EP0503773B1 - Gewinnung elektrischer Energie - Google Patents

Gewinnung elektrischer Energie Download PDF

Info

Publication number
EP0503773B1
EP0503773B1 EP92301184A EP92301184A EP0503773B1 EP 0503773 B1 EP0503773 B1 EP 0503773B1 EP 92301184 A EP92301184 A EP 92301184A EP 92301184 A EP92301184 A EP 92301184A EP 0503773 B1 EP0503773 B1 EP 0503773B1
Authority
EP
European Patent Office
Prior art keywords
gas
hydrogen
steam
char
gaseous product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92301184A
Other languages
English (en)
French (fr)
Other versions
EP0503773A3 (en
EP0503773A2 (de
Inventor
Ronald Christopher Hodrien
Philip Arthur Borrill
Deborah Julie Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BG Group Ltd
Original Assignee
British Gas PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Gas PLC filed Critical British Gas PLC
Publication of EP0503773A2 publication Critical patent/EP0503773A2/de
Publication of EP0503773A3 publication Critical patent/EP0503773A3/en
Application granted granted Critical
Publication of EP0503773B1 publication Critical patent/EP0503773B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to electrical power generation and, more particularly, to a method for combined cycle electrical power generation.
  • a combined cycle power plant is known from US-A-4631915.
  • An object of the invention is to provide such a method which utilises a coal hydrogenation process.
  • a method for combined cycle electrical power generation comprises: (i) introducing a methane-rich gas and steam and/or oxygen-containing gas into a reactor, reacting the methane-rich gas at an elevated temperature with the steam and/or oxygen-containing gas to form a hot hydrogen-containing gas; (ii) introducing into a coal hydrogenator coal and at least a portion of the hydrogen-containing gas at an elevated temperature suitable for initiating and maintaining coal hydrogenation reaction, hydrogenating the coal with the hydrogen-containing gas in the hydrogenator to form a char and a first gaseous product; removing the char and removing the first gaseous product from the hydrogenator; (iii) cooling the first gaseous product to form a condensed liquid hydrocarbon product and a remaining gaseous product; separating the liquid hydrocarbon product from the remaining gaseous product; (iv) removing impurities from the remaining gaseous product; (v) feeding at least a portion of the purified remaining gaseous product to the combustion chamber of a gas turbine to
  • One or more gas turbines may be driven by the combustion products and one or more steam turbines may be driven by the steam produced.
  • such hydrogen-containing gas Prior to the hot hydrogen-containing gas being introduced into the coal hydrogenator, such hydrogen-containing gas may be cooled to a relatively cooler temperature in order to obtain the said elevated temperature suitable for initiating and maintaining the coal hydrogenation reaction in the hydrogenator. It will be appreciated that with or without this cooling step, the hot hydrogen-containing gas can be/is fed from the reactor to the coal hydrogenator without an intermediate heating stage.
  • reaction processes may be used to convert the methane-rich gas into the hot hydrogen-containing gas, such as, high temperature steam reforming or partial oxidation processes.
  • the methane-rich gas may be mixed with steam and reacted therewith in the presence of a steam-reforming catalyst to form the hydrogen-containing gas, or as an alternative, the methane-rich gas may be mixed with the oxygen-containing gas (and, optionally, in addition with steam and/or carbon dioxide) and reacted therewith so as to cause a partial oxidation reaction which produces the hydrogen-containing gas.
  • As least a portion of the second separated gas may be mixed with the purified remaining gaseous product portion being fed to the gas turbine(s).
  • Hydrogen sulphide and hydrogen-containing gases which result from the desulphurisation of the char may be separated from the desulphurised char and then mixed with the remaining gaseous product prior to the removal of impurities from the remaining gaseous product.
  • At least a portion of the liquid hydrocarbon product separated from the remaining gaseous product may be fed to the combustion chamber of a gas turbine to form gaseous combustion products to drive the gas turbine to drive an electrical generator to produce electrical power.
  • This gas turbine may be the gas turbine, or one of the gas turbines, which is driven via the purified remaining gaseous product.
  • the gas turbine driven via the liquid hydrocarbon product may be a separate turbine.
  • liquid hydrocarbon products may be stored and from store, as required, be used at times of increased or peak power demand. Such storage may avoid the need to purchase suitable liquid fuels or synthesise them.
  • liquid hydrocarbon products from such store may be sold as a fuel or chemical feedstock.
  • Hot exhausted combustion products from the, or any of the, gas turbines may be passed through one or more waste heat boilers to produce further steam to drive one or more steam turbines to drive an electrical generator to produce electrical power.
  • This or these steam turbines may be the, or one of the, steam turbines driven by the steam produced by the combustion of the char, or alternatively the or each steam turbine driven by steam from the waste boiler(s) may be a separate turbine.
  • methane-rich gas such as natural gas
  • steam and/or oxygen-containing gas are introduced into a reactor 1 wherein the methane-rich gas is caused to react at an elevated temperature with the steam and/or oxygen to form a hot, crude hydrogen-containing gas.
  • reaction may be provided by a high temperature steam reforming process in which the methane-rich gas has previously been purified to meet the requirements of a steam reforming catalyst to be used, and is then mixed with an excess of steam (typically 3-5 mol/mol carbon in feed) and reacted in the reactor 1 over the catalyst (such as a suitable supported nickel based proprietary catalyst) at a temperature of 750-900°C and a pressure of from 1 to 35 bar.
  • the catalyst such as a suitable supported nickel based proprietary catalyst
  • such reaction may be provided by a high temperature partial oxidation process in which the methane-rich gas is mixed with an oxygen-containing gas (and, optionally, in addition with steam or carbon dioxide) and reacted in reactor 1 in a partial combustion reaction at a temperature of 1250 to 1500°C and at a pressure of from 1 to 100 bar.
  • the reaction may occur over a suitable catalyst present in the reactor vessel.
  • Coal and the hot, crude hydrogen-containing gas produced in the reactor 1 are fed into a coal hydrogenator 2.
  • the hot, crude gas may be fed either directly from the reactor 1 to the hydrogenator 2 or, alternatively, if the crude gas from the reactor 1 is at too high a temperature, then before introduction into the hydrogenator 2, it may be directly cooled or quenched to a desired hydrogenator inlet temperature, for example by the addition of fluids such as steam, water or relatively cool product gas recycled from a point downstream in the scheme.
  • the hot, crude gas provides the reaction heat in the hydrogenator 2.
  • the coal and hot crude gas are fed into the hydrogenator at an elevated pressure and an elevated temperature suitable for initiating and maintaining coal hydrogenation reactions so that the coal is hydrogenated by the hydrogen-containing gas to form a char and a first gaseous product.
  • the char and the first gaseous product are removed from the hydrogenator 2.
  • the first gaseous product is passed to a gas cooler 3 where a condensed liquid hydrocarbon product and a remaining gaseous product are formed from the first gaseous product.
  • This remaining gaseous product leaving the gas cooler 3 is passed through a gas purification unit 4 where impurities such as hydrogen sulphide, carbon dioxide, hydrogen chloride and ammonia are removed.
  • At least a portion of the purified gaseous product which comprises methane, carbon monoxide and hydrogen and exits from the gas purification unit 4 is fed to a gas turbine 5 where it is combusted with air in the combustion chamber 5 a of the turbine 5 to form gaseous combustion products to drive the turbine which in turn drives a first electrical generator 6 to produce electrical power.
