EP0483662A2 - Procédé de fabrication de microstructures autoportantes - Google Patents

Procédé de fabrication de microstructures autoportantes Download PDF

Info

Publication number
EP0483662A2
EP0483662A2 EP91118109A EP91118109A EP0483662A2 EP 0483662 A2 EP0483662 A2 EP 0483662A2 EP 91118109 A EP91118109 A EP 91118109A EP 91118109 A EP91118109 A EP 91118109A EP 0483662 A2 EP0483662 A2 EP 0483662A2
Authority
EP
European Patent Office
Prior art keywords
microstructure
layer
holding structure
substrate
sacrificial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91118109A
Other languages
German (de)
English (en)
Other versions
EP0483662A3 (en
EP0483662B1 (fr
Inventor
Werner Karl Dr. Schomburg
Robert Ruprecht
Gerhard Stern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0483662A2 publication Critical patent/EP0483662A2/fr
Publication of EP0483662A3 publication Critical patent/EP0483662A3/de
Application granted granted Critical
Publication of EP0483662B1 publication Critical patent/EP0483662B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves

Definitions

  • the invention relates to a method for producing self-supporting microstructures according to the preamble of patent claim 1.
  • EP O 1O4 685 discloses a method for producing a mask for pattern generation in X-ray lithography.
  • the result of the process is the microstructure on a carrier layer.
  • a disadvantage of this method is that the microstructure remains connected to the film, which can interfere with the use of the microstructure. So z. B. required for the production of filters microstructures that are not closed with a film.
  • microstructures are produced on a starting electroplating layer that is connected to a glass plate. The microstructures are then mechanically separated from the glass plate.
  • a disadvantage of this method is that the intended shape of sensitive microstructures can easily be changed in an undesired manner during the mechanical separation from the glass plate.
  • the object of the invention is to modify a method of the generic type in such a way that microstructures can be separated from the substrate on which they were produced within a few minutes without the structures being adversely affected.
  • FIGS 1 to 7 show the individual process steps.
  • a separating layer 2 made of carbon was evaporated to a thickness of 20 nm on an approximately 0.5 mm thick silicon wafer as substrate 1 with a diameter of approximately 100 mm. With this carbon coating, the edge of the silicon wafer 1 was left free (FIG. 1).
  • the separating layer 2 and the edge of the silicon wafer were coated with a 3 ⁇ m thick sacrificial layer 3 made of titanium by magnetron sputtering.
  • the thickness of the separating layer 2 should advantageously be between 10 and 30 nm. It is also possible to sputter carbon more than approx. 50 nm to 150 nm thick by magnetron sputtering instead of evaporating it.
  • the thickness of the titanium layer 3 is advantageously between 2 and 10 ⁇ m.
  • Microstructures 4 with a thickness of 40 ⁇ m were produced on this sacrificial layer 3 using the known methods of the LIGA method (EW Becker et al, Microcircuit Engineering 4 (1986) pages 35 to 56) by means of X-ray depth lithography and galvanic deposition of copper from a fluoroborate electrolyte, which are perforated with slit apertures in such a way that an infrared filter later resulted (FIG. 2).
  • the thickness of the structures 4 can be in a range from approximately 1 to 400 ⁇ m.
  • These structures 4 were connected with a sapphire-filled 2-component adhesive with solid, approximately 2.5 mm thick, ring-shaped frames as a holding structure 5 made of electrolytic copper with an inner diameter of 15 mm and an outer diameter of 20 mm (FIG. 3).
  • the adhesive filled with sapphire is also suitable for applications in which the connection between microstructure 4 and frame 5 has to withstand 5 cryogenic temperatures of up to 3 K.
  • Epoxy-based adhesives are also suitable for applications in which the adhesive connection is not exposed to extreme temperatures.
  • an adhesive for the connection of the microstructure 4 and the holding structure 5 has the advantage that the microstructure 4 does not have to be exposed to as high temperatures as in other connection methods such as e.g. B. diffusion soldering or welding or anodic bonding.
  • a microstructure 4 is connected to a holding structure 5, which is made of a different material than the microstructure 4, the use of an adhesive largely prevents the formation of thermal tensions between the microstructure 4 and the holding structure 5.
  • the carbon of the separating layer 2 largely remained on the sacrificial layer and was burned in an oxygen plasma (FIG. 6).
  • the microstructure 4 was integrated into a frame 5 solution immersed in hydrofluoric acid, in which the sacrificial layer 3 dissolved within a few seconds (FIG. 7).
  • This method has the advantage that self-supporting microstructures can be produced and that these microstructures are stabilized when they are detached from the substrate by the sacrificial layer and the solid frame, so that undesired changes in the shape of the microstructures caused by the detachment from the substrate can be avoided.
  • the mechanical detachment of microstructures and sacrificial layer from the substrate is facilitated in that tools can be attached to the relatively thick holding structure.
  • the tensile stresses that may be present in the microstructure as a result of the production process are absorbed by the solid frame after detachment from the substrate and removal of the sacrificial layer, so that there are no changes in shape of the microstructure.
  • the large surface of the sacrificial layer that is accessible after detachment from the substrate and its small thickness enable the sacrificial layer to be removed quickly within a few seconds.
  • Another application example describes the production of a mechanical particle filter for liquids: an approximately 0.5 ⁇ m thick copper layer 3 was sputtered onto a glass pane 1 by magnetron sputtering. An approx. 200 ⁇ m high honeycomb network structure 4 with openings of approx. 100 ⁇ m in size and 7 ⁇ m wide bars made of nickel was produced on this copper layer using the known methods of the LIGA process.
  • a 1 mm thick, lattice-shaped holding structure 5 made of stainless steel was glued to this net structure 4 using an epoxy adhesive, which was surrounded by a closed frame measuring approximately 20 ⁇ 60 mm and the spacing of the webs was approximately 15 mm with a web width of 2 mm.
  • the microstructure 4 and the copper layer 3 were removed from the glass plate 1 with the holding structure 5 lifted off and the copper layer 3 in an etching solution of copper (II) chloride and ammonia at room temperature selectively dissolved against the microstructure of nickel.
  • this production process has the advantage that no separating layer is required, since the copper layer also detaches from the glass plate without a separating layer.
  • the use of a grid-shaped holding structure produces a very stable, self-supporting microstructure that can withstand a higher flow pressure when used as a particle filter.
  • the frame around the lattice structure can also be dispensed with under certain circumstances. However, the detachment from the glass plate is then made more difficult and there is a possibility that the microstructure will be damaged during the detachment.
  • the third application example describes the production of a high-pass filter in the far infrared range: on a 0.5 mm thick silicon wafer 1 with a diameter of 100 mm, a 2 ⁇ m thick titanium layer 2 was sputtered on by magnetron sputtering. A 2 ⁇ m thick nickel layer 3 was electroplated onto this titanium layer 2. The electroplated nickel layer 3 adheres to the titanium layer only to a limited extent, so that in this case the titanium layer 2 acts as a separating layer.
  • an approx. 120 ⁇ m thick coherent microstructure 4 was produced from gold, which was perforated as closely as possible with circular holes in a hexagonal grid.
  • the diameter of the holes was 50 ⁇ m.
  • the smallest distance between the edges of two holes was about 5 ⁇ m.
  • this production method has the advantage that the separating layer remains completely on the silicon wafer and does not have to be removed from the nickel layer before the latter is dissolved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
EP91118109A 1990-10-29 1991-10-24 Procédé de fabrication de microstructures autoportantes Expired - Lifetime EP0483662B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4034365A DE4034365A1 (de) 1990-10-29 1990-10-29 Verfahren zur herstellung freitragender mikrostrukturen
DE4034365 1990-10-29

Publications (3)

Publication Number Publication Date
EP0483662A2 true EP0483662A2 (fr) 1992-05-06
EP0483662A3 EP0483662A3 (en) 1993-03-03
EP0483662B1 EP0483662B1 (fr) 1994-12-14

Family

ID=6417255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91118109A Expired - Lifetime EP0483662B1 (fr) 1990-10-29 1991-10-24 Procédé de fabrication de microstructures autoportantes

Country Status (2)

Country Link
EP (1) EP0483662B1 (fr)
DE (2) DE4034365A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059824A1 (fr) * 1999-03-31 2000-10-12 Siemens Aktiengesellschaft Procede de fabrication de microstructures non soutenues, d'elements plats minces ou de membranes, et utilisation des microstructures ainsi obtenues comme grilles de resistance dans un dispositif de mesure de faibles debits gazeux

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406600C1 (de) * 1994-03-01 1995-04-27 Kernforschungsz Karlsruhe Verfahren zur Herstellung eines Filters für elektromagnetische Strahlung
DE10239551A1 (de) * 2002-08-23 2004-03-04 Daimlerchrysler Ag Filterkörper für Rußfilter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160258B (de) * 1961-06-13 1963-12-27 Richard Steding Verfahren zur Herstellung von Metallfolien auf galvanoplastischem Wege
DE1303000B (fr) * 1966-07-06 1971-01-28
FR2304693A1 (fr) * 1975-03-19 1976-10-15 Siemens Ag Procede de fabrication de structures metalliques minces autoportantes
EP0007447A1 (fr) * 1978-07-24 1980-02-06 Siemens Aktiengesellschaft Procédé de fabrication de surfaces microperforées et application du procédé

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3232499A1 (de) * 1982-09-01 1984-03-01 Philips Patentverwaltung Gmbh, 2000 Hamburg Maske fuer die mustererzeugung in lackschichten mittels roentgenstrahllithographie und verfahren zu ihrer herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160258B (de) * 1961-06-13 1963-12-27 Richard Steding Verfahren zur Herstellung von Metallfolien auf galvanoplastischem Wege
DE1303000B (fr) * 1966-07-06 1971-01-28
FR2304693A1 (fr) * 1975-03-19 1976-10-15 Siemens Ag Procede de fabrication de structures metalliques minces autoportantes
EP0007447A1 (fr) * 1978-07-24 1980-02-06 Siemens Aktiengesellschaft Procédé de fabrication de surfaces microperforées et application du procédé

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059824A1 (fr) * 1999-03-31 2000-10-12 Siemens Aktiengesellschaft Procede de fabrication de microstructures non soutenues, d'elements plats minces ou de membranes, et utilisation des microstructures ainsi obtenues comme grilles de resistance dans un dispositif de mesure de faibles debits gazeux
US7051418B2 (en) 1999-03-31 2006-05-30 Siemens Aktiengesellschaft Method of measuring weak gas flows

Also Published As

Publication number Publication date
DE4034365C2 (fr) 1993-03-18
EP0483662A3 (en) 1993-03-03
DE4034365A1 (de) 1992-04-30
DE59103890D1 (de) 1995-01-26
EP0483662B1 (fr) 1994-12-14

Similar Documents

Publication Publication Date Title
DE2453035C3 (de) Verfahren zum Aufbringen einer metallischen Schicht in Form eines Musters auf einem mit einer ersten dünnen, metallischen Schicht überzogenen inerten Substrat
EP1238312B1 (fr) Utilisation de polyimide pour des couches adhesives, procede lithographique pour produire des microcomposants et procede pour produire un materiau composite
DE2512086C3 (de) Verfahren zur Herstellung freitragender, dünner Metallstrukturen
DE2901697C3 (de) Verfahren zur Ausbildung von Leitungsverbindungen auf einem Substrat
DE10225680B4 (de) Herstellverfahren für eine Metallschicht sowie Herstellverfahren für ein laminiertes keramisches Elektronikbauelement
EP0222738A2 (fr) Procédé de fabrication d'un masque par transmission
EP0546427A1 (fr) Microsoupape et son procédé de fabrication
DE2425464C3 (de) Verfahren zur Herstellung von Dunnschicht-Aperturblenden für Korpuskularstrahlgeräte
EP0104685B1 (fr) Procédé pour la fabrication d'un masque pour réaliser des images texturées,dans une couche photorésistante par lithographie aux rayons X
DE3119682A1 (de) "verfahren zur herstellung einer maske fuer die mustererzeugung in lackschichten mittels strahlungslithographie"
DE10040448A1 (de) Halbleiterchip und Verfahren zu dessen Herstellung
EP0264594B1 (fr) Dispositif de support d'une feuille de métal de microfiltre
EP0001038B1 (fr) Procédé de fabrication d'un masque de silicium et son utilisation
EP0085979B1 (fr) Procédé de fabrication de grilles métalliques autoportantes
EP0483662B1 (fr) Procédé de fabrication de microstructures autoportantes
DE2361804C2 (de) Verfahren zur Herstellung von supraleitenden Kontakten in Tieftemperatur-Schaltkreisen und Anwendung des Verfahrens bei der Herstellung von Tieftemperatur-Schaltkreisen mit Josephson-Elementen
EP0141335A1 (fr) Procédé pour la fabrication d'un masque pour rayon X avec couche métallique de support
EP0957509A2 (fr) Procédé de fabricaiton d'un composant comprenant une couche micro-structurée
DE2526382C3 (de) Kathodenzerstäubungsverf ahren zur Herstellung geätzter Strukturen
EP0222739A2 (fr) Procédé de fabrication d'un masque par transmission
CH503121A (de) Verfahren zur Herstellung von Metallniederschlägen durch Elektrolyse
DE4406600C1 (de) Verfahren zur Herstellung eines Filters für elektromagnetische Strahlung
DE3232498A1 (de) Maske fuer die mustererzeugung in lackschichten mittels roentgenstrahllithographie und verfahren zu ihrer herstellung
DE2645081A1 (de) Verfahren zum abloesen von schichten
DE4114269C2 (de) Verfahren zum gruppenweisen Herstellen von Mikrostrukturen, welche mindestens an einer Seite mit einer Membran verschlossen sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19930413

17Q First examination report despatched

Effective date: 19940304

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59103890

Country of ref document: DE

Date of ref document: 19950126

EAL Se: european patent in force in sweden

Ref document number: 91118109.7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

EUG Se: european patent has lapsed

Ref document number: 91118109.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071217

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501