fig. 1, nicht mit deren Absperrventil (6) mechanisch gekuppelt ist und eine seperate Feder (79) besitzt, und beim Kupplungsvorgang geöffnet wird. Hydraulisch parallelgeschaltet, jedoch mit entgegengesetzter Wirkrichtung ist das Überdruckventil (80), das ausschließlich auf einen inneren Überdruck anspricht und entsprechend öffnet; es kann auf verschiedenen Entlastungswegen mit der Atmosphäre verbunden werden, im vorliegenden Fall ist es mit der Leitung des Entlastungsventils verbunden. Denkbar ist auch eine Überdruckentlastung des Mehrweg-Behältnisses (24) unmittelbar in die Atmosphäre, also ohne über die Kupplungshälfte B (9), was auch eine Absicherung des Fasses, z.B. beim Transport, bedeuten würde.In Fig. 2 the hydraulic circuit diagram of an extended complete fluid system (3) with three taps (20) as delivery points and a 3/2-way valve (26) with the alternative hydraulic switchover option of two containers (23) is exemplary with analog components such as shown in Fig. 1 (see description Fig. 1), with one exception. It relates to the ventilation valve (8), which has only one function of ventilation, which, in contrast to FIG. 1, is not mechanically coupled to its shut-off valve (6) and one has a separate spring (79) and is opened during the coupling process. Hydraulically connected in parallel, but with the opposite direction of action, is the pressure relief valve (80), which only responds to an internal pressure and opens accordingly; it can be connected to the atmosphere in various relief ways, in the present case it is connected to the line of the relief valve. It is also conceivable for the reusable container (24) to be relieved of overpressure directly into the atmosphere, ie without via the coupling half B (9), which would also mean securing the barrel, for example during transport.

In der Fig. 3 erfolgt in der Trennfuge (27) der Kupplungshälfte A (4), als Bestandteil des Mehrweg-Behältnisses (24) mit dem Behälter (5), dem Fluid und der Behälter-Saugleitung (7), und der Kupplungshälfte B (9), mit dem System-Saugleitungsanschluß (28) die mechanische Kupplung; sie wird durch einen horizontalen Schiebesitz (38) arretiert. Die daran anschließende hydraulische Entsperrung erfolgt durch das vertikale Niederdrücken des Handhebels (29) entgegen der Kraftwirkung der Betätigungsfeder (31) und seinem anschließenden Verdrehen zwecks Festsetzung in der Ausparung (39). Gleichzeitig wird der Schiebekörper (32) mit der Schiebehülse (33) entgegen der Kraftwirkung der Betätigungsfeder (31) nach unten geführt, drückt auf die Kupplungsdichtung (34) und öffnet gleichzeitig den Saugkanal (35) durch äußeres Überfahren der Saugbohrungen (36) der Behälter-Saugleitung (7), was das Öffnen des Absperrventils (6) darstellt, und öffnet den Dichtsitz (37) des Belüftungsventils (8) und verhindert durch die Dichtwirkung des Innendurchmessers der Kupplungsdichtung (34) am Außendurchmesser der Behälter-Saugleitung (7) einen Kurzschluß der hydraulischen Saugseite mit der pneumatischen Belüftungsseite der Kupplung. Der Belüftungskanal (13) führt zum kombinierten Feuchtigkeits- (14) und Belüftungsfilter (15). Durch die Kupplungsdichtung (34), den Dichtsitz (37) und die Dichtungsfeder (49) wird sichergestellt, daß das Mehrweg-Behältnis (24) in allen Zuständen seines Transports und seiner Lagerung, solange die Fluidkupplung (54) durch das Kuppeln der Kupplungshälften A (4) und B (9) aktiviert wird, das Auslaufen von Fluid (25) und/oder das Eindringen von Schmutz o.ä. verhindert. Aus dem Saugkanal (35) erfolgt über den Saugsitz (39) und die Saugfeder (40) des Saugventils (11) die hydraulische Verbindung zum System-Saugleitungsanschluß (28). Im Teller (41) des Saugventils (11) ist das Rückentlastungsventil (12) mit der Ventilkugel (42) und der Entlastungsfeder (43) integriert. Um das Vertauschen von Mehrweg-Behältnissen (24) für unterschiedliche Fluide (25), z.B. von Motoröl mit Bremsflüssigkeit, zu verhindern, ist an der Kupplungsfläche (59) der Durchmesser und die Höhe jeweils unterschiedlich gehalten; für identische Fluide (25) sind diese Abmessungen je einer Kupplungshälfte A (4) und B (9) für eine Fluidkupplung (54) konstant.In Fig. 3 takes place in the parting line (27) of the coupling half A (4), as part of the reusable container (24) with the container (5), the fluid and the container suction line (7), and the coupling half B. (9), with the system suction line connection (28) the mechanical coupling; it is locked by a horizontal sliding seat (38). The subsequent hydraulic unlocking is carried out by vertically depressing the hand lever (29) against the force of the actuating spring (31) and then turning it for fixing in the recess (39). At the same time, the sliding body (32) with the sliding sleeve (33) is guided downward against the force of the actuating spring (31), presses on the coupling seal (34) and at the same time opens the suction channel (35) by externally running over the suction holes (36) of the containers -Suction line (7), which represents the opening of the shut-off valve (6), and opens the sealing seat (37) of the ventilation valve (8) and prevents the outer diameter of the container suction line (7) by the sealing effect of the inner diameter of the coupling seal (34) Short circuit of the hydraulic suction side with the pneumatic ventilation side of the coupling. The ventilation duct (13) leads to the combined moisture (14) and ventilation filter (15). Through the coupling seal (34), the sealing seat (37) and the Sealing spring (49) ensures that the reusable container (24) in all states of its transport and storage, as long as the fluid coupling (54) is activated by coupling the coupling halves A (4) and B (9), the leakage of Fluid (25) and / or the penetration of dirt or the like prevented. The hydraulic connection to the system suction line connection (28) is made from the suction channel (35) via the suction seat (39) and the suction spring (40) of the suction valve (11). The back relief valve (12) with the valve ball (42) and the relief spring (43) are integrated in the plate (41) of the suction valve (11). In order to prevent the exchange of reusable containers (24) for different fluids (25), for example motor oil with brake fluid, the diameter and the height of the coupling surface (59) are kept different; for identical fluids (25) these dimensions of a coupling half A (4) and B (9) are constant for a fluid coupling (54).

In der Fig. 4, als Außenansichten von Fig. 3, geht das Mehrweg-Behältnis (24) bis zur Trennfuge (27) beider Kupplungshälften A (4) und B (9). Die mechanische Kupplung erfolgt mit dem Schiebesitz (38). Der Handhebel (29) schaltet durch Niederdrücken und seine Arretierung in der Aussparung (30) die Kupplung auf hydraulsiche Betriebsbereitschaft. Beim Fördervorgang der Pumpe wird über die Behälter-Saugleitung (7) und die beiden Kupplungshälften A (4) und B (9) das Fluid (25) aus dem Behälter (5) in den System-Saugleitungsanschluß (28) gesaugt und von dort weiter in das Fluidsystem (3).In Fig. 4, as external views of Fig. 3, the reusable container (24) goes to the parting line (27) of both coupling halves A (4) and B (9). The mechanical coupling takes place with the sliding seat (38). By pressing it down and locking it in the recess (30), the hand lever (29) switches the clutch to ready for operation. During the pumping process of the pump, the fluid (25) is sucked out of the container (5) into the system suction line connection (28) and from there via the container suction line (7) and the two coupling halves A (4) and B (9) into the fluid system (3).

In der Fig. 5 dient der Handhebel (29) ausschließlich zum Aufschrauben der Kupplungshälfte B (9) auf die Kupplungshälfte A (4) mittels eines Schraubgewindes (44). Durch die axiale Bewegung beim Aufschrauben wird die Kupplung mechanisch verbunden und gleichzeitig halbautomatisch hydraulisch entsperrt.5, the hand lever (29) is used exclusively for screwing the coupling half B (9) onto the coupling half A (4) by means of a screw thread (44). Due to the axial movement when screwing on, the coupling is mechanically connected and at the same time semi-automatically hydraulically unlocked.

In einzelnen zeigt die Fig. 6 die beiden Kupplungshälften A (4), die am Behälter (5) integriert ist, und B (9), die einen Ausgang zum System (64) besitzt. Ein Bajonettverschluß (45) dient durch Niederdrücken der Kupplungshälfte B (9), entgegen der Kraftwirkung der Betätigungsfeder (31) der Kupplungshälfte A (4) und ihr anschließendes Verdrehen, zur mechansichen Kupplung und gleichzeitigen halbautomatischen Entsperrung; beide Kupplungshälften A (4) und B (9) besitzen eine gemeinsame Trennfuge (27); die weitere hydraulische Funktion kann der Beschreibung von Fig. 3 entnommen werden. Im Bereich der Trennfuge (70) beider Kupplungshälften A (4) und B (9) ist ein Ring (60) angeordnet, der zur Kupplungshälfte A (4) gehört; dieser besitzt an seinem äußeren Durchmesser mindestens eine Ausnehmung (61). In dem übergreifenden Gehäuseteil (65) der Kupplungshälfte B (9) sitzt mindestens ein Bolzen (62), der in ordnungsgemäß gekuppeltem Zustand in die korrespondierende Ausnehmung (61) greift. Der Bolzen (62) wird über einen Stift (66) zum Außendurchmesser des Gehäuseteils (65) geführt, wo mindestens ein Betätigungsknopf (67) sitzt; über eine Feder (68) wird die Endlage des Bolzens (62) in arretiertem Zustand sichergestellt. Der Betätigungsknopf (67) dient zusätzlich als Griff zur Einleitung eines Drehmomentes beim Kupplungsvorgang; ein entsprechender 2. Griffknopf (69) dient demselben Zweck; er kann ggf. als 2. Betätigungsknopf ausgebildet werden (Entgegen der Darstellung gemäß Fig. 1 kann der Ring (60) auch unterhalb der Trennfuge (70) alternativ angeordnet werden; dementsprechend tiefer ist das übergreifende Gehäuseteil (65) auszubilden).6 shows the two coupling halves A (4), which is integrated on the container (5), and B (9), which has an exit to the system (64). A bayonet lock (45) is used by depressing the coupling half B (9), against the force of the actuating spring (31) of the coupling half A (4) and its subsequent turning, for mechanical coupling and simultaneous semi-automatic unlocking; both coupling halves A (4) and B (9) have a common parting line (27); the further hydraulic function can be found in the description of FIG. 3. In the area of the joint (70) of both coupling halves A (4) and B (9) there is a ring (60) which belongs to coupling half A (4); this has at least one recess (61) on its outer diameter. At least one bolt (62) sits in the overlapping housing part (65) of the coupling half B (9) and engages in the corresponding recess (61) in the properly coupled state. The pin (62) is guided via a pin (66) to the outer diameter of the housing part (65), where at least one actuating button (67) is seated; The end position of the bolt (62) is ensured in the locked state by means of a spring (68). The actuating button (67) also serves as a handle for introducing a torque during the coupling process; a corresponding second handle button (69) serves the same purpose; if necessary, it can be designed as a second actuation button (contrary to the illustration according to FIG. 1, the ring (60) can alternatively also be arranged below the parting line (70); accordingly, the overlapping housing part (65) has to be designed accordingly.

In der Fig. 7 erfolgt die radiale Betätigung des Bolzens (62) mit seinem Eingriff in die Ausnehmung (61) ausschließlich durch eine Radialbewegung (77) des Betätigungsknopfes (67) entgegen der Kraftwirkung der Feder (68); diese sind in der Kupplungshälfte B (9) integriert. Die zwei Ausnehmungen (61), von denen nur eine aktiv im oberen Bereich der Schnittzeichnung wirksam ist, sind Bestandteil der Kupplungshälfte A (4). Der Bolzen (62) wird während der Drehung des Bajonettverschlusses längs der Bolzenführungsbahn (63) geführt, die gemäß Fig. 8 am Teilumfang ausgebildet ist.In Fig. 7 the radial actuation of the bolt (62) with its engagement in the recess (61) takes place exclusively by a radial movement (77) of the actuation button (67) against the force of the spring (68); these are integrated in the coupling half B (9). The two recesses (61), of which only one is active in the upper area of the sectional drawing, are active Part of the coupling half A (4). The bolt (62) is guided during the rotation of the bayonet lock along the bolt guide path (63) which is formed on the partial circumference according to FIG. 8.

In der Fig. 8 ist die abgewickelte Bolzenführungsbahn (63) in einer Seitenansicht dargestellt, an welcher der Bolzen (62) während des Kupplungsvorgangs formschlüssig geführt wird, bis er seine Endlage in der korrespondierenden Ausnehmung (61), dargestellt in der einfachsten geometrischen kreisrunden Form, erreicht hat. Die Führungsbahn (63) ist hierbei nicht stetig ausgebildet sondern besitzt einen Zwischenpunkt (76), welcher insbesondere beim nicht korrekten Kuppeln in der Endlage zwangsläufig eine stabile Zwischenlage ergibt, welche ein unbeabsichtigtes vollkommenes Öffnen der Kupplung verhindert; die Zwischenlage dient auch der kontrollierten Entlastung des Behälters, wenn sich in diesem ein pneumatischer Überdruck aufbauen sollte; zusätzlich ergibt sich durch die Zwischenposition beim manuellen Kuppeln ein positiver Hinweis für denjenigen, der kuppelt, im Sinne einer Erhöhung der Sicherheit für den Kupplungsvorgang. Der Schwenkhülse gegenüberliegend ist eine Hülse (71) dargestellt, welche nur eine Bedienungs-, jedoch keine Sicherungs- und/oder Kennungsfunktion besitzt. Gleichwohl ist dort eine identische Ausnehmung (61) der Kupplungshälfte A (4) angeordnet, welche sicherstellt, daß, bei jedem Kupplungsvorgang bei der Anordnung nur eines Bolzens (62), dieser ordnungsgemäß mindestens in seiner Endlage in jedem Fall die passende Ausnehmung (61) findet.In Fig. 8 the developed bolt guide track (63) is shown in a side view, on which the bolt (62) is positively guided during the coupling process until it reaches its end position in the corresponding recess (61), shown in the simplest geometric circular shape , has reached. The guideway (63) is not continuous here, but has an intermediate point (76), which in particular in the case of incorrect coupling in the end position inevitably results in a stable intermediate layer which prevents the coupling from being opened accidentally; the intermediate layer also serves to relieve the container in a controlled manner if a pneumatic overpressure should build up in it; in addition, the intermediate position in manual coupling results in a positive note for those who are coupling, in the sense of increasing the safety for the coupling process. Opposed to the swivel sleeve is a sleeve (71) which has only an operating, but no security and / or identification function. Nevertheless, there is an identical recess (61) in the coupling half A (4), which ensures that, with each coupling operation with the arrangement of only one bolt (62), the bolt has the correct recess (61), at least in its end position. finds.

In der Fig. 9 erfolgt die radiale Betätigung des Bolzens (62) mit seinem Eingriff in die Ausnehmung (61) durch eine Schwenkbewegung (72) der Schwenkhülse (73) um den Drehpunkt (74). Die Schwenkbewegung (72) stellt eine zusätzliche manuelle Operation dar, welche den Kupplungsvorgang zusätzlich absichert. Während des Drehvorgangs der Kupplungshälfte B (9) gleitet die Spitze (75) des ausgerasteten Bolzens (62) auf der Bolzenführungsbahn (63) der Kupplungshälfte A (4) solange, bis sie ihre Endstellung erreicht hat und der Bolzen (62) in die Ausnehmung (61) einrastet, wobei gleichzeitig die Schwenkhülse (73) in ihre radiale Endposition zurückgeführt wird.9, the radial actuation of the bolt (62) with its engagement in the recess (61) takes place by a pivoting movement (72) of the pivoting sleeve (73) about the pivot point (74). The pivoting movement (72) represents an additional manual operation which additionally secures the coupling process. During the turning process of the coupling half B (9), the tip (75) of the disengaged bolt (62) on the bolt guide track (63) of the coupling half A (4) until it has reached its end position and the bolt (62) engages in the recess (61), the pivot sleeve (73) simultaneously in its radial end position is returned.