  • the liquid hydrocarbon product which would typically comprise a mixture of aromatic hydrocarbons, may also be fed to the combustion chamber 5 a and combusted therein with air to form further gaseous combustion products to drive the turbine.
  • the liquid hydrocarbon may be fed to a storage vessel 7 from which the liquid may be drawn as required and fed to the combustion chamber 5 a .
  • a further portion of the purified gaseous product exiting from the purification unit 4 may be passed to a gas separation unit 8 wherein the gaseous product is separated into a first separated gas which is a hydrogen-rich gas (i.e. at least 50% wt/wt hydrogen) and into a second separated gas which comprises methane and carbon monoxide.
  • a first separated gas which is a hydrogen-rich gas (i.e. at least 50% wt/wt hydrogen) and into a second separated gas which comprises methane and carbon monoxide.
  • the char While still under an elevated pressure and at hydrogenator exit temperature, the char is fed from the hydrogenator 2 into a desulphurisation unit 9 in which a bed of the char may be held for an average period of 1 to 20 minutes at a temperature of 750 to 900°C and a pressure of at least 20 bar while the first separated hydrogen-rich gas is passed through the bed to cause desulphurisation of the char.
  • the temperature may conveniently be maintained, if desired, by injecting small quantities of air or oxygen to induce combustion of part of the hydrogen-rich gas.
  • the char is then cooled and reduced in pressure (and optionally stored) before being used as described below.
  • the second separated gas, from the separation unit 8, which comprises methane and carbon monoxide is mixed with that portion of the purified remaining gaseous product being fed to the gas turbine 5.
  • At least a portion of the desulphurised char from the desulphurisation unit 9 is fed to a char-fired boiler 10 where the char is combusted with air to produce steam which drives a steam turbine 11 which in turn drives a second electrical generator 12 to produce electrical power.
  • Hot gaseous combustion products are exhausted from the gas turbine 5 and are passed through a waste heat or heat recovery boiler 13 to produce further steam which drives the steam turbine 11 which in turn drives the electrical generator 12.
  • Waste gaseous flue products from the boiler 13 are led away to the stack 14 without further clean up.
  • the coal feed to the hydrogenator 2 may be prepared by drying and grinding to an appropriate size range to suit the hydrogenation process.
  • Any unreacted hydrogen contained in the gases exiting from the purification unit 4 may, optionally, be recovered by known means for recycle to the hydrogenator 2.
  • coal hydrogenation in the scheme described above is advantageous because both char and liquid fuels can be produced which contain sufficiently low amounts of sulphur, nitrogen and chlorine (which are all precursors of 'acid rain' emissions) that a high reduction of 'acid rain' emissions is already achieved without the need for disadvantageous and expensive downstream treatment of the flue gases, such as NOX removal and desulphurisation.
  • contaminants including S, N and Cl
  • the equipment may be made compact because of high operating pressures (leading to small gas volume) and very rapid reaction rates in hydrogen.
  • hydrocarbon liquids produced are lighter, more volatile and less viscous in nature and substantially free of troublesome heavy residual or 'pitch' fraction which can result from other thermal coal conversion processes, such as coke ovens (carbonisation) or coal liquefaction.
  • thermal coal conversion processes such as coke ovens (carbonisation) or coal liquefaction.
  • Applications investigations have shown that the hydrocarbon liquids produced in their process can contain 30 to 90% of valuable benzene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Organic Insulating Materials (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Claims (8)

