EP0503773B1 - Gewinnung elektrischer Energie - Google Patents
Gewinnung elektrischer Energie Download PDFInfo
- Publication number
- EP0503773B1 EP0503773B1 EP92301184A EP92301184A EP0503773B1 EP 0503773 B1 EP0503773 B1 EP 0503773B1 EP 92301184 A EP92301184 A EP 92301184A EP 92301184 A EP92301184 A EP 92301184A EP 0503773 B1 EP0503773 B1 EP 0503773B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- hydrogen
- steam
- char
- gaseous product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/067—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to electrical power generation and, more particularly, to a method for combined cycle electrical power generation.
- a combined cycle power plant is known from US-A-4631915.
- An object of the invention is to provide such a method which utilises a coal hydrogenation process.
- a method for combined cycle electrical power generation comprises: (i) introducing a methane-rich gas and steam and/or oxygen-containing gas into a reactor, reacting the methane-rich gas at an elevated temperature with the steam and/or oxygen-containing gas to form a hot hydrogen-containing gas; (ii) introducing into a coal hydrogenator coal and at least a portion of the hydrogen-containing gas at an elevated temperature suitable for initiating and maintaining coal hydrogenation reaction, hydrogenating the coal with the hydrogen-containing gas in the hydrogenator to form a char and a first gaseous product; removing the char and removing the first gaseous product from the hydrogenator; (iii) cooling the first gaseous product to form a condensed liquid hydrocarbon product and a remaining gaseous product; separating the liquid hydrocarbon product from the remaining gaseous product; (iv) removing impurities from the remaining gaseous product; (v) feeding at least a portion of the purified remaining gaseous product to the combustion chamber of a gas turbine to
- One or more gas turbines may be driven by the combustion products and one or more steam turbines may be driven by the steam produced.
- such hydrogen-containing gas Prior to the hot hydrogen-containing gas being introduced into the coal hydrogenator, such hydrogen-containing gas may be cooled to a relatively cooler temperature in order to obtain the said elevated temperature suitable for initiating and maintaining the coal hydrogenation reaction in the hydrogenator. It will be appreciated that with or without this cooling step, the hot hydrogen-containing gas can be/is fed from the reactor to the coal hydrogenator without an intermediate heating stage.
- reaction processes may be used to convert the methane-rich gas into the hot hydrogen-containing gas, such as, high temperature steam reforming or partial oxidation processes.
- the methane-rich gas may be mixed with steam and reacted therewith in the presence of a steam-reforming catalyst to form the hydrogen-containing gas, or as an alternative, the methane-rich gas may be mixed with the oxygen-containing gas (and, optionally, in addition with steam and/or carbon dioxide) and reacted therewith so as to cause a partial oxidation reaction which produces the hydrogen-containing gas.
- As least a portion of the second separated gas may be mixed with the purified remaining gaseous product portion being fed to the gas turbine(s).
- Hydrogen sulphide and hydrogen-containing gases which result from the desulphurisation of the char may be separated from the desulphurised char and then mixed with the remaining gaseous product prior to the removal of impurities from the remaining gaseous product.
- At least a portion of the liquid hydrocarbon product separated from the remaining gaseous product may be fed to the combustion chamber of a gas turbine to form gaseous combustion products to drive the gas turbine to drive an electrical generator to produce electrical power.
- This gas turbine may be the gas turbine, or one of the gas turbines, which is driven via the purified remaining gaseous product.
- the gas turbine driven via the liquid hydrocarbon product may be a separate turbine.
- liquid hydrocarbon products may be stored and from store, as required, be used at times of increased or peak power demand. Such storage may avoid the need to purchase suitable liquid fuels or synthesise them.
- liquid hydrocarbon products from such store may be sold as a fuel or chemical feedstock.
- Hot exhausted combustion products from the, or any of the, gas turbines may be passed through one or more waste heat boilers to produce further steam to drive one or more steam turbines to drive an electrical generator to produce electrical power.
- This or these steam turbines may be the, or one of the, steam turbines driven by the steam produced by the combustion of the char, or alternatively the or each steam turbine driven by steam from the waste boiler(s) may be a separate turbine.
- methane-rich gas such as natural gas
- steam and/or oxygen-containing gas are introduced into a reactor 1 wherein the methane-rich gas is caused to react at an elevated temperature with the steam and/or oxygen to form a hot, crude hydrogen-containing gas.
- reaction may be provided by a high temperature steam reforming process in which the methane-rich gas has previously been purified to meet the requirements of a steam reforming catalyst to be used, and is then mixed with an excess of steam (typically 3-5 mol/mol carbon in feed) and reacted in the reactor 1 over the catalyst (such as a suitable supported nickel based proprietary catalyst) at a temperature of 750-900°C and a pressure of from 1 to 35 bar.
- the catalyst such as a suitable supported nickel based proprietary catalyst
- such reaction may be provided by a high temperature partial oxidation process in which the methane-rich gas is mixed with an oxygen-containing gas (and, optionally, in addition with steam or carbon dioxide) and reacted in reactor 1 in a partial combustion reaction at a temperature of 1250 to 1500°C and at a pressure of from 1 to 100 bar.
- the reaction may occur over a suitable catalyst present in the reactor vessel.
- Coal and the hot, crude hydrogen-containing gas produced in the reactor 1 are fed into a coal hydrogenator 2.
- the hot, crude gas may be fed either directly from the reactor 1 to the hydrogenator 2 or, alternatively, if the crude gas from the reactor 1 is at too high a temperature, then before introduction into the hydrogenator 2, it may be directly cooled or quenched to a desired hydrogenator inlet temperature, for example by the addition of fluids such as steam, water or relatively cool product gas recycled from a point downstream in the scheme.
- the hot, crude gas provides the reaction heat in the hydrogenator 2.
- the coal and hot crude gas are fed into the hydrogenator at an elevated pressure and an elevated temperature suitable for initiating and maintaining coal hydrogenation reactions so that the coal is hydrogenated by the hydrogen-containing gas to form a char and a first gaseous product.
- the char and the first gaseous product are removed from the hydrogenator 2.
- the first gaseous product is passed to a gas cooler 3 where a condensed liquid hydrocarbon product and a remaining gaseous product are formed from the first gaseous product.
- This remaining gaseous product leaving the gas cooler 3 is passed through a gas purification unit 4 where impurities such as hydrogen sulphide, carbon dioxide, hydrogen chloride and ammonia are removed.
- At least a portion of the purified gaseous product which comprises methane, carbon monoxide and hydrogen and exits from the gas purification unit 4 is fed to a gas turbine 5 where it is combusted with air in the combustion chamber 5 a of the turbine 5 to form gaseous combustion products to drive the turbine which in turn drives a first electrical generator 6 to produce electrical power.
- the liquid hydrocarbon product which would typically comprise a mixture of aromatic hydrocarbons, may also be fed to the combustion chamber 5 a and combusted therein with air to form further gaseous combustion products to drive the turbine.
- the liquid hydrocarbon may be fed to a storage vessel 7 from which the liquid may be drawn as required and fed to the combustion chamber 5 a .
- a further portion of the purified gaseous product exiting from the purification unit 4 may be passed to a gas separation unit 8 wherein the gaseous product is separated into a first separated gas which is a hydrogen-rich gas (i.e. at least 50% wt/wt hydrogen) and into a second separated gas which comprises methane and carbon monoxide.
- a first separated gas which is a hydrogen-rich gas (i.e. at least 50% wt/wt hydrogen) and into a second separated gas which comprises methane and carbon monoxide.
- the char While still under an elevated pressure and at hydrogenator exit temperature, the char is fed from the hydrogenator 2 into a desulphurisation unit 9 in which a bed of the char may be held for an average period of 1 to 20 minutes at a temperature of 750 to 900°C and a pressure of at least 20 bar while the first separated hydrogen-rich gas is passed through the bed to cause desulphurisation of the char.
- the temperature may conveniently be maintained, if desired, by injecting small quantities of air or oxygen to induce combustion of part of the hydrogen-rich gas.
- the char is then cooled and reduced in pressure (and optionally stored) before being used as described below.
- the second separated gas, from the separation unit 8, which comprises methane and carbon monoxide is mixed with that portion of the purified remaining gaseous product being fed to the gas turbine 5.
- At least a portion of the desulphurised char from the desulphurisation unit 9 is fed to a char-fired boiler 10 where the char is combusted with air to produce steam which drives a steam turbine 11 which in turn drives a second electrical generator 12 to produce electrical power.
- Hot gaseous combustion products are exhausted from the gas turbine 5 and are passed through a waste heat or heat recovery boiler 13 to produce further steam which drives the steam turbine 11 which in turn drives the electrical generator 12.
- Waste gaseous flue products from the boiler 13 are led away to the stack 14 without further clean up.
- the coal feed to the hydrogenator 2 may be prepared by drying and grinding to an appropriate size range to suit the hydrogenation process.
- Any unreacted hydrogen contained in the gases exiting from the purification unit 4 may, optionally, be recovered by known means for recycle to the hydrogenator 2.
- coal hydrogenation in the scheme described above is advantageous because both char and liquid fuels can be produced which contain sufficiently low amounts of sulphur, nitrogen and chlorine (which are all precursors of 'acid rain' emissions) that a high reduction of 'acid rain' emissions is already achieved without the need for disadvantageous and expensive downstream treatment of the flue gases, such as NOX removal and desulphurisation.
- contaminants including S, N and Cl
- the equipment may be made compact because of high operating pressures (leading to small gas volume) and very rapid reaction rates in hydrogen.
- hydrocarbon liquids produced are lighter, more volatile and less viscous in nature and substantially free of troublesome heavy residual or 'pitch' fraction which can result from other thermal coal conversion processes, such as coke ovens (carbonisation) or coal liquefaction.
- thermal coal conversion processes such as coke ovens (carbonisation) or coal liquefaction.
- Applications investigations have shown that the hydrocarbon liquids produced in their process can contain 30 to 90% of valuable benzene.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Eletrric Generators (AREA)
- Organic Insulating Materials (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Claims (8)
- Verfahren zur Wärmekraftkopplung, bei dem(i) ein methanreiches Gas und Wasserdampf und/oder sauerstoffhaltiges Gas in einen Reaktor eingeleitet und das methanreiche Gas bei erhöhter Temperatur mit dem Wasserdampf und/oder sauerstoffhaltigen Gas umgesetzt wird, wodurch ein heißes wasserstoffhaltiges Gas gebildet wird;(ii) in einen Kohlehydrierapparat Kohle und wenigstens ein Teil des wasserstoffhaltigen Gases bei einer zur Einleitung und Aufrechterhaltung einer Kohlehydrierungsreaktion geeigneten erhöhten Temperatur eingeleitet wird, die Kohle mit dem wasserstoffhaltigen Gas in dem Hydrierapparat hydriert wird und so ein Verkohlungsprodukt und ein erstes gasförmiges Produkt gebildet werden; sowie das Verkohlungsprodukt und das erste gasförmige Produkt aus dem Hydrierapparat ausgetragen werden;(iii) das erste gasförmige Produkt unter Bildung eines kondensierten flüssigen Kohlenwasserstoffproduktes und eines übrigbleibenden gasförmigen Produktes abgekühlt, sowie das flüssige Kohlenwasserstoffprodukt von dem übrigbleibenden gasförmigen Produkt abgetrennt wird;(iv) Verunreinigungen aus dem übrigbleibenden gasförmigen Produkt entfernt werden;(v) wenigstens ein Teil des gereinigten übrigbleibenden gasförmigen Produktes in die Brennkammmer einer Gasturbine eingespeist wird und so gasförmige Verbrennungsprodukte gebildet werden, um die Turbine anzutreiben, wodurch die Gasturbine einen ersten elektrischen Generator antreibt und so elektrische Energie erzeugt;(vi) ein Teil des gereinigten übrigbleibenden gasförmigen Produktes in ein erstes abgetrenntes Gas, nämlich ein wasserstoffreiches Gas, und ein zweites abgetrenntes Gas, bestehend aus Methan und Kohlenmonoxid, getrennt und das Verkohlungsprodukt vor Arbeitsgang (vii) mit dem ersten abgetrennten wasserstoffreichen Gas in Verkohlungsproduktes zu bewirken;(vii) wenigstens ein Teil des Verkohlungsproduktes in einen Kessel eingebracht und das Verkohlungsprodukt darin mit Luft verbrannt wird, um Dampf zum Antrieb einer Dampfturbine zu erzeugen, wodurch die Dampfturbine einen zweiten elektrischen Generator antreibt, um elektrische Energie zu erzeugen.
- Verfahren nach Anspruch 1, bei dem in dem Reaktor das methanreiche Gas mit Wasserdampf gemischt und damit in Anwesenheit eines Dampfreformierungskatalysators unter Bildung des wasserstoffhaltigen Gases umgesetzt wird.
- Verfahren nach Anspruch 1, bei dem in dem Reaktor das methanreiche Gas mit dem sauerstoffhaltigen Gas und gegebenenfalls noch mit Wasserdampf und/oder Kohlendioxid und damit umgesetzt wird, um eine vermischt Teiloxidationsreaktion herbeizuführen, durch die das wasserstoffhaltige Gas erzeugt wird.
- Verfahren nach den vorhergehenden Ansprüchen, bei dem vor dem Einleiten des heißen wasserstoffhaltigen Gases in den Kohlehydrierapparat ein solches wasserstoffhaltiges Gas auf eine relativ niedrigere Temperatur abgekühlt wird, um die zum Einleiten und Aufrechterhalten der Kohlehydrierungsreaktion im Hydrierapparat geeignete erhöhte Temperatur zu erzielen.
- Verfahren nach den vorhergehenden Ansprüchen, bei dem zumindest ein Teil des zweiten abgetrennten Gases mit dem in die Gasturbine eingespeisten gereinigten verbleibenden Gasproduktteil vermischt wird.
- Verfahren nach den vorhergehenden Ansprüchen, bei dem Schwefelwasserstoff und wasserstoffhaltige Gase, die aus der Entschwefelung des Verkohlungsproduktes herrühren, von dem entschwefelten Verkohlungsprodukt abgetrennt und mit dem übrigbleibenden gasförmigen Produkt vermischt werden, bevor die Verunreinigungen aus dem übrigbleibenden gasförmigen Produkt entfernt werden.
- Verfahren nach den vorhergehenden Ansprüchen, bei dem zumindest ein Teil des von dem übrigbleibenden gasförmigen Produkt abgetrennten flüssigen Kohlenwasserstoffprodukt in die Brennkammmer einer Gasturbine eingespeist wird und so gasförmige Verbrennungsprodukte gebildet werden, um die Gasturbine anzutreiben, wodurch die Gasturbine einen ersten elektrischen Generator antreibt und so elektrische Energie erzeugt.
- Verfahren nach den vorhergehenden Ansprüchen, bei dem heiße, ausgeblasene Verbrennungsprodukte aus der oder jeder Gasturbine durch einen oder mehrere Abwärmekessel geleitet werden, um weiteren Wasserdampf zum Antrieb einer oder mehrerer Dampfturbinen zu erzeugen, um einen elektrischen Generator anzutreiben und so elektrische Energie zu erzeugen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9104715A GB2253406B (en) | 1991-03-06 | 1991-03-06 | Electrical power generation |
GB9104715 | 1991-03-06 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0503773A2 EP0503773A2 (de) | 1992-09-16 |
EP0503773A3 EP0503773A3 (en) | 1992-11-25 |
EP0503773B1 true EP0503773B1 (de) | 1996-12-18 |
Family
ID=10691081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92301184A Expired - Lifetime EP0503773B1 (de) | 1991-03-06 | 1992-02-13 | Gewinnung elektrischer Energie |
Country Status (7)
Country | Link |
---|---|
US (1) | US5255504A (de) |
EP (1) | EP0503773B1 (de) |
AT (1) | ATE146562T1 (de) |
AU (1) | AU638632B2 (de) |
DE (1) | DE69215934D1 (de) |
GB (1) | GB2253406B (de) |
ZA (1) | ZA921420B (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5666801A (en) * | 1995-09-01 | 1997-09-16 | Rohrer; John W. | Combined cycle power plant with integrated CFB devolatilizer and CFB boiler |
US5676711A (en) * | 1996-02-21 | 1997-10-14 | Kuzara; Joseph K. | Oil conversion process |
US6014855A (en) * | 1997-04-30 | 2000-01-18 | Stewart & Stevenson Services, Inc. | Light hydrocarbon fuel cooling system for gas turbine |
US6233914B1 (en) * | 1997-07-31 | 2001-05-22 | Ormat Industries Ltd. | Method of an apparatus for producing power having a solar reformer and a steam generator which generate fuel for a power plant |
US6467273B1 (en) | 2001-03-01 | 2002-10-22 | Henry A. Lott | Method for producing electrical power |
US6968700B2 (en) | 2001-03-01 | 2005-11-29 | Lott Henry A | Power systems |
US6841683B2 (en) * | 2001-08-30 | 2005-01-11 | Teva Pharmaceutical Industries Ltd. | Sulfonation method for zonisamide intermediate in zonisamide synthesis and their novel crystal forms |
US6976362B2 (en) * | 2001-09-25 | 2005-12-20 | Rentech, Inc. | Integrated Fischer-Tropsch and power production plant with low CO2 emissions |
US7634915B2 (en) * | 2005-12-13 | 2009-12-22 | General Electric Company | Systems and methods for power generation and hydrogen production with carbon dioxide isolation |
US9557057B2 (en) | 2007-02-09 | 2017-01-31 | Dale Robert Lutz | Reliable carbon-neutral power generation system |
US8584468B2 (en) * | 2007-02-09 | 2013-11-19 | Dale Robert Lutz | Reliable carbon-neutral power generation system |
US20080302106A1 (en) * | 2007-06-07 | 2008-12-11 | Econo-Power International Corporation | Integration of coal fired steam plants with integrated gasification combined cycle power plants |
JP5030750B2 (ja) * | 2007-11-30 | 2012-09-19 | 三菱重工業株式会社 | 石炭ガス化複合発電設備 |
US8024930B2 (en) * | 2009-01-06 | 2011-09-27 | General Electric Company | Heat integration in coal gasification and methanation reaction process |
DE102009018126B4 (de) * | 2009-04-09 | 2022-02-17 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg | Energieversorgungssystem und Betriebsverfahren |
DE102010045622A1 (de) * | 2010-09-17 | 2012-03-22 | Rwe Power Ag | Verfahren zum Betreiben eines Industriekraftwerks sowie Industriekraftwerk für Prozessgase |
FI20115038L (fi) * | 2011-01-14 | 2012-07-15 | Vapo Oy | Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi |
CN104612766B (zh) * | 2013-11-04 | 2016-07-06 | 中国科学院工程热物理研究所 | 应用于独立气化岛的饱和蒸汽轮机发电系统 |
JP7140726B2 (ja) | 2019-08-28 | 2022-09-21 | 三菱重工業株式会社 | 炭素系燃料のガス化発電システム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE251780C (de) * | 1910-08-11 | |||
US3991557A (en) * | 1974-07-22 | 1976-11-16 | Donath Ernest E | Process for converting high sulfur coal to low sulfur power plant fuel |
US3986349A (en) * | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US4277416A (en) * | 1977-02-17 | 1981-07-07 | Aminoil, Usa, Inc. | Process for producing methanol |
US4353214A (en) * | 1978-11-24 | 1982-10-12 | Gardner James H | Energy storage system for electric utility plant |
US4478039A (en) * | 1980-12-29 | 1984-10-23 | United Technologies Corporation | Utilization of coal in a combined cycle powerplant |
GB2121426A (en) * | 1982-05-24 | 1983-12-21 | British Gas Corp | Hydrogenated carbonaceous solids |
DE3246609A1 (de) * | 1982-12-16 | 1984-06-20 | GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken | Verfahren zum hydrieren von kohle |
US4594140A (en) * | 1984-04-04 | 1986-06-10 | Cheng Shang I | Integrated coal liquefaction, gasification and electricity production process |
DE3415224A1 (de) * | 1984-04-21 | 1985-10-24 | Kraftwerk Union AG, 4330 Mülheim | Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage |
DE3709469A1 (de) * | 1987-03-23 | 1988-10-06 | Siemens Ag | Kombiniertes gas- und dampfturbinenkraftwerk |
DE3731627A1 (de) * | 1987-09-19 | 1989-03-30 | Klaus Prof Dr Ing Dr In Knizia | Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk |
-
1991
- 1991-03-06 GB GB9104715A patent/GB2253406B/en not_active Expired - Fee Related
-
1992
- 1992-02-13 DE DE69215934T patent/DE69215934D1/de not_active Expired - Lifetime
- 1992-02-13 AT AT92301184T patent/ATE146562T1/de not_active IP Right Cessation
- 1992-02-13 EP EP92301184A patent/EP0503773B1/de not_active Expired - Lifetime
- 1992-02-26 ZA ZA921420A patent/ZA921420B/xx unknown
- 1992-02-26 US US07/841,507 patent/US5255504A/en not_active Expired - Fee Related
- 1992-03-02 AU AU11388/92A patent/AU638632B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
ZA921420B (en) | 1992-11-25 |
AU638632B2 (en) | 1993-07-01 |
GB2253406B (en) | 1994-11-16 |
AU1138892A (en) | 1992-09-10 |
ATE146562T1 (de) | 1997-01-15 |
EP0503773A3 (en) | 1992-11-25 |
GB2253406A (en) | 1992-09-09 |
EP0503773A2 (de) | 1992-09-16 |
DE69215934D1 (de) | 1997-01-30 |
GB9104715D0 (en) | 1991-04-17 |
US5255504A (en) | 1993-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0503773B1 (de) | Gewinnung elektrischer Energie | |
JP5919393B2 (ja) | 二酸化炭素の一酸化炭素への変換方法及び装置 | |
RU2495914C2 (ru) | Устройства и способы обработки водорода и монооксида углерода | |
US8188322B2 (en) | Methanol production process | |
US5733941A (en) | Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid | |
US6130259A (en) | Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid | |
US4202167A (en) | Process for producing power | |
US4271086A (en) | Production of methanol | |
US20020004533A1 (en) | Integration of shift reactors and hydrotreaters | |
RU2175724C2 (ru) | Способ выработки электроэнергии в цикле, содержащем газовую турбину | |
CZ287393B6 (en) | Treatment process of raw heating gas | |
US20040171701A1 (en) | Methanol production process | |
US20030014974A1 (en) | Installation and process for the production of synthesis gas comprising a reactor for steam reforming and a reactor for converting CO2 heated by a hot gas | |
EP0503772B1 (de) | Gewinnung elektrischer Energie | |
CA1252299A (en) | Power generating station with a high-temperature reactor and a plant for manufacturing chemical raw materials | |
EP0111376B1 (de) | Verfahren zur Herstellung von Methanol | |
JPH11228973A (ja) | 石炭水素化熱分解方法 | |
WO2003029174A2 (en) | Methanol production process | |
JP3947266B2 (ja) | 水素製造方法およびそれに用いる装置 | |
KR900004525B1 (ko) | 열 에너지를 발생시키는 방법 | |
JPS62502610A (ja) | 熱エネルギ−の発生法 | |
EA004781B1 (ru) | Способ получения термически конвертируемых легких продуктов и электричества | |
JPH0417881B2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19920817 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB IT NL SE |
|
RHK1 | Main classification (correction) |
Ipc: F02C 3/28 |
|
17Q | First examination report despatched |
Effective date: 19950712 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE DE ES FR IT NL SE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19961218 Ref country code: FR Effective date: 19961218 Ref country code: BE Effective date: 19961218 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19961218 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19961218 Ref country code: AT Effective date: 19961218 |
|
REF | Corresponds to: |
Ref document number: 146562 Country of ref document: AT Date of ref document: 19970115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69215934 Country of ref document: DE Date of ref document: 19970130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19970318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970319 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BG PUBLIC LIMITED COMPANY |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |