EP0486119B1 - Transducteur électrodynamique à ultrasons - Google Patents

Transducteur électrodynamique à ultrasons Download PDF

Info

Publication number
EP0486119B1
EP0486119B1 EP91250296A EP91250296A EP0486119B1 EP 0486119 B1 EP0486119 B1 EP 0486119B1 EP 91250296 A EP91250296 A EP 91250296A EP 91250296 A EP91250296 A EP 91250296A EP 0486119 B1 EP0486119 B1 EP 0486119B1
Authority
EP
European Patent Office
Prior art keywords
concentrator
pole faces
workpiece surface
magnets
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91250296A
Other languages
German (de)
English (en)
Other versions
EP0486119A3 (en
EP0486119A2 (fr
Inventor
Alfred Dipl.-Phys. Graff
Michael Wächter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0486119A2 publication Critical patent/EP0486119A2/fr
Publication of EP0486119A3 publication Critical patent/EP0486119A3/de
Application granted granted Critical
Publication of EP0486119B1 publication Critical patent/EP0486119B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism

Definitions

  • the invention relates to an electrodynamic ultrasonic transducer according to the preamble of patent claim 1.
  • Electrodynamic ultrasonic transducers are mainly used in the field of non-destructive testing of workpieces.
  • Such electrodynamic ultrasonic transducers consist of magnet systems that introduce magnetic field lines into the workpiece to be tested.
  • a coil system arranged in the vicinity of the workpiece surface is subjected to high-frequency alternating voltage and in this way generates eddy eddy currents in the workpiece surface.
  • Such an electrodynamic ultrasonic transducer of the generic type is known from German published patent application DE 32 34 424.
  • the electrodynamic ultrasound transducer consists of a magnet arrangement in which magnets with the same polarities are arranged facing one another via ferrite parts located between them.
  • the dimensions of the ferrite parts in this known embodiment parallel to the pole faces are at least as large as the cross-sectional area of the pole faces themselves.
  • magnetic field lines are concentrated on the area of the ferrite part, but only partially magnetic Draw conclusions about the workpiece to be tested. In other words, magnetic field lines also occur laterally, i.e. not directly towards the workpiece surface and make a conclusion about the air.
  • the disadvantage is that only part of the total available magnetic field can be used for ultrasonic testing.
  • the object of the invention is therefore to develop an electrodynamic ultrasound transducer of the generic type in such a way that, with little effort, a substantial increase in the magnetic field density that can be used for ultrasound testing can be generated on the workpiece surface to be tested.
  • the object is achieved according to the invention in that the cross-sectional area of the concentrator body parallel to the pole faces of the permanent magnets is made smaller than each of the pole faces of the permanent magnets, and in that the concentrator body extends over the boundary line of the cross-sectional contour of the magnets protrudes and the space remaining between the pole faces around the concentrator body is filled with a correspondingly shaped non-ferromagnetic body.
  • the advantage of the present invention is that the task of increasing the magnetic field density to be introduced into the workpiece is achieved in a very simple and yet very effective manner.
  • the proposal according to the invention to make the cross-sectional area of the concentrator body smaller than each of the pole faces of the permanent magnets leads to a constriction or collectivization of all magnetic field lines in the direction of the concentrator Concentrator body. Lateral emergence of magnetic field lines on the other sides not facing the surface to be tested is prevented in a very simple manner in this way.
  • the proposal according to the invention to arrange the concentrator body designed in this way also shifted towards the workpiece surface has the advantage that most of the magnetic field density can be directed onto the surface and then preferably forms the inference there, and can thus be used for ultrasound generation .
  • the concentrator body advantageously consists of a soft magnetic powder composite.
  • the invention enables advantageous use of permanent magnets.
  • the use of a concentrator body made of a soft magnetic powder composite material leads to an efficient use of the magnetic field for the ultrasound generation.
  • soft magnetic powder composites conduct magnetic field lines, but are electrically high-resistance.
  • the result of these properties is that the magnetic field is brought to the surface of the workpiece without weakening, but that no ultrasound is generated in the concentrator body itself. This has the advantage that the entire energy available for generating ultrasound in the workpiece itself can be used.
  • the concentrator body is provided with a bulge on the side facing the workpiece surface. This bulge causes the magnetic field lines to be concentrated in a particularly simple manner on or in the workpiece to be tested.
  • the non-ferromagnetic body is made of plastic. This advantageously results in simple workability and handling.
  • a plurality of magnet arrangements are lined up to form a test ruler. This results in a simple and compact test facility.
  • the non-ferromagnetic body is provided with a through hole which is arranged perpendicular to the workpiece surface to be tested and at a distance from the concentrator body.
  • the outward-facing pole faces of the magnets are connected in a magnetically conductive manner to a short-circuit body and the short-circuit body is provided with contact surfaces which can be placed on the workpiece surface to be tested. It follows advantageously a good inference effect with regard to the magnetic field lines.
  • Figure 2 shows the concentrator body 3 and the partially encompassing non-ferromagnetic body 4 in section along the line AA.
  • the non-ferromagnetic body 4 essentially describes the cross-sectional contour of the pole faces 1 ', 2' of the permanent magnets 1, 2, in which the concentrator body 3 is then displaced in a predetermined position towards the workpiece surface 6. It is clear here that the cross section of the concentrator body 3 is considerably smaller than the cross sectional area of the pole faces 1 ', 2'.
  • the bulge 3 'of the concentrator body 3, which points towards the surface, projects somewhat beyond the boundary line of the cross-sectional contour of the magnets 1, 2 and the non-ferromagnetic body 4 to the workpiece surface there. Between this bulge 3 'and the workpiece surface 6, the transducer coil 5 is arranged, to which a high-frequency transmission pulse is applied, whereby the ultrasound is generated in the workpiece 6 to be tested.
  • FIG. 3 shows the magnet arrangement in a side view with the use of a yoke body 8.
  • the yoke body 8 lies in a magnetically conductive manner on the outward-facing pole ends of the magnets 1 and 2.
  • Via the contact surfaces 9 and 10 attached to the yoke body 8 it is possible to apply the yoke body 8 to the workpiece surface 6 to be tested.
  • d. H the return of the magnetic field lines and thus the establishment of a closed magnetic circuit.
  • the contact surfaces 9 and 10 are dimensioned such that, together with them, the transducer coil 5 is placed in a suitable position on the workpiece surface.
  • the yoke body 8 consists of a ferromagnetic material.
  • the cross-sectional area of the concentrator body cannot be reduced as desired. Care must be taken that the cross section of the concentrator body is sufficient to absorb the magnetic field density present. This ability depends on the one hand on the permeability, the saturation induction and thus on the material and on the other hand it depends on the energy product on the spatial dimensions of the magnets. In this way, depending on the material used and depending on the magnetic field strength of the magnets, there are minimum spatial dimensions of the concentrator body. These must then be observed depending on the magnetic material and spatial dimensions as well as the choice of material for the concentrator body.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Claims (5)