  1. Verfahren zur Wärmekraftkopplung, bei dem
    (i) ein methanreiches Gas und Wasserdampf und/oder sauerstoffhaltiges Gas in einen Reaktor eingeleitet und das methanreiche Gas bei erhöhter Temperatur mit dem Wasserdampf und/oder sauerstoffhaltigen Gas umgesetzt wird, wodurch ein heißes wasserstoffhaltiges Gas gebildet wird;
    (ii) in einen Kohlehydrierapparat Kohle und wenigstens ein Teil des wasserstoffhaltigen Gases bei einer zur Einleitung und Aufrechterhaltung einer Kohlehydrierungsreaktion geeigneten erhöhten Temperatur eingeleitet wird, die Kohle mit dem wasserstoffhaltigen Gas in dem Hydrierapparat hydriert wird und so ein Verkohlungsprodukt und ein erstes gasförmiges Produkt gebildet werden; sowie das Verkohlungsprodukt und das erste gasförmige Produkt aus dem Hydrierapparat ausgetragen werden;
    (iii) das erste gasförmige Produkt unter Bildung eines kondensierten flüssigen Kohlenwasserstoffproduktes und eines übrigbleibenden gasförmigen Produktes abgekühlt, sowie das flüssige Kohlenwasserstoffprodukt von dem übrigbleibenden gasförmigen Produkt abgetrennt wird;
    (iv) Verunreinigungen aus dem übrigbleibenden gasförmigen Produkt entfernt werden;
    (v) wenigstens ein Teil des gereinigten übrigbleibenden gasförmigen Produktes in die Brennkammmer einer Gasturbine eingespeist wird und so gasförmige Verbrennungsprodukte gebildet werden, um die Turbine anzutreiben, wodurch die Gasturbine einen ersten elektrischen Generator antreibt und so elektrische Energie erzeugt;
    (vi) ein Teil des gereinigten übrigbleibenden gasförmigen Produktes in ein erstes abgetrenntes Gas, nämlich ein wasserstoffreiches Gas, und ein zweites abgetrenntes Gas, bestehend aus Methan und Kohlenmonoxid, getrennt und das Verkohlungsprodukt vor Arbeitsgang (vii) mit dem ersten abgetrennten wasserstoffreichen Gas in Verkohlungsproduktes zu bewirken;
    (vii) wenigstens ein Teil des Verkohlungsproduktes in einen Kessel eingebracht und das Verkohlungsprodukt darin mit Luft verbrannt wird, um Dampf zum Antrieb einer Dampfturbine zu erzeugen, wodurch die Dampfturbine einen zweiten elektrischen Generator antreibt, um elektrische Energie zu erzeugen.
  2. Verfahren nach Anspruch 1, bei dem in dem Reaktor das methanreiche Gas mit Wasserdampf gemischt und damit in Anwesenheit eines Dampfreformierungskatalysators unter Bildung des wasserstoffhaltigen Gases umgesetzt wird.
  3. Verfahren nach Anspruch 1, bei dem in dem Reaktor das methanreiche Gas mit dem sauerstoffhaltigen Gas und gegebenenfalls noch mit Wasserdampf und/oder Kohlendioxid und damit umgesetzt wird, um eine vermischt Teiloxidationsreaktion herbeizuführen, durch die das wasserstoffhaltige Gas erzeugt wird.
  4. Verfahren nach den vorhergehenden Ansprüchen, bei dem vor dem Einleiten des heißen wasserstoffhaltigen Gases in den Kohlehydrierapparat ein solches wasserstoffhaltiges Gas auf eine relativ niedrigere Temperatur abgekühlt wird, um die zum Einleiten und Aufrechterhalten der Kohlehydrierungsreaktion im Hydrierapparat geeignete erhöhte Temperatur zu erzielen.
  5. Verfahren nach den vorhergehenden Ansprüchen, bei dem zumindest ein Teil des zweiten abgetrennten Gases mit dem in die Gasturbine eingespeisten gereinigten verbleibenden Gasproduktteil vermischt wird.
  6. Verfahren nach den vorhergehenden Ansprüchen, bei dem Schwefelwasserstoff und wasserstoffhaltige Gase, die aus der Entschwefelung des Verkohlungsproduktes herrühren, von dem entschwefelten Verkohlungsprodukt abgetrennt und mit dem übrigbleibenden gasförmigen Produkt vermischt werden, bevor die Verunreinigungen aus dem übrigbleibenden gasförmigen Produkt entfernt werden.
  7. Verfahren nach den vorhergehenden Ansprüchen, bei dem zumindest ein Teil des von dem übrigbleibenden gasförmigen Produkt abgetrennten flüssigen Kohlenwasserstoffprodukt in die Brennkammmer einer Gasturbine eingespeist wird und so gasförmige Verbrennungsprodukte gebildet werden, um die Gasturbine anzutreiben, wodurch die Gasturbine einen ersten elektrischen Generator antreibt und so elektrische Energie erzeugt.
  8. Verfahren nach den vorhergehenden Ansprüchen, bei dem heiße, ausgeblasene Verbrennungsprodukte aus der oder jeder Gasturbine durch einen oder mehrere Abwärmekessel geleitet werden, um weiteren Wasserdampf zum Antrieb einer oder mehrerer Dampfturbinen zu erzeugen, um einen elektrischen Generator anzutreiben und so elektrische Energie zu erzeugen.
EP92301184A 1991-03-06 1992-02-13 Gewinnung elektrischer Energie Expired - Lifetime EP0503773B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9104715A GB2253406B (en) 1991-03-06 1991-03-06 Electrical power generation
GB9104715 1991-03-06

