EP0505812A1 - Verfahren zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP0505812A1
EP0505812A1 EP92104008A EP92104008A EP0505812A1 EP 0505812 A1 EP0505812 A1 EP 0505812A1 EP 92104008 A EP92104008 A EP 92104008A EP 92104008 A EP92104008 A EP 92104008A EP 0505812 A1 EP0505812 A1 EP 0505812A1
Authority
EP
European Patent Office
Prior art keywords
stage
pressure
partial flow
partial
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92104008A
Other languages
English (en)
French (fr)
Other versions
EP0505812B1 (de
Inventor
Wilhelm Dipl.-Ing. Rohde (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0505812A1 publication Critical patent/EP0505812A1/de
Application granted granted Critical
Publication of EP0505812B1 publication Critical patent/EP0505812B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Es wird ein Verfahren zur Tieftemperaturzerlegung von Luft beschrieben, insbesondere zur Herstellung von Sauerstoff mittlerer Reinheit. Bei dem Verfahren wird die gesamte Einsatzluft (1) in einer ersten Verdichterstufe (2) verdichtet und durch Adsorption (4) gereinigt. Ein erster Teilstrom (101) der Luft wird in die Druckstufe (7) einer zweistufigen Rektifiziersäule (6) eingespeist. Ein zweiter Teilstrom wird direkt der Niederdruckstufe (8) zugeführt. Er wird erfindungsgemäß nach der Adsorption (4) von der übrigen Einsatzluft abgetrennt, gegen verdichtete Einsatzluft angewärmt (3) und arbeitsleistend entspannt (13). Die dabei gewonnene Arbeit wird mindestens teilweise zur Verdichtung (2) von Einsatzluft eingesetzt. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft, bei dem Einsatzluft verdichtet, gereinigt, abgekühlt und in mehrere Teilströme aufgeteilt in die Druckstufe und in die Niederdruckstufe einer zweistufigen Rektifiziereinrichtung eingeleitet wird, wobei ein erster Teilstrom der Druckstufe und ein zweiter Teilstrom der Niederdruckstufe zugeleitet werden.
  • Ein derartiges Verfahren ist aus der EP-A 0 342 436 bekannt. Hier wird die Einsatzluft zunächst nur auf Niederdruckstufendruck komprimiert und auf dem mittleren Druckniveau in einen ersten und in einen zweiten Teilstrom aufgeteilt. Lediglich der erste Teilstrom, der teilweise in die Drucksäule eingespeist wird, wirdweiter verdichtet. Dieser Prozeß bewirkt zwar eine sehr wirtschaftliche Verwendung der Kompressionsenergie. Allerdings ist man gezwungen, die Entfernung von Kohlendioxid, Kohlenwasserstoffen und Wasser aus dem zweiten Teilstrom in einer eigenen Reinigungsstufe, in der Regel einer Molsiebstation, vorzunehmen. Durch den niedrigen Druck benötigt dieses Molsieb hohe Mengen an Regeneriergas. Diese stehen dann für andere Zwecke nicht mehr zur Verfügung, insbesondere nicht für eine kostengünstige Verdunstungskühlung des für die Vorkühlung der Luft benötigten Kühlwassers.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend weiterzuentwickeln, das seine Wirtschaftlichkeit erhöht und insbesondere eine kostengünstigere Luftreinigung durchgeführt werden kann.
  • Diese Aufgabe wird dadurch gelöst, daß die Einsatzluft in einer ersten Verdichterstufe auf etwa Druckstufendruck gebracht, in einer Reinigungsstufe durch Adsorption gereinigt und anschließend in den ersten und zweiten Teilstrom aufgeteilt wird und der zweite Teilstrom vor der Einspeisung in die Niederdruckstufe in indirektem Wärmetausch gegen verdichtete Einsatzluft angewärmt und arbeitsleistend entspannt wird und daß bei der Entspannung des zweiten Teilstroms gewonnene Arbeit zur Verdichtung eines Prozeßstroms, insbesondere von Einsatzluft verwendet wird.
  • Durch die erfindungsgemäße Verfahrensführung ist es möglich, die gesamte Einsatzluft in einer einzigen Reinigungsstufe zu behandeln, und zwar unter Druckstufendruck. Es entfallen die Investitionskosten und der hohe Betriebsaufwand für eine zusätzliche Niederdruck-Reinigungsstufe. Die überschüssige Kompressionsenergie, die in den zweiten Teilstrom gesteckt wird, kann in einer Turbine teils als mechanische Arbeit zurückgewonnen, teils in Kälte umgesetzt werden.
  • Die Arbeit wird in der Regel vollständig und direkt durch mechanische Kopplung an einen Verdichter abgegeben, zusätzlich oder alternativ kann jedoch auch ein Generator angetrieben werden. Um die arbeitsleistende Entspannung unter günstigen Bedingungen durchzuführen, wird der zweite Teilstrom vorher angewärmt. Dabei kann verdichteter Einsatzluft günstig Wärme entzogen werden.
  • Durch den von der Turbine angetriebenen Verdichter kann beispielsweise ein Produkt- oder einer Zwischenproduktstrom fließen. Im allgemeinen ist die Verwendung der bei der arbeitsleistenden Entspannung gewonnenen Arbeit zur Verdichtung von Einsatzluft am günstigsten.
  • Zusätzlich kann in dem Verfahren Kälte erzeugt werden, indem stromabwärts der Adsorption ein dritter Teilstrom abgezweigt, in einer zweiten Verdichterstufe nachverdichtet, anschließend abgekühlt, arbeitsleistend entspannt und in die Niederdruckstufe eingespeist wird, wobei bei der arbeitsleistenden Entspannung des dritten Teilstroms gewonnene Arbeit zur Nachverdichtung des dritten Teilstroms in der zweiten Verdichterstufe eingesetzt wird. Hierbei wird ebenfalls nicht benötigter Druck für die Erzeugung von Verfahrenkälte ausgenutzt.
  • Für die Übertragung von Arbeit und Kälte stellt die Erfindung zwei Varianten zur Verfügung:
    Zum einen kann bei der arbeitsleistenden Entspannung des zweiten Teilstroms gewonnene Arbeit zum Antrieb der ersten Verdichterstufe eingesetzt werden. Da diese Arbeit selbstverständlich nicht für den Antrieb des Luftverdichters ausreicht, muß die Welle, die in der Regel Entspannungsturbine und erste Verdichterstufe verbindet, zusätzlich durch einen Motor angetrieben werden.
  • Dabei ist es vorteilhaft, wenn die Anwärmung des zweiten Teilstroms vor seiner Entspannung durch indirekten Wärmetausch mit Einsatzluft hinter der ersten Verdichterstufe und vor der Reinigungsstufe durchgeführt wird.
  • An dieser Stelle muß die Einsatzluft ohnehin vorgekühlt werden. Sie verläßt in der Regel einen mit Kühlwasser von etwa 25°C betriebenen Kühler mit einer Temperatur von ca. 35°C und muß für die Adsorption in der Reinigungsstufe auf etwa 10°C bis 15°C gebracht werden. Dies wird im allgemeinen durch eine externe Kälteanlage oder durch kaltes Kühlwasser bewerkstelligt, das einem mit trockenem Stickstoff betriebenen Verdunstungskühler entnommen wird. Diese Vorkühlung kann nun zumindest teilweise von dem gereinigten zweiten Teilstrom übernommen werden, so daß die Kosten für die Kälteanlage verringert werden beziehungsweise der Stickstoff für andere Aufgaben zur Verfügung steht.
  • In einer zweiten Variante wird bei der arbeitsleistenden Entspannung des zweiten Teilstroms gewonnene Arbeit in einer dritten Verdichterstufe zur Nachverdichtung des dritten Teilstroms eingesetzt.
  • Diese dritte Verdichterstufe ist vorzugsweise derzweiten Verdichterstufe vorgeschaltet und dient zur Erhöhung der Druckdifferenz bei der Entspannung des dritten Teilstroms.
  • Günstig ist es außerdem, wenn stromabwärts der Reinigungsstufe zusätzlich oder alternativ ein vierter Teilstrom abgezweigt, in einer vierten Verdichterstufe nachverdichtet, anschließend abgekühlt, entspannt und in die Druckstufe eingespeist wird, wobei bei der arbeitsleistenden Entspannung des zweiten Teilstroms gewonnene Arbeit zur Nachverdichtung des vierten Teilstroms in der vierten Verdichterstufe eingesetzt wird. Die Entspannung des vierten Teilstromes wird im allgemeinen durch ein Drosselventil bewerkstelligt.
  • Die Numerierung der Verdichterstufen ist hier zu ihrer klaren Unterscheidung eingeführt, sie bedeutet nicht, daß bei Existenz der vierten Verdichterstufe auch notwendigerweise die oben erwähnte zweite oder dritte Verdichterstufe vorhanden sein müssen.
  • Es hat sich jedoch als vorteilhaft erwiesen, wenn der dritte und der vierte Teilstrom in einer gemeinsamen dritten Verdichterstufe nachverdichtet werden. Dritte und vierte Verdichterstufe werden dabei als eine einzige Maschine relativ kostengünstig realisiert.
  • Eine zweite Art der Übertragung der Wärme auf den unter hohem Druck stehenden zweiten Teilstrom besteht nach einem weiteren Aspekt der Erfindung darin, daß die Anwärmung des zweiten Teilstroms vor seiner Entspannung durch indirekten Wärmetausch mit dem dritten und/oder vierten Teilstrom nach der Nachverdichtung in der dritten beziehungsweise vierten Verdichterstufe durchgeführt wird.
  • Durch diese Maßnahme läßt sich eine besonders günstige Anpassung der Ströme an die Eintrittstemperatur des Hauptwärmetauschers erreichen, indem der oder die nachverdichteten Teilströme abgekühlt werden. Die vor Eintritt des zweiten Teilstroms in die Entspannungsturbine zur Verfügung stehende Kälte wird an dieser Stelle besonders effizient eingesetzt.
  • Eine Nachverdichtung des vierten Teilstroms über den Drucksäulendruck hinaus ist vor allem dann günstig, wenn bei dem Verfahren Sauerstoff unter erhöhtem Druck gewonnen werden soll. Hierbei wird in vorteilhafter Weiterbildung des erfinderischen Gedankens flüssiger Sauerstoff aus der Niederdruckstufe herausgeführt, auf Druck gebracht und in indirektem Wärmeaustausch mit dem nachverdichteten vierten Teilstrom verdampft.
  • Die unter höherem als Drucksäulendruck zur Verfügung stehende Teilmenge der Luft wird hier für eine energetisch günstige Herstellung von Drucksauerstoff verwendet. Der Sauerstoff wird in flüssiger Form auf Druck gebracht (entweder durch eine Pumpe oder durch Ausnützung eines hydrostatischen Potentials) und anschließend unter dem erhöhten Druck verdampft. Die Hochdruckluft kondensiert im Gegenstrom zum verdampfenden Sauerstoff und gibt dabei latente Wärme ab. Der indirekte Wärmetausch wird vorzugsweise in dem Hauptwärmetauscherblock vorgenommen, den auch die anderen Einsatz- und Produktströme durchströmen.
  • Dabei ist es günstig, wenn der partiell kondensierte vierte Teilstrom anschließend oberhalb des ersten Teilstroms in die Druckstufe eingeleitet wird.
  • In der Regel kondensiert bei dem Wärmetausch mit Drucksauerstoff der größte Teil der Hochdruckluft, so daß ein gewisser Vortrenneffekt ausgenutzt werden kann, indem das Kondensat mindestens einen theoretischen Boden, vorzugsweise etwa vier bis acht theoretische Böden oberhalb der übrigen Drucksäulenluft eingespeist wird.
  • Besonders vorteilhaft ist die Anwendung des erfindungsgemäßen Verfahrens Gewinnung von Sauerstoff geringer Reinheit. Hiermit sind Sauerstoffreinheiten unterhalb von 99%, vorzugsweise zwischen 85% und 98% (bezogen auf das Volumen) gemeint. Bei Luftzeriegungsanlagen (mehr als 100.000 Nm³/h, vorzugsweise mehr als 200.000 Nm³/h, höchst vorzugsweise zwischen 200.000 und 400.000 Nm³/h Zerlegungsluft) kommen die Vorteile der Erfindung besonders deutlich zum Tragen. Vorteilhaft ist auch ein Einsatz im Rahmen von GUD-(combined cycle)-Anlagen oder von Anlagen zur Stahlgewinnung (z.B. COREX-Verfahren).
  • Im folgenden werden die Erfindung und weitere Einzelheiten der Erfindung anhand zweier Ausführungsbeispiele näher erläutert, die in den Figuren 1 und 2 schematisch dargestellt ist. Soweit wie möglich werden in beiden Zeichnungen für analoge Verfahrensschritte dieselben Bezugszeichen verwendet.
  • Gemäß dem Verfahrensschema der Figur 1 wird atmosphärische Luft über eine Leitung 1 von einer ersten Verdichterstufe 2 angesaugt und auf einen Druck von 5 bis 10 bar vorzugsweise etwa 5,65 bar, komprimiert, auf 5 bis 25°C, vorzugsweise etwa 12°C abgekühlt und in einer mit einem Molsieb gefüllten Reinigungsstufe 4 von Verunreinigungen wie beispielsweise Wasser, Kohlendioxid und Kohlenwasserstoffen befreit.
  • Unmittelbar hinter der Reinigungsstufe 4 wird die Einsatzluft in einen ersten Teilstrom 101 und in einen zweiten Teilstrom 102 verzweigt. Der erste Teilstrom 101 wird im Hauptwärmetauscher 5 gegen Produktströme abgekühlt und in die Druckstufe 7 einer gewöhnlichen zweistufigen Rektifiziersäule 6 eingespeist. Als Produkte werden der Niederdruckstufe 8 (Arbeitsdruck 1,2 bis 1,6 bar, vorzugsweise etwa 1,3 bar) gasförmiger Sauerstoff 9 und gasförmiger Stickstoff 10 entnommen und im Hauptwärmetauscher 5 auf etwa Umgebungstemperatur angewärmt. Der Stickstoff kann zur Regenerierung des Molsiebs der Reinigungsstufe 4 eingesetzt (Leitung 11) und/oder auch für andere Zwecke, beispielsweise zur Abkühlung von Kühlwasser in einem Verdunstungskühler über Leitung 12 abgezogen werden.
  • Der zweite Teilstrom 102 wird erfindungsgemäß in einem Wärmetauscher 3 gegen die verdichtete Einsatzluft angewärmt, in einer Turbine 13 entspannt, abgekühlt und in die Niederdruckstufe 8 eingeblasen. Der Einsatzluftstrom kann zwischen Wärmetauscher 3 und Reinigungsstufe 4 zusätzlich abgekühlt werden (in der Zeichnung nicht dargestellt), beispielsweise durch indirekten Wärmetausch mit durch Verdunstungskühlung abgekühltem Wasser.
  • Ein dritter Teilstrom 103 wird ebenfalls stromabwärts der Reinigungsstufe 4 abgezweigt, in einem zweiten Verdichter 14 weiterverdichtet, im Hauptwärmetauscher 5 auf eine mittlere Temperatur abgekühlt und danach in einer Turbine 15 zur Kälteerzeugung entspannt. Die beim Entspannen des Teilstroms gewonnene Arbeit wird mechanisch auf den zweiten Verdichter 14 übertragen. Der entspannte dritte Teilstrom 103 wird gemeinsam mit dem entspannten und abgekühlten zweiten Teilstrom 102 in die Niederdruckstufe 8 eingeführt.
  • Die Figur 2 zeigt ein Ausführungsbeispiel für eine zweite Variante des erfindungsgemäßen Verfahrens. Der zweite Teilstrom wird hier an einem Verzweigungspunkt 21 vom ersten Teilstrom 101 abgezweigt, im Wärmetauscher 3' angewärmt und in der Turbine 13' entspannt. Die dabei gewonnene Arbeit wird auf einen dritten Verdichter 16 übertragen.
  • Der dritte Teilstrom wird im dritten Verdichter auf einen Druck von mindestens 15 bar, vorzugsweise etwa 20 bis 50 bar, komprimiert und anschließend im Wärmetauscher 3' gegen den zweiten Teilstrom 102 vor dessen Entspannung abgekühlt, bevor er den mit der Turbine 15 gekoppelten zweiten Nachverdichter 14 erreicht.
  • Hinter der dritten Verdichterstufe 16 und dem Wärmetauscher 3' wird aus dem dritten Teilstrom ein vierter Teilstrom 104 abgezweigt (22), im Hauptwärmetauscher 5 abgekühlt und in die Druckstufe 7 eingedrosselt. Im Gegenstrom hierzu wird Sauerstoff verdampft, der über Leitung 9 der Niederdruckstufe entnommen und in einer Pumpe 17 auf einen Druck von mindestens 4 bar, vorzugsweise 20 bis 100 bar, gebracht wurde. Die Hochdruckluft im vierten Teilstrom kondensiert bei dem Wärmeaustausch fast vollständig und wird oberhalb des ersten Teilstroms 101 in die Druckstufe 7 eingespeist.
  • Das erfindungsgemäße Verfahren mit Direkteinspeisung von Einsatzluft in die Niederdruckstufe erweist sich als wirtschaftlich günstig, wenn beim Produktsauerstoff (Leitungen 23 und 24 im Ausführungsbeispiel) eine Reinheit von 85 bis 98% erzielt werden soll. Falls beispielsweise eine Sauerstoffreinheit von 96% gewünscht ist, können bis zu 35% der Einsatzluft über den zweiten und dritten Teilstrom 102, 103 direkt in die Niederdruckstufe eingespeist werden, ohne die Sauerstoffausbeute merklich zu verringern.

Claims (11)

  1. Verfahren zur Tieftemperaturzeriegung von Luft, bei dem Einsatzluft (1) verdichtet (2), gereinigt (4), abgekühlt (5) und in mehrere Teilströme aufgeteilt in die Druckstufe (7) und in die Niederdruckstufe (8) einer zweistufigen Rektifiziereinrichtung (6) eingeleitet wird, wobei
    - ein erster Teilstrom (101) der Druckstufe (7) und
    - ein zweiter Teilstrom (102) der Niederdruckstufe (8) zugeleitet werden,
    dadurch gekennzeichnet, daß
    - die Einsatzluft (1) in einer ersten Verdichterstufe (2) auf etwa Druckstufendruck gebracht, in einer Reinigungsstufe (4) durch Adsorption gereinigt und anschließend in den ersten (101) und zweiten (102) Teilstrom aufgeteilt wird und
    - der zweite Teilstrom (102) vor der Einspeisung in die Niederdrucksäule (8) in indirektem Wärmetausch (3, 3') gegen verdichtete Einsatzluft angewärmt und arbeitsleistend entspannt (13, 13') wird und daß
    - bei der Entspannung (13, 13') des zweiten Teilstroms gewonnene Arbeit zur Verdichtung (2,16) eines Prozeßstroms, insbesondere von Einsatzluft verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß stromabwärts der Adsorption (4) ein dritter Teilstrom (103) abgezweigt, in einer zweiten Verdichterstufe (14) nachverdichtet, anschließend abgekühlt (5), arbeitsleistend entspannt (15) und in die Niederdruckstufe (8) eingespeist wird, wobei bei der arbeitsleistenden Entspannung (15) des dritten Teilstroms gewonnene Arbeit zur Nachverdichtung des dritten Teilstroms in der zweiten Verdichterstufe (14) eingesetztwird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei der arbeitsleistenden Entspannung (13) des zweiten Teilstroms gewonnene Arbeit zum Antrieb der ersten Verdichterstufe (2) eingesetzt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Anwärmung des zweiten Teilstroms vor seiner Entspannung durch indirekten Wärmetausch (3) mit Einsatzluft hinter der ersten Verdichterstufe (2) und vor der Reinigungsstufe (4) durchgeführt wird.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß bei der arbeitsleistenden Entspannung (13') des zweiten Teilstroms gewonnene Arbeit in einer dritten Verdichterstufe (16) zur Nachverdichtung des dritten Teilstroms eingesetzt wird.
  6. Verfahren nach einem der Ansprüch 1 bis 5, dadurch gekennzeichnet, daß stromabwärts der Reinigungsstufe (4) ein vierter Teilstrom (104) abgezweigt, in einer vierten Verdichterstufe (16) nachverdichtet, anschließend abgekühlt (5), entspannt und in die Druckstufe (7) eingespeist wird, wobei bei der arbeitsleistenden Entspannung (13') des zweiten Teilstroms gewonnene Arbeit zur Nachverdichtung des vierten Teilstroms in der vierten Verdichterstufe (16) eingesetzt wird.
  7. Verfahren nach Anspruch 5 und 6, dadurch gekennzeichnet, daß dritter und vierter Teilstrom in einer gemeinsamen dritten Verdichterstufe (16) nachverdichtet werden.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Anwärmung des zweiten Teilstroms vor seiner Entspannung durch indirekten Wärmetausch (3') mit dem dritten und/oder vierten Teilstrom nach der Nachverdichtung in der dritten beziehungsweise vierten Verdichterstufe (16) durchgeführt wird.
  9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß flüssiger Sauerstoff aus der Niederdruckstufe (8) herausgeführt (9), auf Druck gebracht (17) und in indirektem Wärmeaustausch (5) mit dem nachverdichteten vierten Teilstrom (104) verdampft wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der vierte Teilstrom (104) bei dem indirekten Wärmetausch (5) mit verdampfendem Sauerstoff mindestens teilweise kondensiert und anschließend oberhalb des ersten Teilstroms (101) in die Druckstufe (7) eingeleitet wird.
  11. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 10 zur Gewinnung von Sauerstoff geringer Reinheit.
EP92104008A 1991-03-26 1992-03-09 Verfahren zur Tieftemperaturzerlegung von Luft Expired - Lifetime EP0505812B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4109945A DE4109945A1 (de) 1991-03-26 1991-03-26 Verfahren zur tieftemperaturzerlegung von luft
DE4109945 1991-03-26

Publications (2)

Publication Number Publication Date
EP0505812A1 true EP0505812A1 (de) 1992-09-30
EP0505812B1 EP0505812B1 (de) 1995-10-18

Family

ID=6428254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92104008A Expired - Lifetime EP0505812B1 (de) 1991-03-26 1992-03-09 Verfahren zur Tieftemperaturzerlegung von Luft

Country Status (10)

Country Link
US (1) US5263328A (de)
EP (1) EP0505812B1 (de)
CN (1) CN1064125C (de)
AT (1) ATE129336T1 (de)
AU (1) AU653120B2 (de)
CA (1) CA2063928C (de)
DE (2) DE4109945A1 (de)
DK (1) DK0505812T3 (de)
ES (1) ES2077898T3 (de)
ZA (1) ZA922185B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644388A1 (de) * 1993-08-23 1995-03-22 The Boc Group, Inc. Tieftemperaturzerlegung von Luft
EP0718576A1 (de) 1994-12-23 1996-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zur Trennung eines Gasgemisches durch kryogene Destillation
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
CN103776239A (zh) * 2014-01-13 2014-05-07 浙江海天气体有限公司 多功能制氮装置
CN109387034A (zh) * 2017-08-03 2019-02-26 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏来分离空气的装置和方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
US5934105A (en) * 1998-03-04 1999-08-10 Praxair Technology, Inc. Cryogenic air separation system for dual pressure feed
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
US6000239A (en) * 1998-07-10 1999-12-14 Praxair Technology, Inc. Cryogenic air separation system with high ratio turboexpansion
JP4782380B2 (ja) * 2003-03-26 2011-09-28 エア・ウォーター株式会社 空気分離装置
JP4515225B2 (ja) * 2004-11-08 2010-07-28 大陽日酸株式会社 窒素製造方法及び装置
US7263859B2 (en) * 2004-12-27 2007-09-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for cooling a stream of compressed air
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
US20150168056A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air
PL2963369T3 (pl) 2014-07-05 2018-10-31 Linde Aktiengesellschaft Sposób i urządzenie do niskotemperaturowej separacji powietrza
PL2963370T3 (pl) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
EP2963371B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
WO2017031616A1 (zh) * 2015-08-21 2017-03-02 深圳智慧能源技术有限公司 节能的制冷机组及压缩膨胀模组
CN105135724A (zh) * 2015-08-21 2015-12-09 深圳智慧能源技术有限公司 节能的制冷机组及压缩膨胀模组
CN111693559B (zh) * 2020-06-22 2022-04-01 中国核动力研究设计院 气相混合物的蒸汽液滴质量流量分离测量装置及测量方法
CN112452095B (zh) * 2020-11-10 2022-11-08 中国石油化工股份有限公司 一种改进的尾气精馏方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
DE3643359A1 (de) * 1986-12-18 1988-06-23 Linde Ag Verfahren und vorrichtung zur luftzerlegung durch zweistufige rektifikation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
JPS62102074A (ja) * 1985-10-30 1987-05-12 株式会社日立製作所 ガス分離方法及び装置
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
DE3738559A1 (de) * 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
DE3817244A1 (de) * 1988-05-20 1989-11-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
GB8904275D0 (en) * 1989-02-24 1989-04-12 Boc Group Plc Air separation
US5114449A (en) * 1990-08-28 1992-05-19 Air Products And Chemicals, Inc. Enhanced recovery of argon from cryogenic air separation cycles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
DE3643359A1 (de) * 1986-12-18 1988-06-23 Linde Ag Verfahren und vorrichtung zur luftzerlegung durch zweistufige rektifikation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644388A1 (de) * 1993-08-23 1995-03-22 The Boc Group, Inc. Tieftemperaturzerlegung von Luft
AU669998B2 (en) * 1993-08-23 1996-06-27 Linde Aktiengesellschaft Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
EP0718576A1 (de) 1994-12-23 1996-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zur Trennung eines Gasgemisches durch kryogene Destillation
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
CN103776239A (zh) * 2014-01-13 2014-05-07 浙江海天气体有限公司 多功能制氮装置
CN109387034A (zh) * 2017-08-03 2019-02-26 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏来分离空气的装置和方法
CN109387034B (zh) * 2017-08-03 2021-11-19 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏来分离空气的装置和方法

Also Published As

Publication number Publication date
CA2063928A1 (en) 1992-09-27
DE4109945A1 (de) 1992-10-01
US5263328A (en) 1993-11-23
ATE129336T1 (de) 1995-11-15
DK0505812T3 (da) 1995-12-18
CN1065326A (zh) 1992-10-14
EP0505812B1 (de) 1995-10-18
ES2077898T3 (es) 1995-12-01
AU653120B2 (en) 1994-09-15
CA2063928C (en) 2003-05-06
AU1316692A (en) 1992-10-01
CN1064125C (zh) 2001-04-04
ZA922185B (en) 1993-09-24
DE59204027D1 (de) 1995-11-23

Similar Documents

Publication Publication Date Title
EP0505812B1 (de) Verfahren zur Tieftemperaturzerlegung von Luft
DE3840506C2 (de)
EP0384483B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE69908531T2 (de) Verfahren und Vorrichtung zur Verbesserung von Rückgewinnung von Kohlendioxyd
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
EP0316768B1 (de) Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
EP2980514A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP1994344A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
EP0342436A2 (de) Verfahren zur Tieftemperaturzerlegung von Luft
EP0384213A2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE2557453A1 (de) Verfahren zur zerlegung von luft
EP2313724A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP0989375A1 (de) Verfahren und Verflüssiger zur Erzeugung von flüssiger Luft
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
DE3528374A1 (de) Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE3216510A1 (de) Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
EP1134524B1 (de) Verfahren zur Gewinnung von gasförmigem Stickstoff
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP4127583B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE4030750A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE3216502A1 (de) Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19921217

17Q First examination report despatched

Effective date: 19931025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 129336

Country of ref document: AT

Date of ref document: 19951115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59204027

Country of ref document: DE

Date of ref document: 19951123

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077898

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030306

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030312

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030516

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040310