  1. Transducteur électrodynamique à ultrasons comportant un dispositif à aimants permanents à disposer sur une surface (6) d'une pièce à contrôler, dans lequel des aimants (1,2) sont agencés l'un en regard de l'autre avec les faces polaires (1',2') de même polarité, par l'intermédiaire d'un corps de concentrateur intermédiaire (3), et d'une bobine transductrice (5) agencée sur la face du corps de concentrateur en regard de la surface (6) de la pièce, caractérisé en ce que les faces de sections transversales du corps de concentrateur (3), parallèles aux faces polaires (1',2') des aimants permanents (1,2), sont réalisées de façon plus réduite que chacune des faces polaires (1',2') des aimants permanents (1,2), et en ce que le corps de concentrateur (3) fait saillie au-delà de la limite du contour de section transversale des aimants (1,2), et en ce que l'espace restant entre les faces polaires (1',2') autour du corps de concentrateur (3) est rempli d'un corps (4) non ferromagnétique formé en correspondance.
  2. Transducteur électrodynamique à ultrasons selon la revendication 1,
    caractérisé en ce que le corps de concentrateur (3) est constitué d'un matériau composite pulvérulent et magnétique doux et présente sur la face à venir en regard de la surface de la pièce une courbure (3'), à proximité de laquelle est montée la bobine transductrice (5).
  3. Transducteur électrodynamique à ultrasons selon l'une des revendications 1 ou 2,
    caractérisé en ce que le corps (4) non ferromagnétique est constitué d'une matière synthétique.
  4. Transducteur électrodynamique à ultrasons selon l'une ou plusieurs des revendications précédentes,
    caractérisé en ce que le corps (4) non ferromagnétique est muni d'un perçage traversant (7) qui est pratiqué perpendiculairement à la surface du corps de concentrateur destinée à venir en regard de la surface (6) de la pièce et de façon écartée par rapport au corps de concentrateur (3).
  5. Transducteur électrodynamique à ultrasons selon l'une ou plusieurs des revendications précédentes,
    caractérisé en ce que les faces polaires des aimants permanents (1,2), dirigées vers l'extérieur, sont reliées de façon magnétiquement conductrice à un corps de retour (8) et le corps de retour (8) est muni de surfaces d'appui (9,10) susceptibles de prendre appui contre la surface (6) de la pièce à analyser.
EP91250296A 1990-11-06 1991-10-29 Transducteur électrodynamique à ultrasons Expired - Lifetime EP0486119B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4035592A DE4035592C1 (fr) 1990-11-06 1990-11-06
DE4035592 1990-11-06

Publications (3)

Publication Number Publication Date
EP0486119A2 EP0486119A2 (fr) 1992-05-20
EP0486119A3 EP0486119A3 (en) 1993-01-20
EP0486119B1 true EP0486119B1 (fr) 1995-01-11

Family

ID=6417904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91250296A Expired - Lifetime EP0486119B1 (fr) 1990-11-06 1991-10-29 Transducteur électrodynamique à ultrasons

Country Status (3)

Country Link
US (1) US5148414A (fr)
EP (1) EP0486119B1 (fr)
DE (2) DE4035592C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527532A (ja) * 2004-02-26 2007-09-27 オトクリトエ アクツィオネルノエ オブシェストボ ”ノルディンクラフト” 電磁超音波探触子

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124103C1 (fr) * 1991-07-18 1992-07-02 Mannesmann Ag, 4000 Duesseldorf, De
DE19637424A1 (de) * 1996-09-13 1998-03-26 Siemens Ag Verfahren zum Erzeugen horizontal polarisierter transversaler Ultraschallwellen zur zerstörungsfreien Werkstoffprüfung und Prüfvorrichtung
DE29812120U1 (de) * 1998-07-10 1999-11-25 Nukem GmbH, 63755 Alzenau Elektrodynamischer Wandlerkopf
US7395714B2 (en) * 2004-09-16 2008-07-08 The Boeing Company Magnetically attracted inspecting apparatus and method using a ball bearing
US7640810B2 (en) 2005-07-11 2010-01-05 The Boeing Company Ultrasonic inspection apparatus, system, and method
US7464596B2 (en) * 2004-09-24 2008-12-16 The Boeing Company Integrated ultrasonic inspection probes, systems, and methods for inspection of composite assemblies
US7617732B2 (en) * 2005-08-26 2009-11-17 The Boeing Company Integrated curved linear ultrasonic transducer inspection apparatus, systems, and methods
US7444876B2 (en) * 2005-08-26 2008-11-04 The Boeing Company Rapid prototype integrated linear ultrasonic transducer inspection apparatus, systems, and methods
US7430913B2 (en) * 2005-08-26 2008-10-07 The Boeing Company Rapid prototype integrated matrix ultrasonic transducer array inspection apparatus, systems, and methods
US8037765B2 (en) * 2007-11-01 2011-10-18 Baker Hughes Incorporated Electromagnetic acoustic transducer using magnetic shielding
GB201419219D0 (en) * 2014-10-29 2014-12-10 Imp Innovations Ltd Electromagnetic accoustic transducer
WO2019143877A1 (fr) 2018-01-19 2019-07-25 Itrobotics, Inc. Systèmes et procédés de génération d'ondes ultrasonores, excitant des classes spéciales de transducteurs ultrasonores et de dispositifs ultrasonores pour des mesures d'ingénierie
CN108917805B (zh) * 2018-08-08 2019-11-26 苏州博昇科技有限公司 电磁超声波双波换能器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU426716A1 (ru) * 1972-04-04 1974-05-05 Ж. Г. Никифоренко, И. И. Авербух, Н. Г. Бочков , Г. В. Парфенов Устройство для бесконтактного возбуждения и приема ультразвука
US3963980A (en) * 1973-08-29 1976-06-15 Jury Mikhailovich Shkarlet Ultrasonic instrument for non-destructive testing of articles with current-conducting surface
DE2621684C3 (de) * 1976-05-15 1979-07-12 Hoesch Werke Ag, 4600 Dortmund Elektrodynamischer Schallwandler
US4058002A (en) * 1976-12-23 1977-11-15 The United States Of America As Represented By The Secretary Of The Air Force Dispersive electromagnetic surface acoustic wave transducer
SE445616B (sv) * 1978-11-07 1986-07-07 Studsvik Energiteknik Ab Forfarande att introducera elektromagnetiskt ultraljud i elektriskt ledande material vid oforstorande provning samt anordning for utforande av forfarandet
DE3123935C2 (de) * 1981-06-16 1985-03-28 Nukem Gmbh, 6450 Hanau Elektrodynamischer Wandler
US4395913A (en) * 1981-07-31 1983-08-02 Rockwell International Corporation Broadband electromagnetic acoustic transducers
US4471658A (en) * 1981-09-22 1984-09-18 Mitsubishi Jukogyo Kabushiki Kaisha Electromagnetic acoustic transducer
JPS6175259A (ja) * 1984-09-19 1986-04-17 Toshiba Corp 電磁超音波トランスジユ−サ
DE3614069A1 (de) * 1986-04-24 1987-11-12 Mannesmann Ag Vorrichtung zur zerstoerungsfreien pruefung durch ultraschall
DE3904440A1 (de) * 1989-02-10 1990-08-23 Mannesmann Ag Elektrodynamischer wandlerkopf
DE4011686C1 (fr) * 1990-04-06 1991-07-11 Mannesmann Ag, 4000 Duesseldorf, De

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527532A (ja) * 2004-02-26 2007-09-27 オトクリトエ アクツィオネルノエ オブシェストボ ”ノルディンクラフト” 電磁超音波探触子
JP4842922B2 (ja) * 2004-02-26 2011-12-21 オブシェストボ エス オグラニチェンノイ オトベツトベンノスチュ“ノルディンクラフト サンクト−ペテルブルグ” 電磁超音波探触子

Also Published As

Publication number Publication date
US5148414A (en) 1992-09-15
DE4035592C1 (fr) 1992-04-16
DE59104242D1 (de) 1995-02-23
EP0486119A3 (en) 1993-01-20
EP0486119A2 (fr) 1992-05-20

Similar Documents

Publication Publication Date Title
EP0486119B1 (fr) Transducteur électrodynamique à ultrasons
DE2940212C2 (de) Magnetische Aufspannvorrichtung
EP0198958B1 (fr) Assemblage d'aimant permanent
DE1926007A1 (de) Dreiphasen-Drosselspule mit Magnetkern
EP3160012B1 (fr) Élement secondaire d'un entrainement lineaire
EP0484716B1 (fr) Capteur électromagnétique pour déterminer la vitesse et/ou la direction de rotation d'un rotor
EP0451375B1 (fr) Transduceur électrodynamique pour ultrasons
DE69008202T2 (de) Magnetischer Kreis.
DE112005000106T5 (de) Elektromagnetisch-Akustischer Messwandler
DE3904440C2 (fr)
DE2058302A1 (de) Magnetische Betaetigungsvorrichtung
DE2607197B2 (de) Unabgeschirmtes dauermagnetisches Doppeljochsystem
DE3225499A1 (de) Magnetischer naeherungssensor
EP2867906B1 (fr) Composant inductif
EP0073002B1 (fr) Déclencheur électromagnétique
EP0183015A1 (fr) Dispositif pour la limitation de courant
DE3935432C2 (fr)
DE2719230C3 (de) Magnetisches Relais
DE3014783A1 (de) Impulsgenerator
DE3008583A1 (de) Impulstransformator
DE102019132963B4 (de) Strommessanordnung
DE3822842C2 (fr)
EP0342509A1 (fr) Générateur d'impulsion d'angle
AT381204B (de) Magnetsystem fuer elektrodynamische wandler, insbesondere mikrophone und kopfhoerer
DE1265950B (de) Dauermagnetisches Haftsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19921222

17Q First examination report despatched

Effective date: 19940311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59104242

Country of ref document: DE

Date of ref document: 19950223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980914

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031009

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031029

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501