Publications (3)

Publication Number Publication Date
EP0503773A2 EP0503773A2 (de) 1992-09-16
EP0503773A3 EP0503773A3 (en) 1992-11-25
EP0503773B1 true EP0503773B1 (de) 1996-12-18

Family

ID=10691081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92301184A Expired - Lifetime EP0503773B1 (de) 1991-03-06 1992-02-13 Gewinnung elektrischer Energie

Country Status (7)

Country Link
US (1) US5255504A (de)
EP (1) EP0503773B1 (de)
AT (1) ATE146562T1 (de)
AU (1) AU638632B2 (de)
DE (1) DE69215934D1 (de)
GB (1) GB2253406B (de)
ZA (1) ZA921420B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666801A (en) * 1995-09-01 1997-09-16 Rohrer; John W. Combined cycle power plant with integrated CFB devolatilizer and CFB boiler
US5676711A (en) * 1996-02-21 1997-10-14 Kuzara; Joseph K. Oil conversion process
US6014855A (en) * 1997-04-30 2000-01-18 Stewart & Stevenson Services, Inc. Light hydrocarbon fuel cooling system for gas turbine
US6233914B1 (en) * 1997-07-31 2001-05-22 Ormat Industries Ltd. Method of an apparatus for producing power having a solar reformer and a steam generator which generate fuel for a power plant
US6467273B1 (en) 2001-03-01 2002-10-22 Henry A. Lott Method for producing electrical power
US6968700B2 (en) 2001-03-01 2005-11-29 Lott Henry A Power systems
US6841683B2 (en) * 2001-08-30 2005-01-11 Teva Pharmaceutical Industries Ltd. Sulfonation method for zonisamide intermediate in zonisamide synthesis and their novel crystal forms
US6976362B2 (en) * 2001-09-25 2005-12-20 Rentech, Inc. Integrated Fischer-Tropsch and power production plant with low CO2 emissions
US7634915B2 (en) * 2005-12-13 2009-12-22 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation
US9557057B2 (en) 2007-02-09 2017-01-31 Dale Robert Lutz Reliable carbon-neutral power generation system
US8584468B2 (en) * 2007-02-09 2013-11-19 Dale Robert Lutz Reliable carbon-neutral power generation system
US20080302106A1 (en) * 2007-06-07 2008-12-11 Econo-Power International Corporation Integration of coal fired steam plants with integrated gasification combined cycle power plants
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
US8024930B2 (en) * 2009-01-06 2011-09-27 General Electric Company Heat integration in coal gasification and methanation reaction process
DE102009018126B4 (de) * 2009-04-09 2022-02-17 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Energieversorgungssystem und Betriebsverfahren
DE102010045622A1 (de) * 2010-09-17 2012-03-22 Rwe Power Ag Verfahren zum Betreiben eines Industriekraftwerks sowie Industriekraftwerk für Prozessgase
FI20115038L (fi) * 2011-01-14 2012-07-15 Vapo Oy Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi
CN104612766B (zh) * 2013-11-04 2016-07-06 中国科学院工程热物理研究所 应用于独立气化岛的饱和蒸汽轮机发电系统
JP7140726B2 (ja) 2019-08-28 2022-09-21 三菱重工業株式会社 炭素系燃料のガス化発電システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE251780C (de) * 1910-08-11
US3991557A (en) * 1974-07-22 1976-11-16 Donath Ernest E Process for converting high sulfur coal to low sulfur power plant fuel
US3986349A (en) * 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US4277416A (en) * 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4353214A (en) * 1978-11-24 1982-10-12 Gardner James H Energy storage system for electric utility plant
US4478039A (en) * 1980-12-29 1984-10-23 United Technologies Corporation Utilization of coal in a combined cycle powerplant
GB2121426A (en) * 1982-05-24 1983-12-21 British Gas Corp Hydrogenated carbonaceous solids
DE3246609A1 (de) * 1982-12-16 1984-06-20 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Verfahren zum hydrieren von kohle
US4594140A (en) * 1984-04-04 1986-06-10 Cheng Shang I Integrated coal liquefaction, gasification and electricity production process
DE3415224A1 (de) * 1984-04-21 1985-10-24 Kraftwerk Union AG, 4330 Mülheim Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage
DE3709469A1 (de) * 1987-03-23 1988-10-06 Siemens Ag Kombiniertes gas- und dampfturbinenkraftwerk
DE3731627A1 (de) * 1987-09-19 1989-03-30 Klaus Prof Dr Ing Dr In Knizia Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk

Also Published As

Publication number Publication date
ZA921420B (en) 1992-11-25
AU638632B2 (en) 1993-07-01
GB2253406B (en) 1994-11-16
AU1138892A (en) 1992-09-10
ATE146562T1 (de) 1997-01-15
EP0503773A3 (en) 1992-11-25
GB2253406A (en) 1992-09-09
EP0503773A2 (de) 1992-09-16
DE69215934D1 (de) 1997-01-30
GB9104715D0 (en) 1991-04-17
US5255504A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
EP0503773B1 (de) Gewinnung elektrischer Energie
JP5919393B2 (ja) 二酸化炭素の一酸化炭素への変換方法及び装置
RU2495914C2 (ru) Устройства и способы обработки водорода и монооксида углерода
US8188322B2 (en) Methanol production process
US5733941A (en) Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
US6130259A (en) Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
US4202167A (en) Process for producing power
US4271086A (en) Production of methanol
US20020004533A1 (en) Integration of shift reactors and hydrotreaters
RU2175724C2 (ru) Способ выработки электроэнергии в цикле, содержащем газовую турбину
CZ287393B6 (en) Treatment process of raw heating gas
US20040171701A1 (en) Methanol production process
US20030014974A1 (en) Installation and process for the production of synthesis gas comprising a reactor for steam reforming and a reactor for converting CO2 heated by a hot gas
EP0503772B1 (de) Gewinnung elektrischer Energie
CA1252299A (en) Power generating station with a high-temperature reactor and a plant for manufacturing chemical raw materials
EP0111376B1 (de) Verfahren zur Herstellung von Methanol
JPH11228973A (ja) 石炭水素化熱分解方法
WO2003029174A2 (en) Methanol production process
JP3947266B2 (ja) 水素製造方法およびそれに用いる装置
KR900004525B1 (ko) 열 에너지를 발생시키는 방법
JPS62502610A (ja) 熱エネルギ−の発生法
EA004781B1 (ru) Способ получения термически конвертируемых легких продуктов и электричества
JPH0417881B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19920817

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT NL SE

RHK1 Main classification (correction)

Ipc: F02C 3/28

17Q First examination report despatched

Effective date: 19950712

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE ES FR IT NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19961218

Ref country code: FR

Effective date: 19961218

Ref country code: BE

Effective date: 19961218

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961218

Ref country code: AT

Effective date: 19961218

REF Corresponds to:

Ref document number: 146562

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69215934

Country of ref document: DE

Date of ref document: 19970130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970319

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BG PUBLIC LIMITED COMPANY

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed