EP0515888A1 - Support and pointing arrangement for antennes or telescopes - Google Patents

Support and pointing arrangement for antennes or telescopes Download PDF

Info

Publication number
EP0515888A1
EP0515888A1 EP92107916A EP92107916A EP0515888A1 EP 0515888 A1 EP0515888 A1 EP 0515888A1 EP 92107916 A EP92107916 A EP 92107916A EP 92107916 A EP92107916 A EP 92107916A EP 0515888 A1 EP0515888 A1 EP 0515888A1
Authority
EP
European Patent Office
Prior art keywords
legs
arrangement
telescope
corners
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92107916A
Other languages
German (de)
French (fr)
Other versions
EP0515888B1 (en
Inventor
Berry Dipl.-Phys. Smutny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0515888A1 publication Critical patent/EP0515888A1/en
Application granted granted Critical
Publication of EP0515888B1 publication Critical patent/EP0515888B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning

Definitions

  • the invention relates to an arrangement for supporting and aligning antennas or telescopes, in particular for space applications, according to the preamble of patent claim 1.
  • the weight for the arrangement for supporting and aligning the telescope can be significantly reduced.
  • the alignment mechanism is based on changing the length of the six legs of the Hexapod. If the length of the legs can be changed over a wide range, the support and alignment arrangement, the hexapod, can also be used as an extension unit for extending the telescope. To do this, change the length of the six legs at the same time.
  • the advantage of using a frame in the form of a hexapod not only to support and align a telescope, but also to use the frame as an extension unit, is that in applications with unfavorable satellite geometries, the telescope can be extended far and then no longer by other structures in its viewing angle is restricted on the satellite.
  • a starting position is provided according to the invention in which the alignment mechanism is blocked in a defined manner (English: launch lock). According to the invention, this is achieved by internally bracing the individual legs.
  • FIG. 1 An arrangement according to the invention, such as could be mounted on a satellite platform 2, is shown in FIG. 1.
  • a telescope 1 is attached to a rigid support plate 10 via a rotation and deflection mechanism 5.
  • the outline of the carrier plate 10 corresponds to an equilateral hexagon.
  • An optical bench 3 is attached below the carrier plate.
  • One end of a leg 6 is attached to each of the six corners of the carrier plate.
  • the six legs are adjustable in length. They are each attached to the carrier plate 10 via a ball joint. At the other end, the legs 6 are combined in pairs and via ball joints with the satellite platform 2, which Base area forms, connected.
  • the six adjustable legs form the hexapod frame.
  • the structure of the individual legs can be seen in Figure 2.
  • a leg 6 consists of an inner tube 8 and an outer tube 9.
  • the inner tube can be moved with respect to the outer tube by piezoelectric linear motors 11. These are attached to the outer tube and move on the smooth, precisely machined outer surface of the inner tube 8. At each end of the legs 6 there is a ball joint 7.
  • the legs are on one side with the satellite platform 2 and on the other side connected to the support plate 10 which carries the telescope 1.
  • the inner tube 8 of the legs on the outer surface of which the piezoelectric linear motors, also called inchworm motors, move, is advantageously a PEEK tube and has a very good sliding surface.
  • a stop disk 14 for the outer tube 9 At the lower end there is a stop disk 14 for the outer tube 9.
  • the outer tube 9 is braced against the stop disk 14 by means of the piezoelectric linear motors.
  • the surface of the stop disk 14 can be coated with steel wool, for example, in order to ensure high damping, friction and elasticity.

Abstract

It is intended to specify an arrangement for supporting and aligning antennas or telescopes which is especially suitable for satellites. An arrangement in the form of a hexapod is proposed, which is used both for supporting and aligning the telescope and as an extension unit in order to increase the distance between the telescope and the satellite platform. The framework is composed of six legs (6) whose length can be controlled and which are equipped with ball joints at the ends. The legs connect the satellite platform (2) to a rigid supporting plate (10) which supports the telescope (1). At one end, the legs are in each case attached in pairs to the corners of a triangle, and at the other end, they are either likewise attached in pairs to the corners of a triangle or are individually attached to the corners of a hexagon. Piezoelectric linear motors are used for length control of the legs. Internal reinforcement for the launching procedure of the carrier rockets is provided by bracing the outer tube (9) with respect to a stop disc (14) which is located on the inner tube. <IMAGE>

Description

Die Erfindung betrifft eine Anordnung zum Stützen und Ausrichten von Antennen oder Teleskopen, insbesondere für Weltraumanwendungen, nach dem Oberbegriff des Patentanspruches 1.The invention relates to an arrangement for supporting and aligning antennas or telescopes, in particular for space applications, according to the preamble of patent claim 1.

Eine gattungsgemäße Anordnung ist bereits bekannt aus "Das Hexapod-Teleskop - ein Prototyp für das Deutsche Großteleskop" von Theodor Schmidt-Kaler in Spektrum der Wissenschaft, Mai 1991, Seite 18 bis 22. Das Nachführungssystem dieses Teleskops soll das mechanische Grundprinzip nutzen, daß ein starrer Körper genau sechs Freiheitsgrade der Bewegung hat und die Tragestruktur des Hauptspiegels wird daher durch sechs Beine mit dem Fundament des Teleskops verbunden. Man kann durch Verlängern bzw. Verkürzen der Beine und damit durch Veränderung der Neigungswinkel gerade sechs Freiheitsgrade realisieren.A generic arrangement is already known from "The Hexapod Telescope - A Prototype for the German Large Telescope" by Theodor Schmidt-Kaler in Spectrum of Science, May 1991, pages 18 to 22. The tracking system of this telescope is to use the basic mechanical principle that a rigid body has exactly six degrees of freedom of movement and the supporting structure of the main mirror is therefore connected to the base of the telescope by six legs. By lengthening or shortening the legs and thus by changing the angle of inclination, just six degrees of freedom can be achieved.

Eine weitere Anordnung zum Stützen und Ausrichten von Antennen mit einem Gestell in Form eines Hexapods, entsprechend dem Oberbegriff des Patentanspruches 1 ist aus der EP 02 66 026 A1 bekannt.Another arrangement for supporting and aligning antennas with a frame in the form of a hexapod, according to the preamble of claim 1, is known from EP 02 66 026 A1.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine Anordnung zum Stützen und Ausrichten von Teleskopen anzugeben, die für den Einsatz auf Satelliten besonders geeignet ist.Based on this prior art, it is an object of the invention to provide an arrangement for supporting and aligning telescopes that are suitable for use on satellites is particularly suitable.

Die Aufgabe wird mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The object is achieved with the features of patent claim 1. Advantageous further developments are specified in the subclaims.

Für den Einsatz von Stütz- und Ausrichtmechanismen für Teleskope auf Satelliten ist es von besonderer Bedeutung, daß die Systeme von geringem Gewicht und Volumen sind. Außerdem werden hohe Anforderungen an die Genauigkeit des Ausrichtmechanismus gestellt. Da der freie Platz auf einem Satelliten gering ist, kann es vorkommen, daß der Sichtbereich des Teleskops durch andere Aufbauten auf den Satelliten beschränkt wird. Dies kann sich äußerst nachteilig auswirken.For the use of support and alignment mechanisms for telescopes on satellites, it is of particular importance that the systems are light in weight and volume. In addition, high demands are placed on the accuracy of the alignment mechanism. Since the free space on a satellite is small, it is possible that the field of vision of the telescope is restricted by other structures on the satellite. This can be extremely detrimental.

Durch den Einsatz einer Tragestruktur in Form eines Hexapods kann das Gewicht für die Anordnung zum Stützen und Ausrichten des Teleskops wesentlich herabgesetzt werden. Der Ausrichtmechanismus basiert auf der Längenänderung der sechs Beine des Hexapods. Wenn die Länge der Beine über einen großen Bereich veränderbar ist, so kann die Stütz- und Ausrichtanordnung, das Hexapod, auch als Ausfahreinheit zum Ausfahren des Teleskops eingesetzt werden. Dazu ändert man die Länge der sechs Beine gleichzeitig. Ein Gestell in Form eines Hexapods nicht nur zum Stützen und Ausrichten eines Teleskops einzusetzen, sondern das Gestell auch als Ausfahreinheit einsetzen, bringt den Vorteil, daß bei Applikationen auf ungünstigen Satellitengeometrien das Teleskop weit ausgefahren werden kann und dann in seinem Sichtwinkel nicht mehr durch andere Aufbauten auf dem Satelliten eingeschränkt ist.By using a support structure in the form of a hexapod, the weight for the arrangement for supporting and aligning the telescope can be significantly reduced. The alignment mechanism is based on changing the length of the six legs of the Hexapod. If the length of the legs can be changed over a wide range, the support and alignment arrangement, the hexapod, can also be used as an extension unit for extending the telescope. To do this, change the length of the six legs at the same time. The advantage of using a frame in the form of a hexapod not only to support and align a telescope, but also to use the frame as an extension unit, is that in applications with unfavorable satellite geometries, the telescope can be extended far and then no longer by other structures in its viewing angle is restricted on the satellite.

Neben dem geringen Gewicht des Ausrichtmechanismus spielt auch der Leistungsverbrauch einen solchen Mechanismus, insbesondere bei Weltraumanwendungen, eine sehr große Rolle. Durch den erfindungsgemäßen Einsatz von piezoelektrischen Linearmotoren zur Betätigung von Ausrichtmechanismus und Ausfahreinheit kann eine Reduzierung des Leistungsverbrauchs erreicht werden. Der Einsatz von Inchworm-Motoren (bekannt aus US 39 02 085) hat den Vorteil, daß diese ohne Betriebsspannung blockiert, also im Ruhezustand sind.In addition to the low weight of the alignment mechanism, the power consumption of such a mechanism also plays a very large role, particularly in space applications. By the The use of piezoelectric linear motors according to the invention for actuating the alignment mechanism and extension unit can reduce the power consumption. The use of inchworm motors (known from US 39 02 085) has the advantage that they are blocked without operating voltage, that is to say in the idle state.

Für die speziellen Anforderungen eines Ausrichtmechanismus auf einem Satelliten, der auf einer Trägerrakete befestigt die Startbedingungen erfüllen muß, ist erfindungsgemäß eine Startposition vorgesehen, in welcher der Ausrichtmechanismus definiert blockiert ist (englisch: launch lock).
Erfindungsgemäß wird dies durch das interne Verspannen der Einzelbeine erreicht.
For the special requirements of an alignment mechanism on a satellite, which has to meet the starting conditions attached to a launch vehicle, a starting position is provided according to the invention in which the alignment mechanism is blocked in a defined manner (English: launch lock).
According to the invention, this is achieved by internally bracing the individual legs.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnungen erläutert. Es zeigen:

  • Figur 1 schematische Darstellung einer Hexapodstruktur und
  • Figur 2 Schnitt durch ein Bein des Hexapods.
An embodiment of the invention is explained with reference to the drawings. Show it:
  • Figure 1 is a schematic representation of a hexapod structure and
  • Figure 2 section through one leg of the hexapod.

Eine erfindungsgemäße Anordnung, wie sie beispielsweise auf einer Satellitenplattform 2 montiert sein könnte, ist in Figur 1 dargestellt. Ein Teleskop 1 ist über einen Rotations- und Umlenkmechanismus 5 auf einer starren Trägerplatte 10 befestigt. Der Grundriß der Trägerplatte 10 entspricht einem gleichseitigen Sechseck. Unterhalb der Trägerplatte ist eine optische Bank 3 befestigt. An den sechs Ecken der Trägerplatte ist jeweils ein Ende eines Beines 6 befestigt. Die sechs Beine sind in der Länge regulierbar. Sie sind jeweils über ein Kugelgelenk mit der Trägerplatte 10 befestigt. Am anderen Ende sind die Beine 6 jeweils paarweise zusammengefaßt und über Kugelgelenke mit der Satellitenplattform 2, die die Grundfläche bildet, verbunden. Die sechs in der Länge regulierbaren Beine bilden das Hexapodgestell. Der Aufbau der einzelnen Beine ist aus Figur 2 ersichtlich. Auf der Satellitenplattform 2 sind neben den Beinen des Hexapodgestells auch noch weitere Baueinheiten 4 vorgesehen. Auf der Satellitenplattform entsprechen die Befestigungspunkte der Beine 6 den Ecken eines gleichseitigen Dreiecks. Indem man die Länge aller Beine 6 des Hexapodgestells ändert, kann das Teleskop 1 ausgefahren werden. Die Ausrichtung des Teleskops kann ebenfalls durch Veränderung der Länge der sechs Beine des Hexapodgestells erreicht werden. Wie die Länge der Beine verändert werden kann, ist in Figur 2 dargestellt. Ein Bein 6 besteht aus einem inneren Rohr 8 und einem äußeren Rohr 9. Das innere Rohr kann bezüglich des äußeren Rohrs durch piezoelektrische Linearmotoren 11 bewegt werden. Diese sind am äußeren Rohr befestigt und bewegen sich auf der glatten genau bearbeiteten Außenfläche des inneren Rohrs 8. An den Enden der Beine 6 befindet sich jeweils ein Kugelgelenk 7. Über diese Kugelgelenke sind die Beine auf der einen Seite mit der Satellitenplattform 2 und auf der anderen Seite mit der Trägerplatte 10, die das Teleskop 1 trägt, verbunden. Das innere Rohr 8 der Beine, auf dessen Außenfläche sich die piezoelektrischen Linearmotoren, auch Inchworm-Motoren genannt, bewegen, ist vorteilhafter Weise ein PEEK-Rohr und weist eine sehr gute Gleitfläche auf.
Am unteren Ende befindet sich eine Anschlagscheibe 14 für das äußere Rohr 9. Während des Startvorgangs der Trägerrakete wird das äußere Rohr 9 gegen die Anschlagscheibe 14 mittels der piezoelektrischen Linearmotore verspannt. Dadurch wird eine wesentlich erhöhte Festigkeit der Gesamtstruktur während des Startvorganges erreicht. Dabei kann die Oberfläche der Anschlagscheibe 14 beispielsweise mit Stahlwolle beschichtet sein, um hohe Dämpfung, Friktion und Elastizität zu sichern.
An arrangement according to the invention, such as could be mounted on a satellite platform 2, is shown in FIG. 1. A telescope 1 is attached to a rigid support plate 10 via a rotation and deflection mechanism 5. The outline of the carrier plate 10 corresponds to an equilateral hexagon. An optical bench 3 is attached below the carrier plate. One end of a leg 6 is attached to each of the six corners of the carrier plate. The six legs are adjustable in length. They are each attached to the carrier plate 10 via a ball joint. At the other end, the legs 6 are combined in pairs and via ball joints with the satellite platform 2, which Base area forms, connected. The six adjustable legs form the hexapod frame. The structure of the individual legs can be seen in Figure 2. In addition to the legs of the hexapod frame, further structural units 4 are also provided on the satellite platform 2. On the satellite platform, the attachment points of the legs 6 correspond to the corners of an equilateral triangle. By changing the length of all the legs 6 of the hexapod frame, the telescope 1 can be extended. Alignment of the telescope can also be achieved by changing the length of the six legs of the hexapod frame. Figure 2 shows how the length of the legs can be changed. A leg 6 consists of an inner tube 8 and an outer tube 9. The inner tube can be moved with respect to the outer tube by piezoelectric linear motors 11. These are attached to the outer tube and move on the smooth, precisely machined outer surface of the inner tube 8. At each end of the legs 6 there is a ball joint 7. Via these ball joints, the legs are on one side with the satellite platform 2 and on the other side connected to the support plate 10 which carries the telescope 1. The inner tube 8 of the legs, on the outer surface of which the piezoelectric linear motors, also called inchworm motors, move, is advantageously a PEEK tube and has a very good sliding surface.
At the lower end there is a stop disk 14 for the outer tube 9. During the starting process of the launch vehicle, the outer tube 9 is braced against the stop disk 14 by means of the piezoelectric linear motors. As a result, a significantly increased strength of the overall structure is achieved during the starting process. The surface of the stop disk 14 can be coated with steel wool, for example, in order to ensure high damping, friction and elasticity.

Claims (3)

Anordnung zum Stützen und Ausrichten von Antennen oder Teleskopen, insbesondere für Weltraumanwendungen, mit einem Gestell in Form eines Hexapods, das sich aus sechs in der Länge regulierbaren Beinen (6) zusammensetzt, deren Enden mit Kugelgelenken (7,7') ausgestattet sind, die auf einer Seite jeweils paarweise an den Ecken eines Dreiecks auf einer Grundfläche (2) befestigt sind und die auf der dem Teleskop oder der Antenne zugewandten Seite ebenfalls paarweise an den Ecken eines Dreiecks oder einzeln an den Ecken eines Sechsecks an einer starren Trägerplatte (10) befestigt sind, wobei das Gestell als Ausfahreinheit zum Ausfahren des Teleskops (1) oder der Antenne aus einer ersten, der Grundfläche (2) nahen in eine zweite, der Grundfläche (2) ferne Stellung ausgebildet ist, dadurch gekennzeichnet, daß zur Längenregulierung der Beine (6) des Gestells piezoelektrische Linearmotoren (11) angeordnet sind, die ein inneres Rohr (8) gegenüber einem äußeren Rohr (9) bewegen.Arrangement for supporting and aligning antennas or telescopes, in particular for space applications, with a frame in the form of a hexapod, which is composed of six legs (6) which can be adjusted in length, the ends of which are equipped with ball joints (7, 7 ') which are fastened in pairs on one side to the corners of a triangle on a base area (2) and those on the side facing the telescope or the antenna are also in pairs at the corners of a triangle or individually at the corners of a hexagon on a rigid support plate (10) are attached, the frame being designed as an extension unit for extending the telescope (1) or the antenna from a first position close to the base surface (2) into a second position remote from the base surface (2), characterized in that for length adjustment of the legs (6) of the frame piezoelectric linear motors (11) are arranged, which move an inner tube (8) relative to an outer tube (9). Anordnung zum Stützen und Ausrichten von Antennen oder Teleskopen nach Anspruch 1, dadurch gekennzeichnet, daß das innere Rohr (8) eine sehr genau bearbeitete Außenfläche aufweist und somit eine gute Gleitfläche für die piezoelektrische Linearmotoren (11) ist, die an dem äußeren Rohr (9) befestigt sind.Arrangement for supporting and aligning antennas or telescopes according to claim 1, characterized in that the inner tube (8) has a very precisely machined outer surface and is therefore a good sliding surface for the piezoelectric linear motors (11) which is attached to the outer tube (9 ) are attached. Anordnung zum Stützen und Ausrichten von Antennen nach Anspruch 1, dadurch gekennzeichnet, daß eine Verspannung des äußeren Rohres (9) gegen eine am unteren Ende des inneren Rohres (8) befindliche Anschlagscheibe (14) vorgesehen ist, die im eingefahrenen Zustand der Anordnung wirksam ist.Arrangement for supporting and aligning antennas according to claim 1, characterized in that a tensioning of the outer tube (9) against a stop disc (14) located at the lower end of the inner tube (8) is provided, which is effective when the arrangement is retracted .
EP92107916A 1991-05-29 1992-05-12 Support and pointing arrangement for antennes or telescopes Expired - Lifetime EP0515888B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4117538A DE4117538C1 (en) 1991-05-29 1991-05-29
DE4117538 1991-05-29

Publications (2)

Publication Number Publication Date
EP0515888A1 true EP0515888A1 (en) 1992-12-02
EP0515888B1 EP0515888B1 (en) 1995-08-09

Family

ID=6432690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92107916A Expired - Lifetime EP0515888B1 (en) 1991-05-29 1992-05-12 Support and pointing arrangement for antennes or telescopes

Country Status (3)

Country Link
EP (1) EP0515888B1 (en)
DE (2) DE4117538C1 (en)
ES (1) ES2077288T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012806A1 (en) * 1995-10-04 1997-04-10 Österreichische Raumfahrt- Und Systemtechnik Gesellschaft Mbh Drive unit for adjusting satellite components requiring orientation
CN1079042C (en) * 1997-09-19 2002-02-13 中国科学院沈阳自动化研究所 Parallel mechanism of parallel structure numerical control machine tool
WO2002097920A1 (en) * 2001-05-31 2002-12-05 In-Snec Method for orienting a hexapod turret
US7982951B1 (en) 2010-11-08 2011-07-19 Robert Innes Digital tracking platform for telescopes
CN102211748A (en) * 2010-04-08 2011-10-12 岜公司 Hexapod platform and jack that can be used in the hexapod platform

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773890B1 (en) * 1998-01-22 2001-11-23 Aerospatiale INTEGRATED AND COMPACT ASSEMBLY OF ISOSTATIC MOUNTING AND CORRECTION OF POSITION OF AN ORGAN, SUCH AS A MIRROR, OF A SPATIAL TELESCOPE
DE19961774A1 (en) * 1999-12-21 2001-07-12 Bosch Gmbh Robert Device for setting a directional beam system
DE10109343C2 (en) * 2001-02-27 2003-01-30 Siemens Ag Antenna arrangement with at least two antenna elements or with a deformable antenna element
ES2231026A1 (en) * 2003-10-27 2005-05-01 Ramem, S.A. Hexapod type positioner for solar tracking of solar concentrators
CN104090359A (en) * 2014-07-10 2014-10-08 中国科学院国家天文台南京天文光学技术研究所 Five-freedom-degree auxiliary lens adjusting mechanism of astronomical telescope working in extreme environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229941A (en) * 1962-06-04 1966-01-18 Suliteanu Menahem Antenna support
US3902084A (en) * 1974-05-30 1975-08-26 Burleigh Instr Piezoelectric electromechanical translation apparatus
EP0266026A1 (en) * 1986-08-01 1988-05-04 HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research Tracking antenna mount

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902085A (en) * 1974-11-25 1975-08-26 Burleigh Instr Electromechanical translation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229941A (en) * 1962-06-04 1966-01-18 Suliteanu Menahem Antenna support
US3902084A (en) * 1974-05-30 1975-08-26 Burleigh Instr Piezoelectric electromechanical translation apparatus
EP0266026A1 (en) * 1986-08-01 1988-05-04 HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research Tracking antenna mount

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012806A1 (en) * 1995-10-04 1997-04-10 Österreichische Raumfahrt- Und Systemtechnik Gesellschaft Mbh Drive unit for adjusting satellite components requiring orientation
US6025815A (en) * 1995-10-04 2000-02-15 Austrian Aerospace Ges.M.B.H. Drive unit for adjusting satellite components requiring orientation
CN1079042C (en) * 1997-09-19 2002-02-13 中国科学院沈阳自动化研究所 Parallel mechanism of parallel structure numerical control machine tool
WO2002097920A1 (en) * 2001-05-31 2002-12-05 In-Snec Method for orienting a hexapod turret
FR2825445A1 (en) 2001-05-31 2002-12-06 Innovation Technologie Conseil METHOD FOR ORIENTING A HEXAPODE TURRET
KR100880290B1 (en) * 2001-05-31 2009-01-23 인-스넥 Method for orienting a hexapod turret
CN102211748A (en) * 2010-04-08 2011-10-12 岜公司 Hexapod platform and jack that can be used in the hexapod platform
US7982951B1 (en) 2010-11-08 2011-07-19 Robert Innes Digital tracking platform for telescopes

Also Published As

Publication number Publication date
DE59203178D1 (en) 1995-09-14
DE4117538C1 (en) 1992-07-09
EP0515888B1 (en) 1995-08-09
ES2077288T3 (en) 1995-11-16

Similar Documents

Publication Publication Date Title
DE3333951C2 (en)
DE3125746C2 (en) Screw differential actuator
DE3444265C2 (en)
EP0515888B1 (en) Support and pointing arrangement for antennes or telescopes
EP2143960A1 (en) Device for holding a bearing system
DE3332416A1 (en) ALIGNMENT MIRROR WITH STABILIZING DEVICE
DE60213570T2 (en) DEVICE FOR MOUNTING AND ADJUSTMENT OF A COMPONENT
EP0561190A1 (en) Telescope mirror with adjustable form
EP1191303B1 (en) Armoured vehicle, in particular fighting vehicle
EP1574808B1 (en) Telescopic sight
EP1348091A1 (en) Balanced camera tripod head
DE102020000669A1 (en) Alignment platform, sensor system, aircraft and method for operating an alignment platform
EP0357940A1 (en) Equilibrating device for a gun, especially a heavy-calibre gun
DE2903804C2 (en) Edge support system for telescope mirrors
AT507213B1 (en) DRIVE DEVICE FOR ADJUSTING ORIENTED COMPONENTS OF A SPACE VEHICLE
EP0449001B1 (en) Frictionless universal joint with absence of play
DE60201429T2 (en) MOUNTING AND ADJUSTMENT DEVICE SET UP IN THE SHADE OF A MIRROR FOR THIS MIRROR AND OPTICAL SYSTEM THAT HAS SUCH A MECHANISM
DE3212414A1 (en) CONTINUOUS FRAME FOR A CONTINUOUS CASTING SYSTEM
DE19501600A1 (en) Support esp. for tracked vehicles
EP0203362B1 (en) Table or the like adjustable in height
DE19539581B4 (en) Universal joint with spring four joints
WO1998013714A1 (en) Mounting for an astronomic mirror
DD147252A5 (en) TILT CONVERTER
DE8511729U1 (en) Joint element for manipulators
DE10027202A1 (en) Gear unit for adjusting angle between two parts has gear wheel segment in seat fitting engaging first segment on back rest and carrying rocker bolt protruding into groove in rotary disc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19921109

17Q First examination report despatched

Effective date: 19941121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59203178

Country of ref document: DE

Date of ref document: 19950914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077288

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951024

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020625

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110603

Year of fee payment: 20

Ref country code: ES

Payment date: 20110524

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110527

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20121207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120513