In der Fig. 10 wird die Fluidkupplung (54), bestehend aus der Kupplungshälfte A (4) und der Kupplungshälfte B (9) mit dem Behälter (5) als Bestandteil eines mobilen Fluidsystems (3) für eine Abgabestelle dargestellt; das Mehrweg-Behältnis (24) besteht seinerseits aus der Kupplungshälfte A (4) und dem Behälter (5). Alle Teile des Fluidsystems (3) sind im oder am Gehäuse (50) integriert; insbesondere Räder (51) machen das System beweglich, die Energieversorgung erfolgt über einen elektrischen Stecker (52) und ein Kabel (53). Ein Zapfhahn (55) mit einem Schlauch (56) dient als Abgabeorgan, eine Mengenanzeige (57) und eine Mengenvorwahl (58) ergänzen das äußere Erscheinungsbild des Systems, das in der vorliegenden Darstellung für den Selbstbedienungsbetrieb beispielhaft dargestellt ist.10 shows the fluid coupling (54), consisting of the coupling half A (4) and the coupling half B (9) with the container (5) as part of a mobile fluid system (3) for a delivery point; the reusable container (24) in turn consists of the coupling half A (4) and the container (5). All parts of the fluid system (3) are integrated in or on the housing (50); Wheels (51) in particular make the system movable, the energy supply is provided by an electrical connector (52) and a cable (53). A tap (55) with a hose (56) serves as a dispensing element, a quantity display (57) and a quantity preselection (58) complete the external appearance of the system, which is shown as an example for self-service operation in the present illustration.

BezugszeichenReference numerals

11
Baueinheit (Kupplung)Unit (clutch)
22nd
SaugseiteSuction side
33rd
FluidsystemFluid system
44th
Kupplung≦hälfte ACoupling A half A
55
Behältercontainer
66
AbsperrventilShut-off valve
77
Behälter-SaugleitungContainer suction line
88th
Be-/EntlüftungsventilVentilation valve
99
Kupplungshälfte BCoupling half B
1010th
System-SaugleitungSystem suction line
1111
SaugventilSuction valve
1212th
RückentlastungsventilBack relief valve
1313
BelüftungskanalVentilation duct
1414
FeuchtigkeitsfilterMoisture filter
1515
BelüftungsfilterVentilation filter
1616
BetätigungsvorrichtungActuator
1717th
KupplungsvorrichtungCoupling device
1818th
Fördereinrichtung, hydraulischConveyor device, hydraulic
1919th
DruckseitePrinted page
2020th
ZapfhahnTap
2121
Pumpepump
2222
AntriebsmotorDrive motor
2323
Behältnis (gekuppelt)Container (coupled)
2424th
Mehrweg-BehältnisReusable container
2525th
FluidFluid
2626
3/2-Wegeventil3/2-way valve
2727
TrennfugeParting line
2828
System-SaugleitungsanschlußSystem suction line connection
2929
HandhebelHand lever
3030th
AussparungRecess
3131
BestätigungsfederConfirmation pen
3232
SchiebekörperSliding body
3333
SchiebehülseSliding sleeve
3434
KupplungsdichtungClutch seal
3535
SaugkanalSuction channel
3636
SaugbohrungSuction hole
3737
DichtsitzSealing seat
3838
SchiebsitzSliding seat
3939
SaugsitzSuction seat
4040
SaugfederSuction spring
4141
TellerPlate
4242
VentilkugelValve ball
4343
EntlastungsfederRelief spring
4444
SchraubgewindeScrew thread
4545
BajonettverschlußBayonet lock
4646
AbgangsleitungOutgoing line
4747
DurchströmungskanalFlow channel
4848
FiltereinheitFilter unit
4949
DichtungsfederSealing spring
5050
Gehäusecasing
5151
Radwheel
5252
Stecker, elektrischPlug, electrical
5353
Kabelelectric wire
5454
FluidkupplungFluid coupling
5555
ZahpfhahnTooth valve
5656
Schlauchtube
5757
MengenanzeigeQuantity display
5858
MengenvorwahlQuantity preselection
5959
KupplungsflächeCoupling surface
6060
Ringring
6161
AusnehmungRecess
6262
Bolzenbolt
6363
BolzenführungsbahnPin guideway
6464
SystemausgangSystem output
6565
GehäuseteilHousing part
6666
Stiftpen
6767
BetätigungsknopfControl button
6868
Federfeather
6969
GriffknopfHandle knob
7070
TrennfugeParting line
7171
HülseSleeve
7272
SchwenkbewegungSwivel motion
7373
SchwenkhülseSwivel sleeve
7474
SchenkpunktFocal point
7575
Spitzetop
7676
ZwischenpunktIntermediate point
7777
RadialbewegungRadial motion
7878
Verbindungconnection
7979
ÖffnungsfederOpening spring
8080
ÜberdruckventilPressure relief valve

Claims (15)

  1. Unlockable mechanical coupling for reusable containers and delivery systems for fluids, with two shut-off valves arranged one behind the other, an air filter, a mechanical operation and/or a mechanical coupling,
    characterised in that at least one structural unit (1), arranged on the suction side (2) of a system for fluids (3) whose viscosity is average to high and can be heavily dependent on temperature, consists of
    - a coupling half A (4) on the container (5) with a locking valve (6) and a container suction pipe (7) as well as connected mechanically parallel and hydraulically upstream - a ventilation/air-bleed valve (8) and optionally - connected hydraulically parallel with the valve (8) - an excess pressure valve (80) and
    - a coupling half B (9) in the system suction pipe (10), a suction valve (11), as well as connected hydraulically parallel, a return pressure reducing valve (12), both connected hydraulically downstream of a ventilation duct for the ventilation/air-bleed valve (8) which in turn has upstream a moisture filter (14) and/or a ventilation filter (15), and a mechanical operating device (16);
    as well as both coupling halves A (4) and B (9) are provided with a mechanical coupling device (17).
  2. Fluid coupling according to claim 1
    characterised in that the return pressure reducing valve (12) is mounted with an inner through-flow duct (47) on the suction valve (11).
  3. Fluid coupling according to one of claims 1 and 2
    characterised in that the return pressure relaxing valve (12) is mounted coaxially with the suction valve (11).
  4. Fluid coupling according to claims 1 to 3
    characterised in that the shut-off valve (6) and the ventilation valve (8) have in the coupling half A (4), arranged hydraulically-pneumatically in succession, a mechanical connection (78) and an opening spring (79) which, suitably connected to the coupling half B (9) form one structural unit (1).
  5. Fluid coupling according to one of claims 1 to 4
    characterised in that the shut-off valve (6) and the ventilation valve (8), hydraulically-pneumatically in succession, the ventilation valve (8) and the excess pressure valve (80), hydraulically-pneumatically parallel, are each mounted in the coupling half A (4), each have an opening spring (79) which, suitably connected with the coupling half B (9) form one structural unit (1).
  6. Fluid coupling according to one of claims 1 to 5
    characterised in that the coupling device (17) is fitted with a screw thread (44), bayonet lock (45), sliding body (32) or sliding sleeve (33).
  7. Fluid coupling according to one of claims 1 to 6
    characterized in that the operating device (16) consists of a handle lever (29).
  8. Fluid coupling according to one of claims 1 to 7
    characterized in that the moisture filter (14) and ventilation filter (15) are designed as one filter unit (48).
  9. Fluid coupling according to one of claims 1 to 8
    characterized in that the coupling half A (4) is hydraulically coupled with the container (5) as an interchangeable reusable container (24) in any way with the coupling half B (9) to form a fixedly installed fluid system (3) (stationary fluid system ).
  10. Fluid coupling according to one of claims 1 to 8
    characterised in that the coupling half A (4) is hydraulically connected with the container (5) as an interchangeable reusable container (24) in any way with the coupling half B (9) as a crossing inside a movable fluid system (3) which is stored in a housing (50) and is mounted movable on wheels, rollers (51) or the like and has an electric plug (52) (mobile fluid system).
  11. Fluid coupling according to one of claims 1 to 10
    characterised in that the coupling surface (59) for different fluids (25) is designed differently regarding height and diameter to avoid mix-ups but constant for the coupling halves A (4) and B (9) of one fluid coupling (54).
  12. Fluid coupling according to one of claims 1 to 11
    characterised in that the geometric shapes of a recess (61) of the coupling half A (4) and of a bolt (62) of the coupling half B (9) are identical.
  13. Fluid coupling according to claim 12
    characterised in that the geometric shape of the recess (61) and of the bolt (62) is a circle, polygon, rectangle, hexagon, ellipse or the like.
  14. Fluid coupling according to one of claims 12 to 13
    characterised in that the bolt (62) is fixedly connected with the operating button (67) or a sleeve (71).
  15. Fluid coupling according to one of claims 12 to 14
    characterised in that the bolt (62) is connected for mutual swivel movement with a swivel sleeve (73).
EP92903406A 1991-01-31 1992-01-30 Mechanical coupling for multiple path containers for viscous fluids Expired - Lifetime EP0523211B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19914102875 DE4102875A1 (en) 1991-01-31 1991-01-31 Mechanically unlockable fluid coupling - has external forced venting and is for transport, storage and removal of fluids, connecting and securing fluid system
DE4102875 1991-01-31
DE4202209 1992-01-28
DE4202209A DE4202209A1 (en) 1991-01-31 1992-01-28 SECURING AND IDENTIFYING A FLUID COUPLING FOR MULTIPLE-WAY CONTAINERS
PCT/EP1992/000204 WO1992013794A1 (en) 1991-01-31 1992-01-30 Mechanical coupling for multiple path containers for viscous fluids

Publications (2)

Publication Number Publication Date
EP0523211A1 EP0523211A1 (en) 1993-01-20
EP0523211B1 true EP0523211B1 (en) 1994-08-31

Family

ID=25900659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92903406A Expired - Lifetime EP0523211B1 (en) 1991-01-31 1992-01-30 Mechanical coupling for multiple path containers for viscous fluids

Country Status (10)

Country Link
EP (1) EP0523211B1 (en)
JP (1) JPH05507258A (en)
AT (1) ATE110693T1 (en)
AU (1) AU1186792A (en)
CA (1) CA2079483A1 (en)
DE (2) DE4202209A1 (en)
DK (1) DK0523211T3 (en)
ES (1) ES2059214T3 (en)
NO (1) NO923779D0 (en)
WO (1) WO1992013794A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9222886D0 (en) * 1992-10-30 1992-12-16 Parsons Brothers Ltd Fluid couplings
EP1211217A1 (en) * 1999-10-15 2002-06-05 Richard P. Bilskie Bottle coupler
EP3429956B1 (en) * 2016-03-18 2020-04-22 Ecolab USA Inc. Apparatus arranged for providing a liquid medium from a storage container

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2331480A1 (en) * 1972-06-26 1974-01-17 Pitney Bowes LIQUID REFILL SYSTEM
CA1121321A (en) * 1977-09-28 1982-04-06 Leo J. Fallon Valve assembly and coupler therefor and locking mechanism for coupler and valve assembly
US4180189A (en) * 1978-01-11 1979-12-25 Vending Components, Inc. Single valve dispensing tube
DE2939536A1 (en) * 1979-09-28 1981-04-16 Vending Components, Inc., Hackensack, N.J. Single valve beer dispenser tube - has annular probe moving in fitting to control flow of beer from keg and gas into keg
AU610081B2 (en) * 1986-08-11 1991-05-16 Micro Matic Usa, Inc Keg valve with safety vent seal
US4736926A (en) * 1986-11-07 1988-04-12 Draft Systems, Inc. Valve assembly and coupler therefor
GB8702477D0 (en) * 1987-02-04 1987-03-11 Gkn Sankey Ltd Tamperproof bush
US4856683A (en) * 1987-12-31 1989-08-15 Great Plains Industries, Inc. Herbicide dispenser
GB8813100D0 (en) * 1988-06-03 1988-07-06 Nicholson G P Dispensing closure for fluid container
DE8809942U1 (en) * 1988-08-04 1988-12-01 Eutec Josef Breitwisch & Co. GmbH, 5000 Köln Tap head for beverage containers, especially beer kegs
DE4021790A1 (en) * 1990-07-09 1992-01-16 Wella Ag Fluid dispenser for bottle filling - has dispensing head on storage container with lock engaged by bottle key
DE4102875A1 (en) * 1991-01-31 1992-08-20 Tecalemit Gmbh Deutsche Mechanically unlockable fluid coupling - has external forced venting and is for transport, storage and removal of fluids, connecting and securing fluid system
DE9101097U1 (en) * 1991-01-31 1991-04-18 Deutsche Tecalemit Gmbh, 4800 Bielefeld Mechanically releasable fluid coupling for reusable containers with external forced ventilation for the transport, storage and removal of fluids as well as for the connection and protection of a fluid system

Also Published As

Publication number Publication date
DE59200439D1 (en) 1994-10-06
NO923779L (en) 1992-09-29
EP0523211A1 (en) 1993-01-20
JPH05507258A (en) 1993-10-21
WO1992013794A1 (en) 1992-08-20
AU1186792A (en) 1992-09-07
NO923779D0 (en) 1992-09-29
DK0523211T3 (en) 1994-10-03
ATE110693T1 (en) 1994-09-15
ES2059214T3 (en) 1994-11-01
DE4202209A1 (en) 1993-07-29
CA2079483A1 (en) 1992-08-01

Similar Documents

Publication Publication Date Title
DE3151892A1 (en) HAND PUMP FOR PRESSURE PRESSURE OF LIQUIDS AND / OR THICKNESS SUBSTANCES FROM A CONTAINER
DE2362422A1 (en) AUTOMATICALLY LOCKING-OFF FILLING GUN
EP2634112A1 (en) Refillable dispensing container
EP3938695B1 (en) Lubricant dispenser
EP0523211B1 (en) Mechanical coupling for multiple path containers for viscous fluids
DE4102875C2 (en)
EP0283797B1 (en) Keg tap
EP0787099B1 (en) Device for airing a liquids container
DE102005041437A1 (en) Fueling monitor for tank lorry, has sealing piston closing inlet, when input-side is loaded with pressure below preset pressure limit, and releasing inlet for filling of tank, when input-side is loaded with pressure above limit
EP3105170B1 (en) Tapping head for a beverage keg
DE19836600C2 (en) Bottom valve, especially tank bottom valve
EP0432650B1 (en) Dispensing device
DE3306204A1 (en) Connection fitting for a container
EP0196471B1 (en) High-pressure delivery device
DE9101097U1 (en) Mechanically releasable fluid coupling for reusable containers with external forced ventilation for the transport, storage and removal of fluids as well as for the connection and protection of a fluid system
EP3366918A1 (en) Device for collecting spent lubricant
DE4238055A1 (en) Cleaning gun for hand-controlled fluid supply - has needle projection in valve body projecting into socket bore to increase valve cross section when activating operating pin.
DE3602079A1 (en) Device for transferring liquids
EP2730536B1 (en) Tap assembly with discharge valve
DE2757003C3 (en) Valve coupling
DE2407481A1 (en) Oil tanking line distribution system - has slide casing which controls flow between distributor pipe and tap line junction
DE3117027A1 (en) "COMPRESSING DEVICE FOR DRINKING THE MOUNTAINS, PREFERABLY FOR GLUING WITH LIQUID PLASTIC"
DE3843418A1 (en) Device for sucking up liquid
EP2844397B1 (en) Dispensing unit
DE3507930C2 (en) Dispenser for liquid and pasty materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 110693

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 59200439

Country of ref document: DE

Date of ref document: 19941006

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940909

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2059214

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950104

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950113

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950116

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950125

Year of fee payment: 4

Ref country code: CH

Payment date: 19950125

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950126

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19950130

Year of fee payment: 4

EAL Se: european patent in force in sweden

Ref document number: 92903406.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950131

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950202

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960130

Ref country code: DK

Effective date: 19960130

Ref country code: AT

Effective date: 19960130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960131

Ref country code: LI

Effective date: 19960131

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960131

Ref country code: CH

Effective date: 19960131

Ref country code: BE

Effective date: 19960131

BERE Be: lapsed

Owner name: DEUTSCHE TECALEMIT G.M.B.H.

Effective date: 19960131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961001

EUG Se: european patent has lapsed

Ref document number: 92903406.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050130