EP0514255A1 - Source d'ions à résonance cyclotronique électronique - Google Patents

Source d'ions à résonance cyclotronique électronique Download PDF

Info

Publication number
EP0514255A1
EP0514255A1 EP92401292A EP92401292A EP0514255A1 EP 0514255 A1 EP0514255 A1 EP 0514255A1 EP 92401292 A EP92401292 A EP 92401292A EP 92401292 A EP92401292 A EP 92401292A EP 0514255 A1 EP0514255 A1 EP 0514255A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
source
point
resonance
cyclotron resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92401292A
Other languages
German (de)
English (en)
Other versions
EP0514255B1 (fr
Inventor
Bernard Jacquot
Marc Delaunay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0514255A1 publication Critical patent/EP0514255A1/fr
Application granted granted Critical
Publication of EP0514255B1 publication Critical patent/EP0514255B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the present invention relates to an improvement of an ion source with electronic cyclotron resonance (ECR) allowing, in particular the production of multicharged ions.
  • ECR electronic cyclotron resonance
  • the ions are obtained by ionization, in a closed enclosure, such as a microwave cavity, of a gaseous medium consisting of one or more gases or metallic vapors, by means of electrons strongly accelerated by electronic cyclotron resonance.
  • HF high frequency electromagnetic field
  • the quantity of ions that can be produced results from the competition between two processes: on the one hand the formation of ions by electronic impact on neutral atoms constituting the gas to be ionized and, on the other hand, the destruction of these same ions by recombination, single or multiple, during a collision of the latter with a neutral atom; this neutral atom can come from the gas not yet ionized or else be produced on the walls of the enclosure by impact of an ion on said walls.
  • This drawback is avoided by confining, in the enclosure constituting the source, the ions formed, as well as the electrons used for their ionization.
  • This is achieved by creating inside the enclosure radial and axial magnetic fields, defining a so-called "equimagnetic" surface, having no contact with the walls of the enclosure and on which the condition of electronic cyclotron resonance is satisfied.
  • This surface has the shape of a rugby ball. The closer this equimagnetic surface is to the walls of the enclosure, the greater its efficiency because it makes it possible to limit the volume of presence of neutral atoms and therefore the amount of collisions between ions and neutral atoms.
  • This surface also makes it possible to confine the ions and the electrons produced by ionization of the gas. Thanks to this confinement, the electrons created have the time to bombard the same ion several times and fully ionize it.
  • FIG. 1 there is shown schematically an ion source according to the prior art.
  • This source includes an enclosure 1 constituting a resonant cavity which can be excited by a high frequency electromagnetic field (HF).
  • HF high frequency electromagnetic field
  • This electromagnetic field is produced by a generator 3 of electromagnetic waves; it is introduced inside the enclosure 1 via a waveguide 5 and a transition cavity 20.
  • This source also includes an externally shielded magnetic structure (7, 9, 11), the shielding 11 of which makes it possible to magnetize only the volume useful for electronic cyclotron resonance in the enclosure 1.
  • This magnetic structure comprises, in addition to the shielding 11, permanent magnets 7 and solenoids 9, arranged around the enclosure 1 and respectively creating a radial magnetic field and an axial magnetic field. These two magnetic fields are superimposed and distributed throughout the enclosure; they thus form a resulting magnetic field which defines a resonant equimagnetic surface 13 inside the enclosure 1.
  • First and second dielectric lines 23 connect the opening 19 of the shield 11 to respective openings 25 and 27 of the transition cavity 20, these openings being located on the lateral faces of the cavity 20 which has the shape of a cube .
  • the ratio of the diameters of these two pipes 21, 23 is such that it is possible to assimilate the latter to a coaxial line of characteristic impedance of the order of 85 ⁇ .
  • a coaxial line preferably propagates an electromagnetic Transverse Electro-Magnetic (TEM) mode in which the electromagnetic field is transverse to the direction of propagation of the waves and perpendicular to the surface of the conductors, that is to say pipes 21, 23.
  • TEM Transverse Electro-Magnetic
  • said gas is introduced into the enclosure 1 via a gas pipeline 30 connected to the opening 27 of the transition cavity 20.
  • the gas and the electromagnetic waves introduced into the cavity 20 are transmitted to enclosure 1 by the first and second pipes 21 and 23, the role of which is to enable said waves to be transmitted to said enclosure and to inject them there along the longitudinal axis 15.
  • enclosure 1 the combination of the axial magnetic field and the electromagnetic field makes it possible to strongly ionize the gas introduced.
  • the electrons produced are then strongly accelerated by electronic cyclotron resonance, which leads to the formation of a plasma of hot electrons confined in the volume limited by the equimagnetic surface 13.
  • the ions then formed in enclosure 1 are extracted therefrom by an electric extraction field generated by a potential difference applied between an electrode 31 and enclosure 1.
  • the electrode 31 and enclosure 1 are all two connected to a source 33 of electrical supply, the electrode 31 being positioned outside the opening 17 of the enclosure 1.
  • a pulse generator 35 itself located upstream of a power source 37 connected to the generator d 'electromagnetic waves.
  • Said pulse generator 35 controls said power source 37 by adjusting the useful cycle, namely the ratio between the duration of a pulse and the period of the pulses.
  • means 39 for measuring total pressure are connected to an input of a comparator 41, the output of which is itself connected to a valve 43 of the gas pipe 30.
  • a comparator 41 On a second input of comparator 41, a reference voltage R is applied and compared with the measured value of the ion current to give, at the output of the comparator, the value to be transmitted to valve 43.
  • This valve 43 acts on the quantity of gas to be introduced into enclosure 1, so as to automatically regulate the ion current.
  • an adaptation piston 45 connected to a third lateral opening 29 of the cavity 20, makes it possible to adjust the internal volume of said cavity 20.
  • the adjustment of said piston 45 is used to tune all of the internal volumes of the cavity 20 on the frequency of the electromagnetic waves in order to obtain a minimum of reflected waves, that is to say waves which return to the wave generator 3.
  • these internal volumes are tuned to the frequency of the electromagnetic waves , the waves injected into the cavity 20 by the generator 3 are almost completely transmitted, via the pipes 21 and 23, to the enclosure 1 containing the plasma, then absorbed by the equimagnetic surface 13.
  • the second pipe 23 is transparent to electromagnetic waves at its end 23a, end close to the opening 19 of the enclosure 1, located opposite the shielding 11.
  • this transparent part 23a there is an axial magnetic field from the solenoids, an electromagnetic field and a high gas pressure.
  • the electromagnetic field comes from electromagnetic waves transmitted between the first pipe 21 and a non-transparent part 23b of the second pipe 23, and which pass through the transparent part 23a of the second pipe 23. Therefore, an electronic cyclotronic resonance can take place at inside the end 23a of the second pipe 23 in a volume where there is a high gas pressure.
  • the denser the plasma produced by electronic cyclotron resonance inside the end 23a the better the transmission of electromagnetic waves, this dense plasma cord itself becoming conductive.
  • this plasma cord has the same outside diameter as the part 23b of the second pipe. The characteristic impedance of the coaxial line is therefore not modified, which makes it possible to avoid the reflection of electromagnetic waves.
  • This end transparent to electromagnetic waves therefore constitutes a self-regulated pre-ionization stage, where the excess of incident power of the electromagnetic waves is transmitted without reflection to the zone of electronic cyclotron resonance formed by the equimagnetic surface 13.
  • the subject of the present invention is precisely a source of RCE ions comprising a device making it possible to rationally optimize said source.
  • the means for moving the resonance point comprise a tubular part placed around the second pipe at the level of the transparent part and capable of being translated parallel to the pipes.
  • the tubular part comprises, on its external peripheral part, a thread so as to form, with the shielding, a screw / nut system.
  • the points A and B represent the ends of the equimagnetic surface 13, also called closed resonant surface, located in the confining plasma.
  • the point C is located in the second dielectric line 23, in the preionization plasma, that is to say at the level of the shielding 11 magnetic, said shielding 11 causing the sudden drop in magnetic induction.
  • the part of the pipes 21, 23 located at the level of the shield 11 is an area of strong magnetic gradient, that is to say an area where the magnetic induction varies greatly.
  • the RCE resonance is optimized at point C, when the electric field reaches its maximum value, that it is perpendicular to the resonant induction field and that it is on a cylinder of small radius, that is to say on the second pipe 23 of small radius.
  • the preionization plasma created in the dielectric lines 21, 23 is so dense that it becomes practically conductive, flourishing up to the equimagnetic surface 13, thus reaching point B.
  • This equimagnetic surface 13 also contains a dense plasma which is capable of absorbing and reflecting electromagnetic waves, thus making said surface 13 semi-conductive, from point B to point A.
  • the RCE ion source behaves like a coaxial line up to point A of the magnetic axis 15. This open line is then the seat of standing waves between point A and piston 45.
  • the distances between two points A and B, B and C, or C and A are equal to an integer (n or m) of times the half-wavelength ⁇ of the electromagnetic waves introduced into the source.
  • Figure 3 is a schematic representation of the ion source comprising the device according to the invention for optimizing the position of points A, B and C.
  • the RCE source represented in FIG. 3 is the same as the RCE source of the prior art, to which the optimization device of the invention has been added, said RCE source having been described at the beginning of the description. All the elements, cited during the description of Figure 1, retain the same references in Figure 3, which will be described.
  • the device for optimizing an RCE source is shown in FIG. 4. It consists of a tubular piece 47, also called a magnetic screw, this screw 47 being placed around the first pipe 21, with a clearance of approximately 0.5 mm, in order to avoid any friction with said pipe 21, when the latter is moved in translation relative to the shield 11.
  • This tubular part 47 of the same thickness as the shield 11, comprises, on its periphery, a thread 47a suitable to be screwed onto the threaded part (11a) of the shielding 11.
  • the screwing / unscrewing of the magnetic screw 47 on the shielding 11 ensures the displacement of said magnetic screw 47.
  • This magnetic screw 47 is made of iron. Therefore, there is a strong magnetic gradient at the level of the shielding which makes it possible to act on the position of the point C of resonance. In fact, point C almost follows the movement of said tubular part 47 relative to the shield 11.
  • the displacement of the tubular part 47 is carried out using a special tool provided with two nipples which come to engage in two of the four holes 47b included in the tubular part 47. These four holes 47b are regularly distributed over the outer surface of the magnetic screw 47 and are each on an axis parallel to the magnetic axis 15.
  • the special tool provided with its two pins comes s '' Engage in two diametrically opposite holes, thus making it possible to turn the screw 47.
  • the translation of the magnetic screw 47 is carried out in the absence of a magnetic field, that is to say when the RCE source is stopped. In the presence of the magnetic field created by the solenoids 9, an interaction is established between the magnetic screw 47 and the shielding 11. In fact, a large magnetic force then opposes the translation of the screw 47, the thread 47a of the screw 47 then pressing strongly on the thread 11a of the shield 11 thus ensuring magnetic continuity in the shield of the RCE source.
  • the optimum electric field at point C is obtained, at high gas pressure, so as to optimize the source on low states of ionic charge. This optimum is assessed by adjusting the screw 47 on the one hand and the position of the piston 45 on the other hand. There is then a first position of the point C. According to prior knowledge of the axial magnetic profile of the RCE source, the points A and B are positioned by adjusting the intensity of the current in the two solenoids 9, this intensity being controlled by external power supplies which provide, for example, a current varying from 0 to 1000 amps.
  • the diameter of the enclosure 1 is approximately 6 centimeters and the wavelength ⁇ of the waves introduced is three centimeters, ie a frequency f of 10 GHz.
  • the wavelength ⁇ of the waves introduced is three centimeters, ie a frequency f of 10 GHz.
  • all of the adjustments must be made for an electromagnetic wave power of less than 100 Watts.
  • a knowledgeable experimenter is able to optimize this source in five or six operations, that is to say in a few minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Dispositif pour optimiser une source d'ions à résonance cyclotronique électronique (RCE).
L'invention consiste à ajouter, à une source RCE classique, des moyens de déplacement du point de résonance C qui apparaît dans la canalisation diélectrique 23 lorsque la source est en action. Le réglage de façon optimale de la position du point C assure un positionnement optimal des points A et B de la surface équimagnétique 13, ces points A et B étant dépendants du point C.
Ces moyens de déplacement comportent une vis magnétique 47 filetée sur sa périphérie afin de former un système vis/écrou avec le blindage 11 de la source RCE.
Ce dispositif trouve de nombreuses applications notamment dans l'équipement des accélérateurs de particules utilisés dans les domaines scientifique et médical.

Description

  • La présente invention concerne une amélioration d'une source d'ions à résonance cyclotronique électronique (RCE) permettant, notamment la production d'ions multichargés.
  • Elle trouve de nombreuses applications en fonction des différentes valeurs de l'énergie cinétique des ions produits, dans le domaine de l'implantation ionique, de la microgravure, et plus particulièrement dans l'équipement des accélérateurs de particules utilisés aussi bien dans le domaine scientifique que médical.
  • Dans les sources d'ions à résonance cyclotronique électronique, les ions sont obtenus par ionisation, dans une enceinte fermée, telle qu'une cavité hyperfréquence, d'un milieu gazeux constitué d'un ou plusieurs gaz ou de vapeurs métalliques, au moyen d'électrons fortement accélérés par résonance cyclotronique électronique. Cette résonance est obtenue grâce à l'action conjuguée d'un champ électromagnétique haute fréquence (HF) injecté dans l'enceinte, contenant le gaz à ioniser, et d'un champ magnétique, régnant dans cette même enceinte, dont l'amplitude B satisfait à la condition de résonance cyclotronique électronique suivante : B = f.2 π m/e,
    Figure imgb0001

    dans laquelle e représente la charge de l'électron, m sa masse et f la fréquence du champ électromagnétique.
  • Dans ces sources, la quantité d'ions pouvant être produite résulte de la compétition entre deux processus : d'une part la formation des ions par impact électronique sur des atomes neutres constituant le gaz à ioniser et, d'autre part, la destruction de ces mêmes ions par recombinaison, simple ou multiple, lors d'une collision de ces derniers avec un atome neutre ; cet atome neutre peut provenir du gaz non encore ionisé ou bien être produit sur les parois de l'enceinte par impact d'un ion sur lesdites parois.
  • Cet inconvénient est évité en confinant, dans l'enceinte constituant la source, les ions formés, ainsi que les électrons servant à leur ionisation. Ceci est réalisé en créant à l'intérieur de l'enceinte des champs magnétiques radial et axial, définissant une surface dite "équimagnétique", n'ayant aucun contact avec les parois de l'enceinte et sur laquelle la condition de résonance cyclotronique électronique est satisfaite. Cette surface a la forme d'un ballon de rugby. Plus cette surface équimagnétique est proche des parois de l'enceinte, plus son efficacité est grande car elle permet de limiter le volume de présence des atomes neutres et donc la quantité de collisions ions-atomes neutres. Cette surface permet aussi de confiner les ions et les électrons produits par ionisation du gaz. Grâce à ce confinement, les électrons créés ont le temps de bombarder plusieurs fois un même ion et de l'ioniser totalement.
  • Une telle sorte d'ions a été décrite dans le document déposé le 13 mars 1986, au nom du demandeur et publié sous le numéro FR-A-2 595 868.
  • Sur la figure 1, on a représenté schématiquement une source d'ions, selon l'art antérieur. Cette source comprend un enceinte 1 constituant une cavité résonante pouvant être excitée par un champ électromagnétique haute fréquence (HF). Ce champ électromagnétique est produit par un générateur 3 d'ondes électromagnétiques ; il est introduit à l'intérieur de l'enceinte 1 par l'intermédiaire d'un guide d'ondes 5 et d'une cavité de transition 20.
  • Cette source comprend également une structure magnétique (7, 9, 11) blindée extérieurement, dont le blindage 11 permet de ne magnétiser que le volume utile à la résonance cyclotronique électronique dans l'enceinte 1.
  • Cette structure magnétique comprend, outre le blindage 11, des aimants permanents 7 et des solénoïdes 9, disposés autour de l'enceinte 1 et créant respectivement un champ magnétique radial et un champ magnétique axial. Ces deux champs magnétiques se superposent et se répartissent dans toute l'enceinte ; ils forment ainsi un champ magnétique résultant qui définit une surface équimagnétique résonante 13 à l'intérieur de l'enceinte 1.
  • Un axe magnétique 15, qui est également l'axe longitudinal de la source, traverse le blindage 11 par deux ouvertures 17 et 19, aménagées dans ledit blindage 11 pour permettre respectivement l'extraction des ions de l'enceinte 1, ainsi que l'introduction d'ondes électromagnétiques et d'échantillons gazeux ou solides.
  • Une première et une seconde canalisations diélectriques 23 relient l'ouverture 19 du blindage 11 à des ouvertures respectives 25 et 27 de la cavité de transition 20, ces ouvertures étant situées sur les faces latérales de la cavité 20 qui a la forme d'un cube.
  • Le rapport des diamètres de ces deux canalisations 21, 23 est tel qu'il est possible d'assimiler ces dernières à une ligne coaxiale d'impédance caractéristique de l'ordre de 85 Ω . Une telle ligne coaxiale propage préférentiellement un mode électromagnétique Transverse Electro-Magnétique (TEM) dans lequel le champ électromagnétique
    Figure imgb0002
    est transverse à la direction de propagation des ondes et perpendiculaire à la surface des conducteurs, c'est-à-dire des canalisations 21, 23.
  • Pour ioniser un gaz, on introduit ledit gaz dans l'enceinte 1 par l'intermédiaire d'une canalisation 30 de gaz reliée à l'ouverture 27 de la cavité de transition 20. Le gaz et les ondes électromagnétiques introduits dans la cavité 20 sont transmis à l'enceinte 1 par les première et seconde canalisations 21 et 23, dont le rôle est de permettre de transmettre lesdites ondes vers ladite enceinte et de les y injecter suivant l'axe longitudinal 15.
  • Dans l'enceinte 1, l'association du champ magnétique axial et du champ électromagnétique permet d'ioniser fortement le gaz introduit. Les électrons produits sont alors fortement accélérés par résonance cyclotronique électronique, ce qui conduit à la formation d'un plasma d'électrons chauds confinés dans le volume limité par la surface équimagnétique 13.
  • Les ions alors formés dans l'enceinte 1 sont extraits de celle-ci par un champ électrique d'extraction généré par une différence de potentiel appliquée entre une électrode 31 et l'enceinte 1. l'électrode 31 et l'enceinte 1 sont toutes deux reliées à une source 33 d'alimentation électrique, l'électrode 31 étant positionnée à l'extérieur de l'ouverture 17 de l'enceinte 1.
  • Pour contrôler l'intensité du courant d'ions, il est possible de contrôler la puissance moyenne du champ électromagnétique en agissant sur un générateur d'impulsions 35, lui-même situé en amont d'une source d'alimentation 37 reliée au générateur d'ondes électromagnétiques. Ledit générateur d'impulsions 35 commande ladite source d'alimentation 37 en ajustant le cycle utile, à savoir le rapport entre la durée d'une impulsion et la période des impulsions.
  • De plus, des moyens 39 de mesure de pression totale sont reliés à une entrée d'un comparateur 41, dont la sortie est elle-même relié à une vanne 43 de la canalisation 30 de gaz. Sur une seconde entrée du comparateur 41, une tension de référence R est appliquée et comparée à la valeur mesurée du courant d'ions pour donner, en sortie du comparateur la valeur à transmettre à la vanne 43. Cette vanne 43 permet d'agir sur la quantité de gaz à introduire dans l'enceinte 1, de façon à réguler automatiquement le courant d'ions.
  • De plus, un piston 45 d'adaptation, relié à une troisième ouverture latérale 29 de la cavité 20, permet de régler le volume interne de ladite cavité 20. Le réglage dudit piston 45 est utilisé pour accorder l'ensemble des volumes internes de la cavité 20 sur la fréquence des ondes électromagnétiques afin d'obtenir un minimum d'ondes réfléchies, c'est-à-dire d'ondes qui retournent au générateur d'ondes 3. Lorsque ces volumes internes sont accordés sur la fréquence des ondes électromagnétiques, les ondes injectées dans la cavité 20 par le générateur 3 sont presque totalement transmises, par les canalisations 21 et 23, à l'enceinte 1 contenant le plasma, puis absorbées par la surface équimagnétique 13.
  • Dans cette source d'ions de l'art antérieur, la seconde canalisation 23 est transparente aux ondes électromagnétiques à son extrémité 23a, extrémité voisine de l'ouverture 19 de l'enceinte 1, située en regard du blindage 11.
  • Dans le volume intérieur de cette partie transparente 23a, règne un champ magnétique axial provenant des solénoides, un champ électromagnétique et une pression de gaz élevée. Le champ électromagnétique provient des ondes électromagnétiques transmises entre la première canalisation 21 et une partie non transparente 23b de la seconde canalisation 23, et qui traversent la partie transparente 23a de la seconde canalisation 23. De ce fait, une résonance cyclotronique électronique peut avoir lieu à l'intérieur de l'extrémité 23a de la seconde canalisation 23 dans un volume où règne une forte pression de gaz . Plus le plasma produit par résonance cyclotronique électronique est dense à l'intérieur de l'extrémité 23a, plus la transmission des ondes électromagnétiques est bonne, ce cordon de plasma dense devenant lui-même conducteur. De plus, ce cordon de plasma a le même diamètre extérieur que la partie 23b de la deuxième canalisation. L'impédance caractéristique de la ligne coaxiale n'est donc pas modifiée, ce qui permet d'éviter la réflexion des ondes électromagnétiques.
  • Cette extrémité transparente aux ondes électromagnétiques constitue donc un étage de pré-ionisation auto-régulé, où l'excèdent de puissance incidente des ondes électromagnétiques est transmis sans réflexion jusqu'à la zone de résonance cyclotronique électronique constituée par la surface équimagnétique 13.
  • Ainsi, pour optimiser une source d'ions, telle que décrite dans l'art antérieur, il faut d'une part, régler le volume de la cavité de transition 20 en agissant sur le piston 45 d'adaptation et, d'autre part, régler l'intensité du courant dans les solénoïdes 9. Ces réglages, mêmes effectués par un expérimentateur averti, peuvent être très longs : ils peuvent durer des heures, voire des jours sans pour autant conduire forcément à l'optimum de performance de la source. En effet, ces réglages n'obéissent à aucune règle connue et utilisée pour optimiser la source d'ions.
  • La présente invention a justement pour objet une source d'ions RCE comportant un dispositif permettant d'optimiser rationnellement ladite source.
  • De façon plus précise, l'invention a pour objet un dispositif pour optimiser une source d'ions à résonance cyclotronique électronique comprenant :
    • une enceinte contenant un plasma d'ions et d'électrons formés par résonance cyclotronique électronique ;
    • une structure magnétique comportant un blindage extérieur, ladite structure entourant l'enceinte et créant à l'intérieur de celle-ci deux champs magnétiques radial et axial assurant un confinement du plasma dans l'enceinte ;
    • une cavité de transition reliée à un générateur d'ondes électromagnétiques ; et
    • une première et une seconde canalisations diélectriques reliant l'enceinte et la cavité, la seconde canalisation comportant une partie transparente en regard du blindage dans laquelle se produit une résonance en un point déterminé C,

    caractérisé en ce qu'il comporte des moyens de déplacement du point de résonance afin de régler de façon optimale la position dudit point de résonance dans la seconde canalisation diélectrique.
  • Avantageusement, les moyens de déplacement du point de résonance comportent une pièce tubulaire placée autour de la seconde canalisation au niveau de la partie transparente et apte à être translatée parallèlement aux canalisations.
  • Selon un mode de réalisation préféré de l'invention, la pièce tubulaire comporte, sur sa partie périphérique extérieure, un filetage de façon à former, avec le blindage, un système vis/écrou.
  • D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif, mais non limitatif, en référence aux dessins dans lesquels :
    • la figure 1, déjà décrite, représente schématiquement une source d'ions RCE selon l'art antérieur ;
    • la figure 2 représente un schéma électrique créé à l'intérieur de la source d'ions lorsque ladite source est optimisée ;
    • la figure 3 représente schématiquement une source d'ions RCE optimisée selon l'invention.
    • la figure 4 représente schématiquement le dispositif inventé pour optimiser la source RCE de la figure 1.
  • Sur une ligne coaxiale, telle que décrite précédemment, sur laquelle se propage le mode électromagnétique TEM, il existe généralement des ondes stationnaires dues à la réflexion de l'onde propagée. Pour le champ électrique
    Figure imgb0003
    de l'onde électromagnétique, les ondes stationnaires sont des ondes de tension. Il existe alors une succession de noeuds et de ventres de tension entre les deux canalisations 21 et 23, la distance entre deux noeuds ou deux ventres étant égale à la demi-longueur d'onde λ des ondes électromagnétiques injectées dans la source d'ions.
  • Dans une telle source d'ions, il existe trois points remarquables A, B et C sur l'axe magnétique 15. En ces trois points A, B, C, la condition de résonance cyclotronique électronique (RCE) est vérifiée, à savoir : (E1)   ω HF = ω ce ,
    Figure imgb0004

    c'est-à-dire que la pulsation des ondes électromagnétiques HF a la même valeur que la pulsation giromagnétique des électrons, à savoir la pulsation "cyclotron électronique" qui a pour expression : (E2)   ω ce = e m Br,
    Figure imgb0005

    dans laquelle e est la charge de l'électron, m sa masse et Br la valeur de l'induction résonante.
  • Ainsi, en ces points remarquables A, B, C, l'expression qui suit, déduite de (E1) et (E2) est vérifiée :
    Figure imgb0006
  • Pour une source d'ions, telle que celle décrite précédemment, les points A et B représentent les extrémités de la surface équimagnétique 13, nommée également surface résonante fermée, située dans le plasma de confinement. Le point C se situe dans la seconde canalisation diélectrique 23, dans le plasma de préionisation, c'est-à-dire au niveau du blindage 11 magnétique, ledit blindage 11 provoquant la chute brutale de l'induction magnétique. La partie des canalisations 21, 23 située au niveau du blindage 11 est une zone de fort gradient magnétique, c'est-à-dire une zone où l'induction magnétique varie fortement.
  • Sur la figure 2, on a représenté le schéma électrique qui se crée à l'intérieur de la source d'ions RCE lorsque ladite source est optimisée. Les champs électriques
    Figure imgb0007
    sont alors optimum aux points de résonance A, B et C.
  • En effet, la résonance RCE est optimisée au point C, lorsque le champ électrique
    Figure imgb0008
    atteint sa valeur maximale, qu'il est perpendiculaire au champ d'induction résonante et qu'il est sur un cylindre de faible rayon, c'est-à-dire sur la seconde canalisation 23 de faible rayon.
  • De plus, lorsque cette résonance RCE optimisée existe, le plasma de préionisation crée dans les canalisations diélectriques 21, 23 est tellement dense qu'il devient pratiquement conducteur, s'épanouissant jusqu'à la surface équimagnétique 13, atteignant ainsi le point B. Cette surface équimagnétique 13 contient également un plasma dense qui est apte à absorber et à réfléchir les ondes électromagnétiques, rendant ainsi ladite surface 13 semi-conductrice, du point B jusqu'au point A.
  • Ainsi, d'un point de vue électromagnétique, la source d'ions RCE se comporte comme une ligne coaxiale jusqu'au point A de l'axe magnétique 15. Cette ligne ouverte est alors le siège d'ondes stationnaires entre le point A et le piston 45.
  • D'un point de vue plus pratique, les diamètres d et D des conducteurs respectifs 23 et 21 sont fixés de façon optimale en respectant la loi suivante : D - d 2 = λ 3 .
    Figure imgb0009
  • De même, les diamètres D′ et d′ respectivement de l'enceinte 1 et de la surface équimagnétique 13 sont choisis de façon optimale lorsque cette même loi sus-citée est vérifié à savoir : D′ - d′ 2 = λ 3 .
    Figure imgb0010
  • Pour obtimiser une telle source d'ions, c'est-à-dire pour que les champs électriques
    Figure imgb0011
    soient également optimum en A et B, une condition importante concernant la distance entre ces points A, B, C doit être vérifiée. Les distances entre deux points A et B, B et C, ou C et A sont égales à un nombre entier (n ou m) de fois la demi-longueur d'onde λ des ondes électromagnétiques introduites dans la source.
  • Ainsi : AB = n λ 2 , et
    Figure imgb0012
    AC = m λ 2 ,
    Figure imgb0013

    expressions pour lesquelles la longueur d'onde λ est une valeur connue dès l'instant où l'on connaît la fréquence f des ondes électromagnétiques injectées par le générateur 3, la longueur d'onde équivalant au rapport célérité c de la lumière sur fréquence f des ondes introduites.
  • La figure 3 est une représentation schématique de la source d'ions comportant le dispositif selon l'invention permettant d'optimiser la position des points A, B et C.
  • La source RCE représentée sur la figure 3 est la même que la source RCE de l'art antérieur, à laquelle on a ajouté le dispositif d'optimisation de l'invention, ladite source RCE ayant été décrite au début de la description. Tous les éléments, cités lors de la description de la figure 1, conservent les mêmes références sur la figure 3, qui va être décrite.
  • Le dispositif pour optimiser une source RCE est représenté sur la figure 4. Il consiste en une pièce tubulaire 47, appelée également vis magnétique, cette vis 47 étant placée autour de la première canalisation 21, avec un jeu de confortable d'environ 0,5 mm, afin d'éviter tout frottement avec ladite canalisation 21, lorsque celle-ci est déplacée en translation par rapport au blindage 11. Cette pièce tubulaire 47, de même épaisseur que le blindage 11, comprend, sur sa périphérie, un filetage 47a apte à être vissé sur la partie taraudée (11a) du blindage 11. Le vissage/dévissage de la vis magnétique 47 sur le blindage 11 assure le déplacement de ladite vis magnétique 47.
  • Cette vis magnétique 47 est fabriquée en fer. De ce fait, il existe un fort gradient magnétique au niveau du blindage qui permet d'agir sur la position du point C de résonance. En effet, le point C suit quasiment le déplacement de ladite pièce tubulaire 47 par rapport au blindage 11.
  • Le déplacement de la pièce tubulaire 47 s'effectue grâce à un outil spécial muni de deux tétons qui viennent s'engager dans deux des quatre trous 47b compris dans la pièce tubulaire 47. Ces quatre trous 47b sont régulièrement répartis sur la surface extérieure de la vis magnétique 47 et sont chacun sur un axe parallèle à l'axe magnétique 15. L'outil spécial muni de ses deux tétons vient s'engager dans deux trous diamétralement opposés, permettant ainsi de faire tourner la vis 47.
  • La translation de la vis magnétique 47 est effectuée en absence de champ magnétique, c'est-à-dire lorsque la source RCE est arrêtée. En présence du champ magnétique créé par les solénoïdes 9, une interaction s'établit entre la vis magnétique 47 et le blindage 11. En effet, une force magnétique importante s'oppose alors à la translation de la vis 47, le filetage 47a de la vis 47 s'appuyant alors fortement sur le taraudage 11a du blindage 11 assurant ainsi une continuité magnétique dans le blindage de la source RCE.
  • Cependant, pour réaliser l'optimisation complète de la source d'ions, ce réglage du positionnement du point C par action sur la vis magnétique 47 doit être complété par deux réglages dépendant dudit réglage de la vis 47. Ces réglages permettent une optimisation de la source par approches successives.
  • L'optimum du champ électrique
    Figure imgb0014
    au point C est obtenu, à forte pression de gaz, de façon à optimiser la source sur les faibles états de charge ionique. Cet optimum s'apprécie en réglant d'une part la vis 47 et d'autre part la position du piston 45. On a alors une première position du point C. Selon la connaissance préalable du profil magnétique axial de la source RCE, les points A et B sont positionnés par réglage de l'intensité du courant dans les deux solénoïdes 9, cette intensité étant contrôlée par des alimentations extérieures qui fournissent, par exemple, un courant variant de 0 à 1 000 ampères.
  • L'ensemble de ces trois réglages est plusieurs fois renouvelé, pour des pressions de gaz de plus en plus faibles, jusqu'à obtenir l'optimisation de la source sur les forts états de charge ionique.
  • Selon un exemple de réalisation d'une source RCE conforme à l'invention, le diamètre de l'enceinte 1 est d'environ 6 centimètres et la longueur d'onde λ des ondes introduites est de trois centimètres, soit une fréquence f de 10 GHz. Pour une telle source, l'ensemble des réglages doit être effectué pour une puissance des ondes électromagnétiques inférieure à 100 Watts. Un expérimentateur averti est apte à optimiser cette source en cinq ou six opérations, c'est-à-dire en quelques minutes.

Claims (3)

  1. Source d'ions à résonance cyclotronique électronique comprenant :
    - une enceinte (1) contenant un plasma d'ions et d'électrons formés par résonance cyclotronique électronique ;
    - une structure magnétique (7, 9, 11) comportant un blindage extérieur (11), ladite structure entourant l'enceinte et créant à l'intérieur de celle-ci deux champs magnétiques radial et axial assurant un confinement du plasma dans l'enceinte ;
    - une cavité (20) de transition reliée à un générateur (3) d'ondes électromagnétiques ; et
    - une première et une seconde canalisations (21, 23) diélectriques reliant l'enceinte et la cavité, la seconde canalisation (23) comportant une partie (23a) transparente en regard du blindage dans laquelle se produit une résonance en un point déterminé (C),
    caractérisé en ce qu'il comporte des moyens (47) de déplacement du point de résonance afin de régler de façon optimale la position dudit point de résonance dans la seconde canalisation diélectrique.
  2. Dispositif selon la revendication 1, caractérisé en ce que les moyens de déplacement du point de résonance comportent une pièce tubulaire (47) placée autour de la seconde canalisation au niveau de la partie transparente et apte à être translatée parallèlement aux canalisations.
  3. Dispositif selon la revendication 2, caractérisé en ce que la pièce tubulaire comporte sur sa partie périphérique extérieure, un filetage (47a) de façon à former, avec le blindage, un système vis/écrou.
EP92401292A 1991-05-14 1992-05-12 Source d'ions à résonance cyclotronique électronique Expired - Lifetime EP0514255B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9105803A FR2676593B1 (fr) 1991-05-14 1991-05-14 Source d'ions a resonance cyclotronique electronique.
FR9105803 1991-05-14

Publications (2)

Publication Number Publication Date
EP0514255A1 true EP0514255A1 (fr) 1992-11-19
EP0514255B1 EP0514255B1 (fr) 1996-01-17

Family

ID=9412750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401292A Expired - Lifetime EP0514255B1 (fr) 1991-05-14 1992-05-12 Source d'ions à résonance cyclotronique électronique

Country Status (5)

Country Link
US (1) US5336961A (fr)
EP (1) EP0514255B1 (fr)
JP (1) JPH06103943A (fr)
DE (1) DE69207641T2 (fr)
FR (1) FR2676593B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025755A1 (fr) * 1995-02-16 1996-08-22 Plasmion Dispositif a resonance cyclotron electronique pour creer un faisceau d'ions
WO2010001036A2 (fr) * 2008-07-02 2010-01-07 Commissariat A L'energie Atomique Dispositif générateur d'ions à résonance cyclotronique électronique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868330B2 (ja) * 2004-10-08 2012-02-01 独立行政法人科学技術振興機構 多価イオン発生源およびこの発生源を用いた荷電粒子ビーム装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238397A1 (fr) * 1986-03-13 1987-09-23 Commissariat A L'energie Atomique Source d'ions à résonance cyclotronique électronique à injection coaxiale d'ondes électromagnétiques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788473A (en) * 1986-06-20 1988-11-29 Fujitsu Limited Plasma generating device with stepped waveguide transition
JP2515810B2 (ja) * 1987-07-10 1996-07-10 東京エレクトロン東北株式会社 プラズマ処理装置
US5132597A (en) * 1991-03-26 1992-07-21 Hughes Aircraft Company Hollow cathode plasma switch with magnetic field

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238397A1 (fr) * 1986-03-13 1987-09-23 Commissariat A L'energie Atomique Source d'ions à résonance cyclotronique électronique à injection coaxiale d'ondes électromagnétiques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A. vol. 8, no. 3, Juin 1990, NEW YORK US pages 2900 - 2903; CC TSAI ET AL: 'POTENTIAL APPPLICATIONS OF AN ELECTRON CYCLOTRON RESONANCE MULTICUSP PLASMA SOURCE' *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 196 (E-755)(3544) 10 Mai 1989 & JP-A-1 017 399 ( TERU SAGAMI K. K. ) 20 Janvier 1989 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025755A1 (fr) * 1995-02-16 1996-08-22 Plasmion Dispositif a resonance cyclotron electronique pour creer un faisceau d'ions
FR2730858A1 (fr) * 1995-02-16 1996-08-23 Plasmion Dispositif a resonance cyclotron electronique pour creer un faisceau d'ions
WO2010001036A2 (fr) * 2008-07-02 2010-01-07 Commissariat A L'energie Atomique Dispositif générateur d'ions à résonance cyclotronique électronique
FR2933532A1 (fr) * 2008-07-02 2010-01-08 Commissariat Energie Atomique Dispositif generateur d'ions a resonance cyclotronique electronique
WO2010001036A3 (fr) * 2008-07-02 2010-02-25 Commissariat A L'energie Atomique Dispositif générateur d'ions à résonance cyclotronique électronique
US8760055B2 (en) 2008-07-02 2014-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electron cyclotron resonance ion generator

Also Published As

Publication number Publication date
EP0514255B1 (fr) 1996-01-17
US5336961A (en) 1994-08-09
JPH06103943A (ja) 1994-04-15
FR2676593B1 (fr) 1997-01-03
FR2676593A1 (fr) 1992-11-20
DE69207641D1 (de) 1996-02-29
DE69207641T2 (de) 1996-09-05

Similar Documents

Publication Publication Date Title
EP0238397B1 (fr) Source d'ions à résonance cyclotronique électronique à injection coaxiale d'ondes électromagnétiques
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
EP2798209B1 (fr) Propulseur plasmique et procede de generation d'une poussee propulsive plasmique
EP0359774B1 (fr) Accelerateur d'electrons a cavite coaxiale
CH623182A5 (fr)
EP1216493B1 (fr) Diviseur de puissance pour dispositif a plasma
EP0127523A1 (fr) Source d'ions à résonance cyclotronique des électrons
BE1005864A5 (fr) Accelerateur d'electrons a cavite resonante.
EP0995345B1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
EP0049198B1 (fr) Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP0514255B1 (fr) Source d'ions à résonance cyclotronique électronique
EP0184475A1 (fr) Procédé et dispositif d'allumage d'une source d'ions hyperfréquence
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP0946961B1 (fr) Systeme magnetique, en particulier pour les sources ecr, permettant la creation de surfaces fermees d'equimodule b de forme et de dimensions quelconques
EP0527082B1 (fr) Source d'ions multicharges à résonance cyclotronique électronique de type guide d'ondes
EP0483004B1 (fr) Source d'ions fortement chargés à sonde polarisable et à résonance cyclotronique électronique
WO2014184357A1 (fr) Générateur de plasma étendu comprenant des générateurs élémentaires intégrés
FR2936648A1 (fr) Tube micro-ondes compact de forte puissance
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
FR2985366A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'une onde hyperfrequence associe
FR2576477A1 (fr) Ensemble accelerateur lineaire de particules chargees
FR2756097A1 (fr) Source a resonance cyclotronique electronique pour la production d'ions multicharges en milieu hostile
EP0020209A1 (fr) Tube à ondes progressives muni d'une ligne à retard hyperfréquence comportant un conducteur de section variable
EP0734048A1 (fr) Procédé et dispositif pour revêtir ou nettoyer un substrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19930426

17Q First examination report despatched

Effective date: 19940823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69207641

Country of ref document: DE

Date of ref document: 19960229

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970425

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970430

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970503

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970529

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19980531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980512

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050512