EP0483662A2 - Process for manufacturing self-supporting microstructures - Google Patents

Process for manufacturing self-supporting microstructures Download PDF

Info

Publication number
EP0483662A2
EP0483662A2 EP91118109A EP91118109A EP0483662A2 EP 0483662 A2 EP0483662 A2 EP 0483662A2 EP 91118109 A EP91118109 A EP 91118109A EP 91118109 A EP91118109 A EP 91118109A EP 0483662 A2 EP0483662 A2 EP 0483662A2
Authority
EP
European Patent Office
Prior art keywords
microstructure
layer
holding structure
substrate
sacrificial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91118109A
Other languages
German (de)
French (fr)
Other versions
EP0483662B1 (en
EP0483662A3 (en
Inventor
Werner Karl Dr. Schomburg
Robert Ruprecht
Gerhard Stern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0483662A2 publication Critical patent/EP0483662A2/en
Publication of EP0483662A3 publication Critical patent/EP0483662A3/en
Application granted granted Critical
Publication of EP0483662B1 publication Critical patent/EP0483662B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves

Definitions

  • the invention relates to a method for producing self-supporting microstructures according to the preamble of patent claim 1.
  • EP O 1O4 685 discloses a method for producing a mask for pattern generation in X-ray lithography.
  • the result of the process is the microstructure on a carrier layer.
  • a disadvantage of this method is that the microstructure remains connected to the film, which can interfere with the use of the microstructure. So z. B. required for the production of filters microstructures that are not closed with a film.
  • microstructures are produced on a starting electroplating layer that is connected to a glass plate. The microstructures are then mechanically separated from the glass plate.
  • a disadvantage of this method is that the intended shape of sensitive microstructures can easily be changed in an undesired manner during the mechanical separation from the glass plate.
  • the object of the invention is to modify a method of the generic type in such a way that microstructures can be separated from the substrate on which they were produced within a few minutes without the structures being adversely affected.
  • FIGS 1 to 7 show the individual process steps.
  • a separating layer 2 made of carbon was evaporated to a thickness of 20 nm on an approximately 0.5 mm thick silicon wafer as substrate 1 with a diameter of approximately 100 mm. With this carbon coating, the edge of the silicon wafer 1 was left free (FIG. 1).
  • the separating layer 2 and the edge of the silicon wafer were coated with a 3 ⁇ m thick sacrificial layer 3 made of titanium by magnetron sputtering.
  • the thickness of the separating layer 2 should advantageously be between 10 and 30 nm. It is also possible to sputter carbon more than approx. 50 nm to 150 nm thick by magnetron sputtering instead of evaporating it.
  • the thickness of the titanium layer 3 is advantageously between 2 and 10 ⁇ m.
  • Microstructures 4 with a thickness of 40 ⁇ m were produced on this sacrificial layer 3 using the known methods of the LIGA method (EW Becker et al, Microcircuit Engineering 4 (1986) pages 35 to 56) by means of X-ray depth lithography and galvanic deposition of copper from a fluoroborate electrolyte, which are perforated with slit apertures in such a way that an infrared filter later resulted (FIG. 2).
  • the thickness of the structures 4 can be in a range from approximately 1 to 400 ⁇ m.
  • These structures 4 were connected with a sapphire-filled 2-component adhesive with solid, approximately 2.5 mm thick, ring-shaped frames as a holding structure 5 made of electrolytic copper with an inner diameter of 15 mm and an outer diameter of 20 mm (FIG. 3).
  • the adhesive filled with sapphire is also suitable for applications in which the connection between microstructure 4 and frame 5 has to withstand 5 cryogenic temperatures of up to 3 K.
  • Epoxy-based adhesives are also suitable for applications in which the adhesive connection is not exposed to extreme temperatures.
  • an adhesive for the connection of the microstructure 4 and the holding structure 5 has the advantage that the microstructure 4 does not have to be exposed to as high temperatures as in other connection methods such as e.g. B. diffusion soldering or welding or anodic bonding.
  • a microstructure 4 is connected to a holding structure 5, which is made of a different material than the microstructure 4, the use of an adhesive largely prevents the formation of thermal tensions between the microstructure 4 and the holding structure 5.
  • the carbon of the separating layer 2 largely remained on the sacrificial layer and was burned in an oxygen plasma (FIG. 6).
  • the microstructure 4 was integrated into a frame 5 solution immersed in hydrofluoric acid, in which the sacrificial layer 3 dissolved within a few seconds (FIG. 7).
  • This method has the advantage that self-supporting microstructures can be produced and that these microstructures are stabilized when they are detached from the substrate by the sacrificial layer and the solid frame, so that undesired changes in the shape of the microstructures caused by the detachment from the substrate can be avoided.
  • the mechanical detachment of microstructures and sacrificial layer from the substrate is facilitated in that tools can be attached to the relatively thick holding structure.
  • the tensile stresses that may be present in the microstructure as a result of the production process are absorbed by the solid frame after detachment from the substrate and removal of the sacrificial layer, so that there are no changes in shape of the microstructure.
  • the large surface of the sacrificial layer that is accessible after detachment from the substrate and its small thickness enable the sacrificial layer to be removed quickly within a few seconds.
  • Another application example describes the production of a mechanical particle filter for liquids: an approximately 0.5 ⁇ m thick copper layer 3 was sputtered onto a glass pane 1 by magnetron sputtering. An approx. 200 ⁇ m high honeycomb network structure 4 with openings of approx. 100 ⁇ m in size and 7 ⁇ m wide bars made of nickel was produced on this copper layer using the known methods of the LIGA process.
  • a 1 mm thick, lattice-shaped holding structure 5 made of stainless steel was glued to this net structure 4 using an epoxy adhesive, which was surrounded by a closed frame measuring approximately 20 ⁇ 60 mm and the spacing of the webs was approximately 15 mm with a web width of 2 mm.
  • the microstructure 4 and the copper layer 3 were removed from the glass plate 1 with the holding structure 5 lifted off and the copper layer 3 in an etching solution of copper (II) chloride and ammonia at room temperature selectively dissolved against the microstructure of nickel.
  • this production process has the advantage that no separating layer is required, since the copper layer also detaches from the glass plate without a separating layer.
  • the use of a grid-shaped holding structure produces a very stable, self-supporting microstructure that can withstand a higher flow pressure when used as a particle filter.
  • the frame around the lattice structure can also be dispensed with under certain circumstances. However, the detachment from the glass plate is then made more difficult and there is a possibility that the microstructure will be damaged during the detachment.
  • the third application example describes the production of a high-pass filter in the far infrared range: on a 0.5 mm thick silicon wafer 1 with a diameter of 100 mm, a 2 ⁇ m thick titanium layer 2 was sputtered on by magnetron sputtering. A 2 ⁇ m thick nickel layer 3 was electroplated onto this titanium layer 2. The electroplated nickel layer 3 adheres to the titanium layer only to a limited extent, so that in this case the titanium layer 2 acts as a separating layer.
  • an approx. 120 ⁇ m thick coherent microstructure 4 was produced from gold, which was perforated as closely as possible with circular holes in a hexagonal grid.
  • the diameter of the holes was 50 ⁇ m.
  • the smallest distance between the edges of two holes was about 5 ⁇ m.
  • this production method has the advantage that the separating layer remains completely on the silicon wafer and does not have to be removed from the nickel layer before the latter is dissolved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)

Abstract

In a process for manufacturing self-supporting microstructures, at least one layer is deposited on a substrate and the microstructure is then built up on the latter. The object of the invention is to modify a process of the type mentioned at the outset so that self-supporting microstructures can be separated within a few minutes from the substrate on which they have been manufactured without any impairment of the structures resulting. The object is achieved in that a holding structure is applied directly to the microstructure, the layer (sacrificial layer) is then peeled off the substrate together with the microstructure and the holding structure and then the sacrificial layer is removed from the microstructure joined to the holding structure. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Herstellung freitragender Mikrostrukturen nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing self-supporting microstructures according to the preamble of patent claim 1.

Aus der EP O 1O4 685 ist ein Verfahren zur Herstellung einer Maske für die Mustererzeugung in der Röntgenstrahllithographie bekannt. Dabei wird die Maske (= Mikrostruktur) auf drei Trägerschichten aufgebaut. Das Ergebnis des Verfahrens ist dann die Mikrostruktur auf einer Trägerschicht.EP O 1O4 685 discloses a method for producing a mask for pattern generation in X-ray lithography. The mask (= microstructure) is built up on three carrier layers. The result of the process is the microstructure on a carrier layer.

Nachteilig bei diesem Verfahren ist, daß die Mikrostruktur mit der Folie verbunden bleibt, die bei der Verwendung der Mikrostruktur stören kann. So werden z. B. für die Herstellung von Filtern Mikrostrukturen benötigt, die nicht mit einer Folie verschlossen sind.A disadvantage of this method is that the microstructure remains connected to the film, which can interfere with the use of the microstructure. So z. B. required for the production of filters microstructures that are not closed with a film.

In den Kleinneubacher Berichten Nr. 29 (1986) auf den Seiten 501 bis 505 herausgegeben vom Fernmeldetechnischen Zentralamt, Postfach 5000, 6100 Darmstadt, wird von H.-P. Gemünd ein Verfahren beschrieben mit dessen Hilfe Mikrostrukturen auf einer Galvanikstartschicht hergestellt werden, die mit einer Glasplatte verbunden ist. Die Mikrostrukturen werden dann mechanisch von der Glasplatte getrennt.In the Kleinneubacher Reports No. 29 (1986) on pages 501 to 505 published by the Central Telecommunications Office, Postfach 5000, 6100 Darmstadt, H.-P. According to a process described, microstructures are produced on a starting electroplating layer that is connected to a glass plate. The microstructures are then mechanically separated from the glass plate.

Nachteilig bei diesem Verfahren ist, daß die vorgesehene Form empfindlicher Mikrostrukturen bei der mechanischen Trennung von der Glasplatte leicht in ungewünschter Art und Weise verändert werden kann.A disadvantage of this method is that the intended shape of sensitive microstructures can easily be changed in an undesired manner during the mechanical separation from the glass plate.

Die Erfindung hat die Aufgabe, ein Verfahren der gattungsgemäßen Art so zu modifizieren, daß Mikrostrukturen innerhalb weniger Minuten von dem Substrat getrennt werden können, auf dem sie hergestellt worden sind, ohne daß es zu Beeinträchtigungen der Strukturen kommt.The object of the invention is to modify a method of the generic type in such a way that microstructures can be separated from the substrate on which they were produced within a few minutes without the structures being adversely affected.

Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil des Patentanspruchs 1 gelöst. Die Unteransprüche geben vorteilhafte Ausgestaltungen der Erfindung wieder.According to the invention, this object is achieved by the characterizing part of patent claim 1. The subclaims give advantageous refinements of the invention.

Die Erfindung wird im folgenden anhand der Figuren 1 bis 7 und dreier Ausführungsbeispiele näher erläutert.The invention is explained in more detail below with reference to FIGS. 1 to 7 and three exemplary embodiments.

Dabei zeigen die Figuren 1 bis 7 die einzelnen Verfahrensschritte.Figures 1 to 7 show the individual process steps.

Auf einer ca. 0,5 mm dicken Siliziumscheibe als Substrat 1 mit einem Durchmesser von ca. 100 mm wurde eine Trennschicht 2 aus Kohlenstoff 20 nm dick aufgedampft. Bei dieser Kohlenstoffbeschichtung wurde der Rand der Siliziumscheibe 1 frei belassen (Figur 1). Trennschicht 2 und Rand der Siliziumscheibe wurden durch Magnetronsputtern mit einer 3 µm dicken Opferschicht 3 aus Titan beschichtet.A separating layer 2 made of carbon was evaporated to a thickness of 20 nm on an approximately 0.5 mm thick silicon wafer as substrate 1 with a diameter of approximately 100 mm. With this carbon coating, the edge of the silicon wafer 1 was left free (FIG. 1). The separating layer 2 and the edge of the silicon wafer were coated with a 3 μm thick sacrificial layer 3 made of titanium by magnetron sputtering.

Die Dicke der Trennschicht 2 sollte vorteilhafterweise zwischen 10 und 30 nm liegen. Es ist auch möglich, Kohlenstoff mehr als ca. 50 nm bis 150 nm dick durch Magnetronsputtern aufzustäuben statt ihn aufzudampfen. Die Dicke der Titanschicht 3 liegt vorteilhafterweise zwischen 2 und 10 µm.The thickness of the separating layer 2 should advantageously be between 10 and 30 nm. It is also possible to sputter carbon more than approx. 50 nm to 150 nm thick by magnetron sputtering instead of evaporating it. The thickness of the titanium layer 3 is advantageously between 2 and 10 μm.

Auf dieser Opferschicht 3 wurden mit den bekannten Methoden des LIGA-Verfahrens (E. W. Becker et al, Microcircuit Engineering 4 (1986) Seiten 35 bis 56) durch Röntgentiefenlithographie und galvanische Abscheidung von Kupfer aus einem Fluoroborat-Elektrolyten Mikrostrukturen 4 mit 40 µm Dicke hergestellt, die so mit Schlitzaperturen perforiert sind, daß sich später ein Infrarotfilter ergab (Figur 2). Die Dicke der Strukturen 4 kann in einem Bereich von ca. 1 bis 400 µm liegen.Microstructures 4 with a thickness of 40 μm were produced on this sacrificial layer 3 using the known methods of the LIGA method (EW Becker et al, Microcircuit Engineering 4 (1986) pages 35 to 56) by means of X-ray depth lithography and galvanic deposition of copper from a fluoroborate electrolyte, which are perforated with slit apertures in such a way that an infrared filter later resulted (FIG. 2). The thickness of the structures 4 can be in a range from approximately 1 to 400 μm.

Diese Strukturen 4 wurden mit einem Saphir gefüllten 2-Komponenten-Kleber mit festen, ca. 2,5 mm dicken, ringförmigen Rahmen als Haltestruktur 5 aus Elektrolytkupfer mit einem Innendurchmesser von 15 mm und einem Außendurchmesser von 20 mm verbunden (Figur 3).These structures 4 were connected with a sapphire-filled 2-component adhesive with solid, approximately 2.5 mm thick, ring-shaped frames as a holding structure 5 made of electrolytic copper with an inner diameter of 15 mm and an outer diameter of 20 mm (FIG. 3).

Der mit Saphir gefüllte Klebstoff eignet sich auch noch für Anwendungen, bei denen die Verbindung von Mikrostruktur 4 und Rahmen 5 kryogenen Temperaturen bis 3 K standhalten muß. Bei Anwendungen, bei denen nicht so extreme Temperaturen auf die Klebeverbindung wirken, sind Kleber auf Epoxydbasis ebenfalls geeignet.The adhesive filled with sapphire is also suitable for applications in which the connection between microstructure 4 and frame 5 has to withstand 5 cryogenic temperatures of up to 3 K. Epoxy-based adhesives are also suitable for applications in which the adhesive connection is not exposed to extreme temperatures.

Die Verwendung eines Klebers für die Verbindung von Mikrostruktur 4 und Haltestruktur 5 hat den Vorteil, daß die Mikrostruktur 4 nicht so hohen Temperaturen ausgesetzt werden muß wie bei anderen Verbindungsverfahren wie z. B. Diffusionslöten oder -schweißen oder anodisches Bonden. Bei der Verbindung von einer Mikrostruktur 4 mit einer Haltestruktur 5, die aus einem anderen Material besteht als die Mikrostruktur 4, kann durch die Verwendung eines Klebers die Ausbildung thermischer Spannungen zwischen Mikrostruktur 4 und Haltestruktur 5 weitgehend vermieden werden.The use of an adhesive for the connection of the microstructure 4 and the holding structure 5 has the advantage that the microstructure 4 does not have to be exposed to as high temperatures as in other connection methods such as e.g. B. diffusion soldering or welding or anodic bonding. When a microstructure 4 is connected to a holding structure 5, which is made of a different material than the microstructure 4, the use of an adhesive largely prevents the formation of thermal tensions between the microstructure 4 and the holding structure 5.

Um den Rahmen 5 herum wurde auf die Opferschicht 3 ein Klebeband aufgeklebt. Beim anschließenden Entfernen des Klebebandes blieb die Opferschicht 3 an ihm hängen und wurde so von der Siliziumscheibe entfernt (Figur 4). Die Mikrostruktur 4 mit Rahmen 5 wurde dann zusammen mit der Opferschicht 3 von der Siliziumscheibe gelöst, indem der Rahmen von ihr abgehoben wurde (Figur 5).An adhesive tape was glued onto the sacrificial layer 3 around the frame 5. When the adhesive tape was subsequently removed, the sacrificial layer 3 remained attached to it and was thus removed from the silicon wafer (FIG. 4). The microstructure 4 with the frame 5 was then removed from the silicon wafer together with the sacrificial layer 3 by lifting the frame off it (FIG. 5).

Der Kohlenstoff der Trennschicht 2 verblieb größtenteils auf der Opferschicht und wurde in einem Sauerstoffplasma verbrannt (Figur 6). Die Mikrostruktur 4 wurde mit dem Rahmen 5 in eine flußsäurehaltige Lösung getaucht, in der sich die Opferschicht 3 innerhalb weniger Sekunden auflöste (Figur 7).The carbon of the separating layer 2 largely remained on the sacrificial layer and was burned in an oxygen plasma (FIG. 6). The microstructure 4 was integrated into a frame 5 solution immersed in hydrofluoric acid, in which the sacrificial layer 3 dissolved within a few seconds (FIG. 7).

Dieses Verfahren hat den Vorteil, daß freitragende Mikrostrukturen hergestellt werden können und daß diese Mikrostrukturen bei der Ablösung vom Substrat durch die Opferschicht und den festen Rahmen stabilisiert werden, so daß sich ungewünschte, durch die Ablösung vom Substrat bedingte Veränderungen der Form der Mikrostrukturen vermeiden lassen. Das mechanische Ablösen von Mikrostrukturen und Opferschicht vom Substrat wird dadurch erleichtert, daß an der relativ dicken Haltestruktur Werkzeuge angesetzt werden können. Durch das Herstellungsverfahren bedingte, in der Mikrostruktur etwa vorhandene Zugspannungen werden nach der Ablösung vom Substrat und Entfernung der Opferschicht vom festen Rahmen aufgenommen, so daß sich hieraus keine Formveränderungen der Mikrostruktur ergeben. Die nach der Ablösung vom Substrat zugängliche große Oberfläche der Opferschicht und ihre geringe Dicke ermöglichen die schnelle Entfernung der Opferschicht innerhalb weniger Sekunden.This method has the advantage that self-supporting microstructures can be produced and that these microstructures are stabilized when they are detached from the substrate by the sacrificial layer and the solid frame, so that undesired changes in the shape of the microstructures caused by the detachment from the substrate can be avoided. The mechanical detachment of microstructures and sacrificial layer from the substrate is facilitated in that tools can be attached to the relatively thick holding structure. The tensile stresses that may be present in the microstructure as a result of the production process are absorbed by the solid frame after detachment from the substrate and removal of the sacrificial layer, so that there are no changes in shape of the microstructure. The large surface of the sacrificial layer that is accessible after detachment from the substrate and its small thickness enable the sacrificial layer to be removed quickly within a few seconds.

In einem weiteren Anwendungsbeispiel wird die Herstellung eines mechanischen Partikelfilters für Flüssigkeiten beschrieben: Auf eine Glasscheibe 1 wurde eine ca. 0,5 µm dicke Kupferschicht 3 durch Magnetronsputtern aufgestäubt. Auf dieser Kupferschicht wurde mit den bekannten Methoden des LIGA-Verfahrens eine ca. 200 µm hohe wabenförmige Netzstruktur 4 mit ca. 100 µm großen Öffnungen und 7 µm breiten Stegen aus Nickel hergestellt.Another application example describes the production of a mechanical particle filter for liquids: an approximately 0.5 μm thick copper layer 3 was sputtered onto a glass pane 1 by magnetron sputtering. An approx. 200 µm high honeycomb network structure 4 with openings of approx. 100 µm in size and 7 µm wide bars made of nickel was produced on this copper layer using the known methods of the LIGA process.

Auf diese Netzstruktur 4 wurde mit einem Epoxydkleber eine 1 mm dicke gitterförmige Haltestruktur 5 aus Edelstahl geklebt, die mit einem geschlossenen ca. 20 · 60 mm großen Rahmen umgeben war und deren Stegabstand ca. 15 mm bei einer Stegbreite von 2 mm betrug. Mit der Haltestruktur 5 wurden die Mikrostruktur 4 und die Kupferschicht 3 von der Glasplatte 1 abgehoben und die Kupferschicht 3 in einer Ätzlösung aus Kupfer(II)-chlorid und Ammoniak bei Raumtemperatur selektiv gegen die Mikrostruktur aus Nickel aufgelöst.A 1 mm thick, lattice-shaped holding structure 5 made of stainless steel was glued to this net structure 4 using an epoxy adhesive, which was surrounded by a closed frame measuring approximately 20 × 60 mm and the spacing of the webs was approximately 15 mm with a web width of 2 mm. The microstructure 4 and the copper layer 3 were removed from the glass plate 1 with the holding structure 5 lifted off and the copper layer 3 in an etching solution of copper (II) chloride and ammonia at room temperature selectively dissolved against the microstructure of nickel.

Dieses Herstellungsverfahren weist neben den beim ersten Anwendungsbeispiel genannten Vorteilen den Vorteil auf, daß keine Trennschicht benötigt wird, da sich die Kupferschicht auch ohne Trennschicht von der Glasplatte löst. Durch die Verwendung einer gitterförmigen Haltestruktur, wird eine sehr stabile freitragende Mikrostruktur hergestellt, die bei ihrem Einsatz als Partikelfilter einem größeren Strömungsdruck standhalten kann. Auf den Rahmen um die Gitterstruktur herum kann unter Umständen auch verzichtet werden. Allerdings wird die Ablösung von der Glasplatte dann erschwert und es besteht die Möglichkeit, daß die Mikrostruktur bei der Ablösung beschädigt wird.In addition to the advantages mentioned in the first application example, this production process has the advantage that no separating layer is required, since the copper layer also detaches from the glass plate without a separating layer. The use of a grid-shaped holding structure produces a very stable, self-supporting microstructure that can withstand a higher flow pressure when used as a particle filter. The frame around the lattice structure can also be dispensed with under certain circumstances. However, the detachment from the glass plate is then made more difficult and there is a possibility that the microstructure will be damaged during the detachment.

Im dritten Anwendungsbeispiel wird die Herstellung eines Hochpaßfilters im fernen Infrarotbereich beschrieben: auf einer 0,5 mm dicken Siliziumscheibe 1 mit einem Durchmesser von 100 mm wurde eine 2 µm dicke Titanschicht 2 durch Magnetronsputtern aufgestäubt. Auf dieser Titanschicht 2 wurde eine 2 µm dicke Nickelschicht 3 aufgalvanisiert. Die aufgalvanisierte Nickelschicht 3 haftet nur bedingt auf der Titanschicht, so daß die Titanschicht 2 in diesem Fall als Trennschicht wirkt.The third application example describes the production of a high-pass filter in the far infrared range: on a 0.5 mm thick silicon wafer 1 with a diameter of 100 mm, a 2 μm thick titanium layer 2 was sputtered on by magnetron sputtering. A 2 μm thick nickel layer 3 was electroplated onto this titanium layer 2. The electroplated nickel layer 3 adheres to the titanium layer only to a limited extent, so that in this case the titanium layer 2 acts as a separating layer.

Mit den bekannten Methoden des LIGA-Verfahrens wurde eine ca. 120 µm dicke zusammenhängende Mikrostruktur 4 aus Gold hergestellt, die mit kreisrunden Löchern in einem hexagonalen Gitter dichtmöglichst perforiert war. Der Durchmesser der Löcher betrug dabei 50 µm. Der geringste Abstand der Ränder von jeweils zwei Löchern betrug ca. 5 µm.Using the known methods of the LIGA process, an approx. 120 μm thick coherent microstructure 4 was produced from gold, which was perforated as closely as possible with circular holes in a hexagonal grid. The diameter of the holes was 50 µm. The smallest distance between the edges of two holes was about 5 µm.

Auf diese Goldstruktur wurde ein 2,5 mm dicker Titanrahmen 5 mit einem Innendurchmesser von ca. 15 mm und einem Außendurchmesser von ca. 20 mm mit einem Saphir gefüllten 2-Komponenten-Kleber geklebt. Mit dem Rahmen 5 wurden die Mikrostruktur und die Nickelschicht von der Titantrennschicht abgehoben. In einer 30%igen Salpetersäurelösung wurde die Nickelschicht 3 aufgelöst, so daß ein freitragendes Hochpaßfilter für den fernen Infrarotbereich entstand.A 2.5 mm thick titanium frame 5 with an inner diameter of approximately 15 mm and an outer diameter of approximately 20 mm was filled with a 2-component adhesive filled with sapphire onto this gold structure glued. With the frame 5, the microstructure and the nickel layer were lifted off the titanium separating layer. The nickel layer 3 was dissolved in a 30% nitric acid solution, so that a self-supporting high-pass filter for the far infrared region was created.

Dieses Herstellungsverfahren hat neben den beim ersten Ausführungsbeispiel genannten Vorteilen den Vorteil, daß die Trennschicht vollständig auf der Siliziumscheibe verbleibt und vor der Auflösung der Nickelschicht nicht von dieser entfernt werden muß.In addition to the advantages mentioned in the first exemplary embodiment, this production method has the advantage that the separating layer remains completely on the silicon wafer and does not have to be removed from the nickel layer before the latter is dissolved.

BezugszeichenlisteReference symbol list

11
SubstratSubstrate
22nd
TrennschichtInterface
33rd
OpferschichtSacrificial layer
44th
MikrostrukturMicrostructure
55
HaltestrukturHolding structure

Claims (7)

Verfahren zur Herstellung freitragender Mikrostrukturen, bei dem auf ein Substrat mindestens eine Schicht aufgebracht wird, auf welche dann die Mikrostruktur aufgebaut wird, dadurch gekennzeichnet, daß a) direkt auf der Mikrostruktur (4) eine Haltestruktur (5) aufgebracht wird, dann b) die Schicht (Opferschicht (3)) mit der Mikrostruktur (4) und der Haltestruktur (5) vom Substrat (1) abgehoben wird, worauf c) die Opferschicht (3) von der mit der Haltestruktur (5) verbundenen Mikrostruktur (4) entfernt wird. Method for producing self-supporting microstructures, in which at least one layer is applied to a substrate, on which the microstructure is then built up, characterized in that a) a holding structure (5) is applied directly to the microstructure (4), then b) the layer (sacrificial layer (3)) with the microstructure (4) and the holding structure (5) is lifted off the substrate (1), whereupon c) the sacrificial layer (3) is removed from the microstructure (4) connected to the holding structure (5). Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwischen Substrat (1) und Opferschicht (3) eine weitere Schicht als Trennschicht (2) liegt, welche Schritt b) von Anspruch 1 erleichtert und welche bei Schritt c) von Anspruch 1 ebenfalls entfernt wird.Method according to claim 1, characterized in that between the substrate (1) and the sacrificial layer (3) there is a further layer as a separating layer (2), which facilitates step b) of claim 1 and which is also removed in step c) of claim 1. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Opferschicht (3) aus Titan besteht.Method according to claim 1 or 2, characterized in that the sacrificial layer (3) consists of titanium. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Trennschicht (2) aus Kohlenstoff besteht.Method according to claim 1 or one of the following, characterized in that the separating layer (2) consists of carbon. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Haltestruktur (5) auf die Mikrostruktur (4) geklebt wird.Method according to claim 1 or one of the following, characterized in that the holding structure (5) is glued to the microstructure (4). Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß das Substrat (1) aus Silizium besteht.Method according to claim 1 or one of the following, characterized in that the substrate (1) consists of silicon. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Mikrostruktur (4) aus einem galvanisch abscheidbaren Metall besteht.Method according to Claim 1 or one of the following, characterized in that the microstructure (4) consists of an electrodepositable metal.
EP91118109A 1990-10-29 1991-10-24 Process for manufacturing self-supporting microstructures Expired - Lifetime EP0483662B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4034365 1990-10-29
DE4034365A DE4034365A1 (en) 1990-10-29 1990-10-29 METHOD FOR PRODUCING SUPPORTING MICROSTRUCTURES

Publications (3)

Publication Number Publication Date
EP0483662A2 true EP0483662A2 (en) 1992-05-06
EP0483662A3 EP0483662A3 (en) 1993-03-03
EP0483662B1 EP0483662B1 (en) 1994-12-14

Family

ID=6417255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91118109A Expired - Lifetime EP0483662B1 (en) 1990-10-29 1991-10-24 Process for manufacturing self-supporting microstructures

Country Status (2)

Country Link
EP (1) EP0483662B1 (en)
DE (2) DE4034365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059824A1 (en) * 1999-03-31 2000-10-12 Siemens Aktiengesellschaft Method for producing self-supporting micro-structures, consisting of thin, flat sections or membranes, and use of micro-structures produced by said method as a resistance grid in a device for measuring weak gas flows

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406600C1 (en) * 1994-03-01 1995-04-27 Kernforschungsz Karlsruhe Process for the production of a filter for electromagnetic radiation
DE10239551A1 (en) * 2002-08-23 2004-03-04 Daimlerchrysler Ag Filter body for soot filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160258B (en) * 1961-06-13 1963-12-27 Richard Steding Process for the production of metal foils by electroforming
DE1303000B (en) * 1966-07-06 1971-01-28
FR2304693A1 (en) * 1975-03-19 1976-10-15 Siemens Ag MANUFACTURING PROCESS FOR SELF-SUPPORTING THIN METAL STRUCTURES
EP0007447A1 (en) * 1978-07-24 1980-02-06 Siemens Aktiengesellschaft Method of making microperforated surfaces and application of said method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3232499A1 (en) * 1982-09-01 1984-03-01 Philips Patentverwaltung Gmbh, 2000 Hamburg MASK FOR PATTERN PRODUCTION IN LACQUER LAYERS BY MEANS OF X-RAY RAY LITHOGRAPHY AND METHOD FOR THEIR PRODUCTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160258B (en) * 1961-06-13 1963-12-27 Richard Steding Process for the production of metal foils by electroforming
DE1303000B (en) * 1966-07-06 1971-01-28
FR2304693A1 (en) * 1975-03-19 1976-10-15 Siemens Ag MANUFACTURING PROCESS FOR SELF-SUPPORTING THIN METAL STRUCTURES
EP0007447A1 (en) * 1978-07-24 1980-02-06 Siemens Aktiengesellschaft Method of making microperforated surfaces and application of said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059824A1 (en) * 1999-03-31 2000-10-12 Siemens Aktiengesellschaft Method for producing self-supporting micro-structures, consisting of thin, flat sections or membranes, and use of micro-structures produced by said method as a resistance grid in a device for measuring weak gas flows
US7051418B2 (en) 1999-03-31 2006-05-30 Siemens Aktiengesellschaft Method of measuring weak gas flows

Also Published As

Publication number Publication date
EP0483662B1 (en) 1994-12-14
DE59103890D1 (en) 1995-01-26
EP0483662A3 (en) 1993-03-03
DE4034365C2 (en) 1993-03-18
DE4034365A1 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
DE2453035C3 (en) Method for applying a metallic layer in the form of a pattern on an inert substrate coated with a first thin metallic layer
EP1238312B1 (en) Use of polyimide for adhesive layers, lithographic method for producing microcomponents and method for producing composite material
DE2512086C3 (en) Process for the production of self-supporting, thin metal structures
DE2901697C3 (en) Method for forming line connections on a substrate
DE10225680B4 (en) A method of manufacturing a metal layer and a method of manufacturing a laminated ceramic electronic component
EP0222738A2 (en) Process for the production of a transmission mask
EP0546427A1 (en) Microvalve and process of producing the same
DE2425464C3 (en) Process for the production of thin-film aperture diaphragms for particle beam devices
EP0104685B1 (en) Method of manufacturing a mask for obtaining texturised patterns in resist layers using x-ray lithography
DE3119682A1 (en) &#34;METHOD FOR PRODUCING A MASK FOR PATTERN PRODUCTION IN LACQUER LAYERS BY MEANS OF RADIATION LITHOGRAPHY&#34;
DE10040448A1 (en) Semiconductor chip and method for its production
EP0264594B1 (en) Device for the support of a metallic microfilter foil
EP0001038B1 (en) A method for making a silicon mask and its utilisation
EP0085979B1 (en) Process for manufacturing self-supporting metallic screens
EP0483662B1 (en) Process for manufacturing self-supporting microstructures
DE2361804C2 (en) Process for the production of superconducting contacts in low-temperature circuits and application of the process in the production of low-temperature circuits with Josephson elements
EP0141335A1 (en) Process for the production of an X-ray mask with a metallic support foil
EP0957509A2 (en) Process for the fabrication of a device containing a microstructured layer
DE2526382C3 (en) Cathode sputtering process for the production of etched structures
EP0222739A2 (en) Process for the production of a transmission mask
CH503121A (en) Selective area electrodeposition
DE4406600C1 (en) Process for the production of a filter for electromagnetic radiation
DE2645081A1 (en) PROCESS FOR Peeling Off Layers
DE4114269C2 (en) Process for the group-wise production of microstructures which are sealed on at least one side with a membrane
CH631214A5 (en) Process for producing local anodic oxide layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19930413

17Q First examination report despatched

Effective date: 19940304

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59103890

Country of ref document: DE

Date of ref document: 19950126

EAL Se: european patent in force in sweden

Ref document number: 91118109.7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

EUG Se: european patent has lapsed

Ref document number: 91118109.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071217

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501