EP0481111A1 - Gas-turbine combustion chamber - Google Patents

Gas-turbine combustion chamber Download PDF

Info

Publication number
EP0481111A1
EP0481111A1 EP90119900A EP90119900A EP0481111A1 EP 0481111 A1 EP0481111 A1 EP 0481111A1 EP 90119900 A EP90119900 A EP 90119900A EP 90119900 A EP90119900 A EP 90119900A EP 0481111 A1 EP0481111 A1 EP 0481111A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
burners
burner
premix
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90119900A
Other languages
German (de)
French (fr)
Other versions
EP0481111B1 (en
Inventor
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to AT90119900T priority Critical patent/ATE124528T1/en
Priority to EP90119900A priority patent/EP0481111B1/en
Priority to DE59009353T priority patent/DE59009353D1/en
Priority to PL29190291A priority patent/PL291902A1/en
Priority to US07/775,603 priority patent/US5274993A/en
Priority to CA002053587A priority patent/CA2053587A1/en
Priority to JP26918891A priority patent/JP3179154B2/en
Publication of EP0481111A1 publication Critical patent/EP0481111A1/en
Application granted granted Critical
Publication of EP0481111B1 publication Critical patent/EP0481111B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a combustion chamber of a gas turbine according to the preamble of claim 1.
  • premix burners With regard to the prescribed, extremely low NOx, Co and UHC emissions when operating a gas turbine, many manufacturers are adopting premix burners.
  • One of the disadvantages of premix burners is that they extinguish at one of approx. 2, even at very low air numbers, depending on the temperature downstream of the compressor of the gas turbine group.
  • "lean premix combustion" in the low load range of a combustion chamber leads to poor combustion efficiency and correspondingly high NOx, Co and UHC emissions. This problem becomes particularly critical in multi-shaft machines because the combustion chamber pressure there is typically very low when idling. For this reason, the air temperature after the compressor is very low.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, is based on the object of maximizing the efficiency and minimizing the various pollutant emissions in a combustion chamber of the type mentioned at part-load operation.
  • a pilot burner likewise designed on the basis of premix burner, between two main burners designed on the basis of premix burners, the pilot burners being combined with a pre-combustion chamber.
  • the main burners are related to the pilot burners in terms of the size of the burner air flowing through them, which is determined on a case-by-case basis.
  • the combination pilot burner / pre-combustion chamber is then operated in "rich primary mode". In this way, with the help of the fuel-rich combustion in the pre-combustion chamber, both the evaporation of the liquid fuel and the burnout of liquid or gaseous fuel can be decisively improved.
  • the main burner system With a sufficiently high load, as soon as the combustion chamber pressure is sufficiently high, the main burner system is then switched on and the pilot burners are then operated in "lean primary mode".
  • main burners and the pilot burners consist of so-called double-cone burners of different sizes, and if these burners are integrated in an annular combustion chamber.
  • Fig. 1 shows a section of a sector of an annular combustion chamber A along the front wall 10 thereof. This shows the placement of the individual main burners B and pilot burners C. These are placed at a uniform distance from one another along the front wall 10, with an alternating distribution.
  • the size difference shown between main burner B and pilot burner C is only of a qualitative nature.
  • the effective size of the individual burners B and C and their distance from one another primarily depends on the size and performance of the respective combustion chamber.
  • the size ratio between pilot burners C and main burners B is selected such that approximately 23% of the burner air flows through the pilot burners C and approximately 77% through the main burners B.
  • the pilot burners C are each supplemented with a pre-combustion chamber C1, the design of which will be explained in more detail in FIG. 2.
  • Fig. 2 is a schematic axial section through the annular combustion chamber in the plane of the burners B and C; Both the main burners B and the pilot burners C all open at the same height into the uniform front wall 10 to the subsequent combustion chamber of the combustion chamber: the main burners B directly because of their outflow opening, the pilot burners C, however, via the pre-combustion chamber C1 downstream of the burner part in the outflow direction.
  • the schematic representation of FIG. 2 already shows that both the main burner B and the pilot burner C are designed as premix burners, i.e. they do not need the otherwise usual premix zone. Of course, with such a design, it must always be ensured that backfire in the premixing zone of the respective burner, upstream of the front wall 10, is excluded.
  • the size ratio between the main burner B and the pilot burner C to a certain extent also indicates the operating mode with regard to the load range: At low partial load, only the pilot burner C (one or more stages) is supplied with fuel in such a configuration. "Lean premix combustion" leads to poor combustion efficiency in the low load range of a combustion chamber and correspondingly high NOx, CO and HC emissions. Where multi-shaft machines are used, for example, this problem becomes particularly critical because the combustion chamber pressure is typically very low when idling. For this reason, the air temperature after the compressor is also very low, which does not result in optimal premixing of this compressor air with the fuel used.
  • FIG. 3 which can be both main burner B and pilot burner C by design, consists of two half hollow partial cone bodies 1, 2 which are radially offset from one another with respect to their longitudinal axis of symmetry.
  • the two partial cone bodies 1, 2 each have a cylindrical initial part 1 a, 2a, which, analogous to the partial cone bodies 1, 2, are offset from one another, so that the tangential air inlet slots 19, 20 are present throughout the entire burner.
  • a nozzle 3 is accommodated, the fuel injection 4 of which coincides with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2.
  • the size of this nozzle 3 depends on the type of burner, ie whether it is a pilot burner C or main burner B. Of course, the burner can be designed in a purely conical manner, that is to say without cylindrical starting parts 1a, 2a.
  • Both partial cone bodies 1, 2 each have a fuel line 8, 9 provided with openings 17, through which a gaseous fuel 13 is introduced, which in turn is admixed to the combustion air 15 flowing into the cone cavity 14 through the tangential air inlet slots 19, 20 16.
  • the fuel lines 8, 9 should preferably be provided at the end of the tangential inflow, immediately before entering the cone cavity 14, in order to achieve an optimal speed-related admixture 16 between fuel 13 and inflowing combustion air 15. Of course, mixed operation with both fuels 12, 13 is possible .
  • the outlet opening of the burner B / C merges into a front wall 10, in which bores (not shown in the drawing) can be seen before, in order to be able to supply dilution air or cooling air to the front part of the combustion chamber if required.
  • the liquid fuel 12, preferably flowing through the nozzle 3, is injected into the cone hollow body 14 at an acute angle such that the most homogeneous conical spray pattern is obtained in the burner outlet plane, which is only possible if the inner walls of the partial cone bodies 1, 2 through the Fuel injection 4, which can be an air-assisted or pressure atomization, cannot be wetted.
  • the tapered liquid fuel profile 5 is enclosed by the combustion air 15 flowing in tangentially and a further combustion air flow 15a brought in axially.
  • the concentration of the liquid fuel 12 is continuously reduced by the mixed-in combustion air 15.
  • gaseous fuel 13 is used via the fuel lines 8, 9, the mixture is formed with the combustion air 15, as has already been briefly explained above, directly in the area of the air inlet slots 19, 20, at the inlet into the cone hollow body 14
  • the injection of the liquid fuel 12 is achieved in the area of the vortex, ie in the area of the backflow zone 6, the optimal homogeneous fuel concentration over the cross section.
  • the ignition takes place at the top of the return flow zone 6. Only at this point can a stable flame front 7 arise.
  • an accelerated, holistic evaporation of the liquid fuel 12 occurs before the point at the outlet of the burner B, C is reached at which the ignition of the mixture can take place.
  • the degree of evaporation is of course dependent on the size of the burner B, C, on the drop size of the injected fuel and on the temperature of the combustion air streams 15, 15a. Minimized pollutant emission levels occur when full evaporation can be provided before entering the combustion zone.
  • the axial speed can also be influenced by the axial supply of combustion air 15a.
  • the design of the burner is ideally suited to change the size of the tangential air inlet slots 19, 20 for a given overall length of the burner by pushing the partial cone bodies 1, 2 towards or away from each other, whereby the distance between the two central axes 1b, 2b is reduced or respectively . enlarged, accordingly
  • the gap size of the tangential air inlet slots 19, 20 also changes, as can be seen particularly well from FIGS. 4-6.
  • the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled.
  • the guide plates 21a, 21b have flow introduction functions, whereby, depending on their length, they extend the respective end of the partial cone bodies 1, 2 in the direction of flow of the combustion air 15.
  • the channeling of the combustion air 15 into the cone cavity 14 can be optimized by opening or closing the guide plates 21 a, 21 b around a pivot point 23 located in the area of the entry into the cone cavity 14, in particular this is necessary if the original gap size of the tangential air inlet slots 19, 20 is changed.
  • the burner B, C can also be operated without baffles, or other aids can be provided for this.

Abstract

In a combustion chamber (A), preferably of the shape of an annular combustion chamber, a row of premix burners (B, C) of different size is arranged on the inflow side. The large premix burners (B), which are the main burners of the combustion chamber, and the small premix burners (C), which are the pilot burners of the combustion chamber, open into a front wall (10) of the combustion chamber, these premix burners (B, C) being arranged alternately and at a uniform distance from one another. While the main burners (B) open directly into the front wall (10) to the combustion chamber, the pilot burners (C) have on the outflow side of their burner length a precombustion chamber (C1) which extends as far as the front wall (10). In this precombustion chamber (C1), both the evaporation of a liquid fuel and the combustion of liquid or gaseous fuels can be improved considerably with low partial loading of the machine.

Description

Die vorliegende Erfindung betrifft eine Brennkammer einer Gasturbine gemäss Oberbegriff des Anspruchs 1.The present invention relates to a combustion chamber of a gas turbine according to the preamble of claim 1.

Stand der TechnikState of the art

Im Hinblick auf die vorgeschriebenen, extrem niedrige NOx-, Co- und UHC-Emissionen beim Betrieb einer Gasturbine gehen viele Hersteller dazu über, Vormischbrenner einzusetzen. Einer der Nachteile von Vormischbrennern besteht darin, dass sie bereits bei sehr niedrigen Luftzahlen, je nach Temperatur stromab des Verdichters der Gasturbogruppre bei einer von ca. 2 löschen. Zum anderen führt die "Lean-Premix-Verbrennung" im niedrigen Lastbereich einer Brennkammer zu einer schlechten Verbrennungswirkungsgrad und entsprechend hohen NOx-, Co- und UHC-Emissionen. Dieses Problem wird insbesondere bei Mehrwellenmaschinen deshalb kritisch, weil dort der Brennkammerdruck bei Leerlauf typischerweise sehr niedrig ist. Aus diesem Grund ist auch die Lufttemperatur nach dem Verdichter sehr niedrig. Im Falle einer Oelverbrennung wird die Situation dann besonders schwierig, wenn die Lufttemperatur die Siedetemperaturen eines grossen Teils der Fraktionen des Brennstoffs unterschreitet. Eine vermeintliche Abhilfe hiergegen besteht darin, die Vormischbrenner im Teillastbetrieb von einem oder mehreren Pilotbrennern zu stützen. In der Regel werden hierfür Diffusionsbrenner eingesetzt. Diese Technik ermöglicht zwar sehr niedrige NOx-Emissionen im Bereich der Vollast. Demgegenüber führt dieses Stützbrennersystem bei Teillastbetrieb zu wesentlichen höheren NOx-Emissionen. Der verschiedentlich bekannt gewordene Versuch, die Diffusions-Stützbrenner magerer zu fahren oder kleinere Stützbrenner zu verwenden, muss daran scheitern, dass sich der Ausbrand verschlechtert und die CO-und UHC-Emissionen sehr stark ansteigen. In der Fachsprache ist dieser Zustand unter der Bezeichnung CO/UHC-NOx-Schere bekannt geworden.With regard to the prescribed, extremely low NOx, Co and UHC emissions when operating a gas turbine, many manufacturers are adopting premix burners. One of the disadvantages of premix burners is that they extinguish at one of approx. 2, even at very low air numbers, depending on the temperature downstream of the compressor of the gas turbine group. On the other hand, "lean premix combustion" in the low load range of a combustion chamber leads to poor combustion efficiency and correspondingly high NOx, Co and UHC emissions. This problem becomes particularly critical in multi-shaft machines because the combustion chamber pressure there is typically very low when idling. For this reason, the air temperature after the compressor is very low. In the case of oil combustion, the situation becomes particularly difficult if the air temperature falls below the boiling point of a large part of the fractions of the fuel. A supposed remedy for this is to support the premix burner in partial load operation by one or more pilot burners. Diffusion burners are usually used for this. This technology enables very low NOx emissions in the area of full load. In contrast, this auxiliary burner system leads to significantly higher NOx emissions during part-load operation. The attempt, which has become known variously, to make the diffusion auxiliary burners leaner or to use smaller auxiliary burners must fail because the burnout deteriorates and the CO and UHC emissions increase very sharply. In technical terms, this condition has become known as CO / UHC NOx scissors.

Aufgabe der ErfindungObject of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einer Brennkammer der eingangs genannten Art bei Teillastbetrieb den Wirkungsgrad zu maximieren und die verschiedenen Schadstoff-Emissionen zu minimieren.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of maximizing the efficiency and minimizing the various pollutant emissions in a combustion chamber of the type mentioned at part-load operation.

Dazu wird vorgesehen, jeweils zwischen zwei auf Basis Vormischbrenner gestalteten Hauptbrennern einen ebenfalls auf Basis Vormischbrenner gestalteten Pilotbrenner vorzusehen, wobei die Pilotbrenner mit einer Vorbrennkammer kombiniert werden. Die Hauptbrenner stehen zu den Pilotbrennern bezüglich der dort durchströmten Brennerluft in einem Grössenverhältnis zueinander, das fallweise festgelegt wird. Bei tiefer Teillast werden nur die Pilotbrenner (ein- oder mehrstufig) mit Brennstoff beliefert. Die Kombination Pilotbrenner/Vorbrennkammer wird dann im "Rich Primary Mode" betrieben. Auf diese Weise gelingt es, mit Hilfe der brennstoffreichen Verbrennung in der Vorbrennkammer, sowohl die Verdampfung des flüssigen Brennstoffs als auch der Ausbrand von flüssigem oder gasförmigem Brennstoff entscheidend zu verbessern. Bei ausreichend hoher Last, sobald der Brennkammerdruck genügend hoch ist, wird dann das Hauptbrennersystem zugeschaltet, und die Pilotbrenner werden dann im "Lean Primary Mode" betrieben.For this purpose, provision is made to provide a pilot burner, likewise designed on the basis of premix burner, between two main burners designed on the basis of premix burners, the pilot burners being combined with a pre-combustion chamber. The main burners are related to the pilot burners in terms of the size of the burner air flowing through them, which is determined on a case-by-case basis. At low partial loads, only the pilot burners (one or more stages) are supplied with fuel. The combination pilot burner / pre-combustion chamber is then operated in "rich primary mode". In this way, with the help of the fuel-rich combustion in the pre-combustion chamber, both the evaporation of the liquid fuel and the burnout of liquid or gaseous fuel can be decisively improved. With a sufficiently high load, as soon as the combustion chamber pressure is sufficiently high, the main burner system is then switched on and the pilot burners are then operated in "lean primary mode".

Eine vorteilhafte Ausgestaltung der Erfindung wird dann erreicht, wenn die Hauptbrenner und die Pilotbrenner aus unterschiedlich grossen sogenannten Doppelkegelbrennern bestehen, und wenn diese Brenner in eine Ringbrennkammer integriert werden.An advantageous embodiment of the invention is achieved if the main burners and the pilot burners consist of so-called double-cone burners of different sizes, and if these burners are integrated in an annular combustion chamber.

Vorteilhafte zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren abhängigen Ansprüchen gekennzeichnet.Advantageous expedient developments of the task solution according to the invention are characterized in the further dependent claims.

Im folgenden wird anhand der Zeichnung Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. In den verschidenen Figuren sind gleiche Elemente jeweils mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen gekennzeichnet.Exemplary embodiments of the invention are explained in more detail below with reference to the drawing. All elements not necessary for the immediate understanding of the invention have been omitted. In the various figures, the same elements are provided with the same reference numerals. The flow direction of the media is marked with arrows.

Kurze Beschreibung der FigurenBrief description of the figures

Es zeigt:

  • Fig. 1 eine schematische Aufsicht auf einen Teil der Frontwand einer Ringbrennkammer, mit ebenfalls schematischer Ansicht der dort plazierten Haupt- und Pilotbrenner,
  • Fig. 2 einen schematischen Achsialschnitt durch einen Sektor der Ringbrennkammer in der Brennerebene,
  • Fig. 3 einen Brenner von der Form eines Doppelkegelbrenners der sowohl Hauptbrenner als auch Pilotbrenner ist, in perspektivischer Darstellung, entsprechend aufgeschnitten und
  • Fig. 4, 5, 6 entsprechende Schnitte durch die Ebenen IV-IV (= Fig. 4), V-V (= Fig. 5) und VI-VI (= Fig. 6), wobei diese Schnitte nur eine schematische, vereinfachte Darstellung des Doppelkegelbrenners gemäss Fig 3.
It shows:
  • 1 is a schematic plan view of part of the front wall of an annular combustion chamber, also with a schematic view of the main and pilot burners placed there,
  • 2 shows a schematic axial section through a sector of the annular combustion chamber in the burner plane,
  • Fig. 3 shows a burner in the form of a double-cone burner, which is both main burner and pilot burner, in a perspective view, and cut accordingly
  • Fig. 4, 5, 6 corresponding sections through the levels IV-IV (= Fig. 4), VV (= Fig. 5) and VI-VI (= Fig. 6), these sections being only a schematic, simplified representation the double-cone burner according to FIG. 3.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Fig. 1 zeigt einen Ausschnitt eines Sektors einer Ringbrennkammer A entlang der Frontwand 10 derselben. Daraus geht die Plazierung der einzelnen Hauptbrenner B und Pilotbrenner C hervor. Diese sind entlang der Frontwand 10 in gleichmässigem Abstand zueinander plaziert, wobei sie eine abwechslungsweise Verteilung aufweisen. Der dargestellte Grössenunterschied zwischen Hauptbrenner B und Pilotbrenner C ist nur von qualitativer Natur. Die effektive Grösse der einzelnen Brenner B und C sowie deren Abstand zueinander richtet sich vornehmlich nach der Grösse und Leistung der jeweiligen Brennkammer. Bei einer Ringbrennkammer mittlerer Grösse wird das Grössenverhältnis zwischen Pilotbrennern C und Hauptbrennern B so gewählt, dass etwa 23% der Brennerluft durch die Pilotbrenner C und etwa 77% durch die Hauptbrenner B strömen. Die Figur zeigt des weiteren auf, dass die Pilotbrenner C jeweils mit einer Vorbrennkammer C1 ergänzt sind, deren Ausgestaltung in Figur 2 näher zur Erläuterung kommen wird.Fig. 1 shows a section of a sector of an annular combustion chamber A along the front wall 10 thereof. This shows the placement of the individual main burners B and pilot burners C. These are placed at a uniform distance from one another along the front wall 10, with an alternating distribution. The size difference shown between main burner B and pilot burner C is only of a qualitative nature. The effective size of the individual burners B and C and their distance from one another primarily depends on the size and performance of the respective combustion chamber. In the case of an annular combustion chamber of medium size, the size ratio between pilot burners C and main burners B is selected such that approximately 23% of the burner air flows through the pilot burners C and approximately 77% through the main burners B. The figure further shows that the pilot burners C are each supplemented with a pre-combustion chamber C1, the design of which will be explained in more detail in FIG. 2.

Fig. 2 ist ein schematischer axialer Schnitt durch die Ringbrennkammer in der Ebene der Brenner B und C; sowohl die Hauptbrenner B als auch die Pilotbrenner C münden alle auf gleicher Höhe in die einheitliche Frontwand 10 zum nachfolgenden Brennraum der Brennkammer: Die Hauptbrenner B direkt aufgrund ihrer Ausströmungsöffnung, die Pilotbrenner C hingegen über die dem Brennerteil in Abströmungsrichtung nachgelagerte Vorbrennkammer C1. Schon die schematische Darstellung von Fig. 2 lässt erkennen, dass sowohl die Hauptbrenner B als auch die Pilotbrenner C als Vormischbrenner ausgelegt sind, d.h., sie kommen ohne der sonst üblichen Vormischzone aus. Freilich muss bei einer solchen Auslegung immer sichergestellt werden, dass eine Rückzündung in die Vormischzone des jeweiligen Brenners, stromauf der Frontwand 10, ausgeschlossen wird. Ein Brenner, der diese Bedingung zu erfüllen vermag, wird in den Fig. 3-6 näher zur Erläuterung kommen. Das Grössenverhältnis zwischen Hauptbrenner B und Pilotbrennern C zueinder indiziert bis zu einem gewissen Grad auch die Betriebsfahrweise bezüglich Lastbereichs: Bei tiefer Teillast werden bei einer solchen Konfiguration nur die Pilotbrenner C (ein- oder mehrstufig) mit Brennstoff beliefert. Die "Lean-Premix-Verbrennung" führt im niedrigen Lastbereich einer Brennkammer zu einer schlechten Verbrennungswirkungsgrad und entsprechend höhen NOx-, CO- und HC-Emissionen. Dort wo beispielsweise Mehrwellenmaschinen zum Einsatz gelangen, wird dieses Problem besonders kritisch, weil der Brennkammerdruck bei Leerlauf typischerweise sehr niedrig ist. Aus diesem Grund ist auch die Lufttemperatur nach dem Verdichter sehr niedrig, was keine optimale Vormischung dieser Verdichterluft mit dem eingesetzten Brennstoff ergibt. Im Falle einer Oelverbrennung wird die Situation dann besonders schwierig, weil ebendiese Lufttemperatur die Siedetemperaturen eines grossen Teils der Fraktionen der letztgenannten Brennstoffes unterschreitet. Dem schlechten Teillastwirkungsgrad und den hohen Schadstoff-Emissionen wird Abhilfe getan, indem die Pilotbrenner C mit der verschiedentlich schon erwähnten Vormischkammer C1 kombiniert werden. Ausgehend von der Tatsache, dass bei tiefer Teillast nur die Pilotbrenner C betrieben werden, d.h. mit Brennstoff beliefert werden, gelingt es mit Hilfe der Vorbrennkammer C1, welche stromab der grössten Ausströmungsöffnung des Pilotbrenners C plaziert ist, und unmittelbar stromauf des Brennraums der Ringbrennkammer liegt, eine brennstoffreiche Vorverbrennung zu betreiben. In dieser Vorbrennkammer C1 lässt sich die Verdampfung eines flüssigen Brennstoffes als auch der Ausbrand von flüssigen oder gasförmigen Brennstoffen entscheidend verbessern. Bei ausreichend hoher Last, sobald der Brennkammerdruck genügend hoch ist, wird dann das Hauptbrennersystem zugeschaltet. Die Pilotbrenner C werden dann im "Lean Primary Mode" betrieben. Dieses System lässt sich auch ohne weiteres mit Vorteil auch bei Einwellenmaschinen einsetzen, insbesondere dort, wo die Leerlauftemperatur der Luft nicht mindestens 300 ° beträgt.Fig. 2 is a schematic axial section through the annular combustion chamber in the plane of the burners B and C; Both the main burners B and the pilot burners C all open at the same height into the uniform front wall 10 to the subsequent combustion chamber of the combustion chamber: the main burners B directly because of their outflow opening, the pilot burners C, however, via the pre-combustion chamber C1 downstream of the burner part in the outflow direction. The schematic representation of FIG. 2 already shows that both the main burner B and the pilot burner C are designed as premix burners, i.e. they do not need the otherwise usual premix zone. Of course, with such a design, it must always be ensured that backfire in the premixing zone of the respective burner, upstream of the front wall 10, is excluded. A burner that is capable of fulfilling this condition will be explained in more detail in FIGS. 3-6. The size ratio between the main burner B and the pilot burner C to a certain extent also indicates the operating mode with regard to the load range: At low partial load, only the pilot burner C (one or more stages) is supplied with fuel in such a configuration. "Lean premix combustion" leads to poor combustion efficiency in the low load range of a combustion chamber and correspondingly high NOx, CO and HC emissions. Where multi-shaft machines are used, for example, this problem becomes particularly critical because the combustion chamber pressure is typically very low when idling. For this reason, the air temperature after the compressor is also very low, which does not result in optimal premixing of this compressor air with the fuel used. In the case of oil combustion, the situation becomes particularly difficult because this air temperature falls below the boiling point of a large part of the fractions of the latter fuel. The poor partial load efficiency and the high pollutant emissions are remedied by combining the pilot burner C with the premixing chamber C1, which has already been mentioned several times. Based on the fact that only the pilot burners C are operated at low partial load, i.e. can be supplied with fuel, it is possible to operate a fuel-rich pre-combustion with the aid of the pre-combustion chamber C1, which is located downstream of the largest outflow opening of the pilot burner C and is located immediately upstream of the combustion chamber of the ring combustion chamber. The evaporation of a liquid fuel and the burnout of liquid or gaseous fuels can be decisively improved in this pre-combustion chamber C1. With a sufficiently high load, as soon as the combustion chamber pressure is sufficiently high, the main burner system is switched on. The pilot burners C are then operated in "lean primary mode". This system can also be used with advantage in single-shaft machines, particularly where the idle air temperature is not at least 300 °.

Um den Aufbau des Brenners B und C besser zu verstehen ist es von Vorteil, wenn gleichzeitig zu Fig. 3 die einzelnen darin ersichtlichen Schnitte nach den Figuren 4-6 herangezogen werden. Des weiteren, um Fig. 3 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach Fig. 4-6 schematisch gezeigten Leitbleche 21a, 21 b nur andeutungsweise aufgenommen worden. Im folgenden werden bei der Beschreibung von Fig. 3 nach Bedarf auf die anderen Figuren 4-6 hingewiesen. Der Brenner gemäss Fig. 3, der vom Aufbau her sowohl Hauptbrenner B als auch Pilotbrenner C sein kann, besteht aus zwei halben hohlen Teilkekegelkörpern 1, 2, die bezüglich ihrer Längssymmetrieachse radial versetzt zueinander aufeinander stehen. Die Versetzung der jeweiligen Längssymmetrieachse 1 b, 2b zueinander schafft auf beiden Seiten der Teilkegelkörper 1, 2 in entgegengesetzter Einströmungsanordnung jeweils einen tangentialen Lufteintrittsschlitz 19, 20 frei (Vgl. hierzu Fig. 4-6), durch welche die Verbrennungsluft 15 in den Innenraum des Brenners, d.h. in den von beiden Teilkegelkörpern 1, 2 gebildeten Kegelhohlraum 14 strömt. Die Kegelform der ge zeigten Teilkegelkörper 1, 2 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich können die Teilkegelkörper 1, 2 in Strömungsrichtung eine progressive oder degressive Kegelneigung aufweisen. Die beiden letztgenannten Ausführungsformen sind zeichnerisch nicht erfasst, da sie ohne weiteres nachempfindbar sind. Welche Form schlussendlich den Vorzug gegeben wird, hängt im wesentlichen von den jeweils vorgegebenen Parametern der Verbrennung ab. Die beiden Teilkegelkörper 1, 2 haben je einen zylindrischen Anfangsteil 1 a, 2a, die, analog zu den Teilkegelkörpern 1, 2, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittssschlitze 19, 20 durchgehend über die ganze des Brenners vorhanden sind. In diesem zylindrischen Anfangsteil 1 a, 2a ist eine Düse 3 untergebracht, deren Brennstoffeindüsung 4 mit dem engsten Querschnitt des durch die zwei Teilkegelkörper 1, 2 gebildeten kegeligen Hohlraumes 14 zusammenfällt. Die Grösse dieser Düse 3 richtet sich nach der Art des Brenners, d.h., ob es sich um einen Pilotbrenner C oder Hauptbrenner B handelt. Selbstverständlich kann der Brenner rein kegelig, also ohne zylindrische Anfangsteile 1 a, 2a, ausgeführt werden. Beide Teilkegelkörper 1, 2 weisen je eine mit Oeffnungen 17 versehene Brennstoffleitung 8, 9 auf, durch welche ein gasförmiger Brennstoff 13 herangeführt wird, welcher seinerseits der durch die tangentialen Lufteintrittsschlitze 19, 20 in den Kegelhohlraum 14 einströmenden Verbrennungsluft 15 zugemischt wird 16. Die Brennstoffleitungen 8, 9 sind vorzugsweise am Ende der tangentialen Einströmung, unmittelbar vor Eintritt in den Kegelhohlraum 14, vorzusehen, dies um eine optimale geschwindigkeitsbedingte Zumischung 16 zwischen Brennstoff 13 und einströmender Verbrennungsluft 15 zu erzielen.-Selbstverständlich ist ein Mischbetrieb mit beiden Brennstoffen 12, 13 möglich. Brennraumseitig 22 geht die Ausgangsöffnung des Brenners B/C in eine Frontwand 10 über, in welcher allenfalls in der Zeichnung nicht dargestellte Bohrungen vor gesehen werden können, dies um bei Bedarf Verdünnungsluft oder Kühlluft dem vorderen Teil des Brennraumes zuführen zu können. Der durch die Düse 3 vorzugsweise strömende flüssige Brennstoff 12 wird in einem spitzen Winkel in den Kegelhohlkörper 14 eingedüst, dergestalt, dass sich in der Brenneraustrittsebene ein möglichst homogenes kegeliges Sprühbild einstellt, was nur möglich ist, wenn die Innenwände der Teilkegelkörper 1, 2 durch die Brennstoffeindüsung 4, bei welcher es sich um eine Luftunterstützte- oder Druck-Zerstäubung handeln kann,nicht benetzt werden. Zu diesem Zweck wird das kegelige Flüssigbrennstoffprofil 5 von der tangential einströmenden Verbrennungsluft 15 und einem achsial herangeführten weiteren Verbrennungsluftstrom 15a umschlossen. In axialer Richtung wird die Konzentration des flüssigen Brennstoffes 12 fortlaufend durch die eingemischte Verbrennungsluft 15 abgebaut. Wird gasförmiger Brennstoff 13 über die Brennstoffleitungen 8, 9 eingesetzt, so geschieht die Gemischbildung mit der Verbrennungsluft 15, wie bereits oben kurz zur Erläuterung gekommen ist, direkt im Bereich der Lufteintrittsschlitze 19, 20, am Eintritt in den Kegelhohlkörper 14. Im Zusammenhang mit der Eindüsung des flüssigen Brennstoffes 12 wird im Bereich des Wirbelaufplatzens, also im Bereich der Rückströmzone 6, die optimale homogene Brennstoffkonzentration über den Querschnitt erreicht. Die Zündung erfolgt an der Spitze der Rückströmzone 6. Erst an dieser Stelle kann eine stabile Flammenfront 7 entstehen. Ein Rückschlag der Flamme ins Innere des Brenners B, C, wie dies bei bekannten Vormischstrecken potentiell immer der Fall sein kann, wogegen dort mit komplizierten Flammenhaltern Abhilfe gesucht wird, ist hier nicht zu befürchten. Ist die Verbrennungsluft vorgewärmt, so stellt sich eine beschleunigte ganzheitliche Verdampfung des flüssigen Brennstoffes 12 ein, bevor der Punkt am Ausgang des Brenners B, C errreicht ist, an dem die Zündung des Gemisches stattfinden kann. Der Grad der Verdampfung ist selbstverständlich von der Grösse des Brenners B, C, von der Tropfengrösse des eingedüsten Brennstoffes sowie von der Temperatur der Verbrennungsluftströme 15, 15a abhängig. Minimierte Schadstoffemissionswerte treten auf, wenn eine vollständige Verdampfung vor Eintritt in die Verbrennungszone bereitgestellt werden kann. Gleiches gilt auch für den nahstöchiometrischen Betrieb, wenn die Ueberschussluft durch ein rezirkulierende Abgas ersetzt wird. Bei der Gestaltung der Teilkegelkörper 1, 2 hinsichtlich Kegelwinkels und der Breite der tangentialewn Lufteintrittsschlitze 19, 20 sind enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Luft mit ihrer Rückströmzone 6 im Bereich der Brennermündung zur Flammenstabilisierung einstellt. Allgemein ist zu sagen, dass eine Verkleinerung der Lufteintrittsschlitze 19, 20 die Rückströmzone 6 weiter stromaufwärts verschiebt, wodurch dann allerdings das Gemisch früher zur Zündung käme. Immerhin ist hier zu sagen, dass die einmal fixierte Rückströmzone 6 an sich positionsstabil ist, denn die Drallzahl nimmt in Strömungsrichtung im Bereich der Kegelform des Brenners zu. Die Achsialgeschwindigkeit lässt sich des weiteren durch axiale Zuführung von Verbrennungsluft 15a beeinflussen. Die Konstruktion des Brenners eignet sich vorzüglich, bei vorgegebener Baulänge des Brenners, die Grösse der tangentialen Lufteintrittsschlitze 19, 20 zu verändern, indem die Teilkegelkörper 1, 2 zu oder auseinander geschoben werden, wodurch sich der Abstand der beiden Mittelachsen 1 b, 2b verkleinert resp. vergrössert, dementsprechend sich auch die Spaltgrösse der tangentialen ufteintrittsschlitze 19, 20 verändert, wie die aus Fig. 4-6 besonders gut hervorgeht. Selbstverständlich sind die Teilkegelkörper 1, 2 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben angesteuert werden kann. Ja es ist sogar möglich, die Teilkegelkörper 1, 2 durch eine gegenläufige drehende Bewegung spiralartig ineinander zu verschieben, oder die Teilkegelkörper 1, 2 durch eine axiale Verschiebung gegenein ander zu verschieben. Somit hat man es in der Hand, die Form und die Grösse der tangentialen Lufteintrittsschlitze 19, 20 beliebig zu variieren, womit der Brenner B, C ohne Veränderung seiner Baulänge in einer gewissen betriebliche Bandbreite individuell angepasst werden kann.In order to better understand the structure of the burner B and C, it is advantageous if the individual sections shown in FIGS. 4-6 are used simultaneously with FIG. 3. Furthermore, in order not to make FIG. 3 unnecessarily confusing, the baffles 21a, 21b shown schematically in FIGS. 4-6 are only hinted at in it. In the description of FIG. 3, reference is made below to the other FIGS. 4-6 as required. The burner according to FIG. 3, which can be both main burner B and pilot burner C by design, consists of two half hollow partial cone bodies 1, 2 which are radially offset from one another with respect to their longitudinal axis of symmetry. The offset of the respective longitudinal axis of symmetry 1 b, 2b to each other creates a tangential air inlet slot 19, 20 on both sides of the partial cone body 1, 2 in the opposite inflow arrangement (see FIGS. 4-6) through which the combustion air 15 enters the interior of the Burner, ie flows in the cone cavity 14 formed by the two partial cone bodies 1, 2. The cone shape of the partial cone body showed per 1, 2 in the direction of flow has a certain fixed angle. Of course, the partial cone bodies 1, 2 can have a progressive or degressive taper in the direction of flow. The two last-mentioned embodiments are not included in the drawing, since they can easily be reread. Which form is ultimately preferred essentially depends on the combustion parameters specified in each case. The two partial cone bodies 1, 2 each have a cylindrical initial part 1 a, 2a, which, analogous to the partial cone bodies 1, 2, are offset from one another, so that the tangential air inlet slots 19, 20 are present throughout the entire burner. In this cylindrical initial part 1 a, 2a, a nozzle 3 is accommodated, the fuel injection 4 of which coincides with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2. The size of this nozzle 3 depends on the type of burner, ie whether it is a pilot burner C or main burner B. Of course, the burner can be designed in a purely conical manner, that is to say without cylindrical starting parts 1a, 2a. Both partial cone bodies 1, 2 each have a fuel line 8, 9 provided with openings 17, through which a gaseous fuel 13 is introduced, which in turn is admixed to the combustion air 15 flowing into the cone cavity 14 through the tangential air inlet slots 19, 20 16. The fuel lines 8, 9 should preferably be provided at the end of the tangential inflow, immediately before entering the cone cavity 14, in order to achieve an optimal speed-related admixture 16 between fuel 13 and inflowing combustion air 15. Of course, mixed operation with both fuels 12, 13 is possible . On the combustion chamber side 22, the outlet opening of the burner B / C merges into a front wall 10, in which bores (not shown in the drawing) can be seen before, in order to be able to supply dilution air or cooling air to the front part of the combustion chamber if required. The liquid fuel 12, preferably flowing through the nozzle 3, is injected into the cone hollow body 14 at an acute angle such that the most homogeneous conical spray pattern is obtained in the burner outlet plane, which is only possible if the inner walls of the partial cone bodies 1, 2 through the Fuel injection 4, which can be an air-assisted or pressure atomization, cannot be wetted. For this purpose, the tapered liquid fuel profile 5 is enclosed by the combustion air 15 flowing in tangentially and a further combustion air flow 15a brought in axially. In the axial direction, the concentration of the liquid fuel 12 is continuously reduced by the mixed-in combustion air 15. If gaseous fuel 13 is used via the fuel lines 8, 9, the mixture is formed with the combustion air 15, as has already been briefly explained above, directly in the area of the air inlet slots 19, 20, at the inlet into the cone hollow body 14 The injection of the liquid fuel 12 is achieved in the area of the vortex, ie in the area of the backflow zone 6, the optimal homogeneous fuel concentration over the cross section. The ignition takes place at the top of the return flow zone 6. Only at this point can a stable flame front 7 arise. A flashback of the flame into the interior of the burner B, C, as this can potentially always be the case with known premixing sections, while remedial measures are sought there with complicated flame holders, is not to be feared here. If the combustion air is preheated, an accelerated, holistic evaporation of the liquid fuel 12 occurs before the point at the outlet of the burner B, C is reached at which the ignition of the mixture can take place. The degree of evaporation is of course dependent on the size of the burner B, C, on the drop size of the injected fuel and on the temperature of the combustion air streams 15, 15a. Minimized pollutant emission levels occur when full evaporation can be provided before entering the combustion zone. The same also applies to near-stoichiometric operation when the excess air is replaced by a recirculating exhaust gas. When designing the partial cone bodies 1, 2 with regard to the cone angle and the width of the tangential air inlet slots 19, 20, narrow limits must be observed so that the desired flow field of air with its return flow zone 6 is established in the area of the burner mouth for flame stabilization. In general, it can be said that a reduction in the size of the air inlet slots 19, 20 shifts the backflow zone 6 further upstream, which would cause the mixture to ignite earlier, however. After all, it must be said here that the backflow zone 6, once fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner. The axial speed can also be influenced by the axial supply of combustion air 15a. The design of the burner is ideally suited to change the size of the tangential air inlet slots 19, 20 for a given overall length of the burner by pushing the partial cone bodies 1, 2 towards or away from each other, whereby the distance between the two central axes 1b, 2b is reduced or respectively . enlarged, accordingly The gap size of the tangential air inlet slots 19, 20 also changes, as can be seen particularly well from FIGS. 4-6. Of course, the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled. Yes, it is even possible to move the partial cone bodies 1, 2 spirally into one another by a counter-rotating movement, or to move the partial cone bodies 1, 2 against each other by an axial displacement. It is therefore in your hand to vary the shape and size of the tangential air inlet slots 19, 20 as desired, with which the burner B, C can be individually adapted within a certain operating range without changing its overall length.

Aus Fig. 4-6 geht nunmehr die geometrische Konfiguration der Leitbleche 21a, 21 b hervor. Sie haben Strömungseinleitungsfunktionen, wobei sie, entsprechend ihrer Länge, das jeweilige Ende der Teilkegelkörper 1, 2 in Anströmungsrichtung der Verbrennungsluft 15 verlängern. Die Kanalisierung der Verbrennungsluft 15 in den Kegelhohlraum 14 kann durch Oeffnen bzw. Schliessen der Leitbleche 21 a, 21 b um einen im Bereich des Eintrittes in den Kegelhohlraum 14 plazierten Drehpunkt 23 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 19, 20 verändert wird. Selbstverständlich kann der Brenner B, C auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vorgesehen werdem.4-6 now shows the geometric configuration of the guide plates 21a, 21b. They have flow introduction functions, whereby, depending on their length, they extend the respective end of the partial cone bodies 1, 2 in the direction of flow of the combustion air 15. The channeling of the combustion air 15 into the cone cavity 14 can be optimized by opening or closing the guide plates 21 a, 21 b around a pivot point 23 located in the area of the entry into the cone cavity 14, in particular this is necessary if the original gap size of the tangential air inlet slots 19, 20 is changed. Of course, the burner B, C can also be operated without baffles, or other aids can be provided for this.

Claims (9)

1. Brennkammer einer Gasturbine, im wesentlichen bestehend aus mindestens einem Brenner, einem dem Brenner in Strömungsrichtung nachgeschalteten Brennraum, dadurch gekennzeichnet, dass die Brennkammer (A) anströmungsseitig mit einer Anzahl Vormischbrenner (B, C) bestückt ist, dass die Vormischbrenner (B, C) nebeneinander angeordnet und, bezüglich durchströmbaren Luftstromes, unterschiedlich gross sind, dass zwischen zwei grossen Vormischbrennern (B) jeweils ein kleiner Vormischbrenner (C) plaziert ist, dass die kleinen Vormischbrenner (C) stromab ihrer grössten Ausströmungsöffnung eine Vorbrennkammer (C1) aufweisen.1. Combustion chamber of a gas turbine, consisting essentially of at least one burner, a combustion chamber downstream of the burner in the flow direction, characterized in that the combustion chamber (A) is equipped on the inflow side with a number of premix burners (B, C), that the premix burners (B, C) are arranged side by side and, with respect to the air flow through which they can flow, are of different sizes, that a small premix burner (C) is placed between two large premix burners (B), that the small premix burners (C) have a pre-combustion chamber (C1) downstream of their largest outflow opening. 2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Brennkammer (A) eine Ringbrennkammer ist, dass die Ringbrennkammer eine ringförmige Frontwand (10) stromauf des Brennraumes (22) aufweist, dass die grossen Vormischbrenner (B) und die kleinen Vormischbrenner (C) entlang der Frontwand abwechlungsweise untereinander angeordnet sind, dass die grossen Vormischbrenner (B) und die Vorbrennkammer (C1) der kleinen Vormischbrenner (C) in die Frontwand (10) münden.2. Combustion chamber according to claim 1, characterized in that the combustion chamber (A) is an annular combustion chamber, that the annular combustion chamber has an annular front wall (10) upstream of the combustion chamber (22), that the large premix burners (B) and the small premix burners (C ) are arranged alternately along the front wall so that the large premix burners (B) and the pre-combustion chamber (C1) of the small premix burners (C) open into the front wall (10). 3. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die grossen Vormischbrenner (B) die Hauptbrenner, die kleinen Vormischbrenner (C) die Pilotbrenner der Brennkammer (A) sind.3. Combustion chamber according to claim 1, characterized in that the large premix burners (B) are the main burners, the small premix burners (C) are the pilot burners of the combustion chamber (A). 4. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Vormischbrenner (B, C) in Strömungrichtung aus mindestens zwei aufeinander positionierten hohlen, kegelförmigen Teilkörpern (1, 2) besteht, deren Längssymmetrieachsen (1 b, 2b) zueinander radial versetzt verlaufen, dass die versetzt velaufenden Längssymmetrieachsen (1 b, 2b) strömungsmässig entgegengesetzte tangentiale Eintrittsschlitze (19, 20) für einen Verbrennungsluftstrom (15) schaffen, dass im von den kegelförmigen Teilkörpern (1, 2) gebildeten Kegelhohlraum (14) mindestens eine Brennstoffdüse (3) plaziert ist, deren Eindüsung (4) des Brennstoffes (12) mittig der zueinander versetzt verlaufenden Längssymmetrieachsen (1 b, 2b) der kegelförmigen Teilkörper (1, 2) liegt.4. Combustion chamber according to claim 1, characterized in that the premix burner (B, C) in the flow direction consists of at least two hollow, conical partial bodies (1, 2) positioned one above the other, the longitudinal axes of symmetry (1 b, 2b) of which are radially offset with respect to one another the offset longitudinal axes of symmetry (1 b, 2b) flow-opposite tangential inlet slots (19, 20) for a combustion air flow (15) that place at least one fuel nozzle (3) in the conical cavity (14) formed by the conical part bodies (1, 2) is the injection (4) of the fuel (12) in the middle of the mutually offset longitudinal symmetry axes (1 b, 2b) of the conical partial body (1, 2). 5. Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass im Bereich der tangentialen Eintrittsschlitze (19, 20) weitere Düsen (17) eines weiteren Brennstoffes (13) vorhanden sind.5. Combustion chamber according to claim 4, characterized in that further nozzles (17) of a further fuel (13) are present in the region of the tangential inlet slots (19, 20). 6. Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass sich die Teilkörper (1, 2) in Strömungsrichtung unter einem festen Winkel kegelig erweitern.6. Combustion chamber according to claim 4, characterized in that the partial bodies (1, 2) expand conically in the direction of flow at a fixed angle. 7. Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass die Teilkörper (1, 2) in Strömungsrichtung eine progressive Kegelneigung aufweisen.7. Combustion chamber according to claim 4, characterized in that the partial bodies (1, 2) have a progressive taper in the direction of flow. 8. Brennkammer nach Anspruch 4, dadurch gekennzeichnet, dass die Teilkörper (1, 2) in Strömungsrichtung eine degressive Kegelneigung aufweisen.8. Combustion chamber according to claim 4, characterized in that the partial bodies (1, 2) have a degressive taper in the direction of flow. 9. Verfahren zum Betrieb eines Vormischbrenners (B, C) nach den Ansprüchen 4 bis 8, dadurch gekennzeichnet, dass die Brennstoffeindüsung (4) im Kegelhohlraum (14) des Vormischbrenners (B, C) eine in Strömungsrichtung sich kegelig ausbreitende, die Innenwände des Kegelhohlraumes (14) nicht benetzende Brennstoffsäule (5) bildet, welche von einem über die Eintrittsschlitze (19, 20) tangential in den Kegelhohlraum (14) einströmenden Verbrennungsluftstrom (15) und von einem achsial herangeführten Verbrennungsluftstrom (15a) umschlossen wird, dass die Zündung des Gemisches aus Verbrennungsluft (15, 15a) und Brennstoff (12, 13) am Ausgang des Vormischbrenners (B, C) stattfindet, wobei im Bereich der Brennermündung durch eine Rückströmzone (6) eine Stabilisierung der Flammenfront (7) entsteht.9. A method of operating a premix burner (B, C) according to claims 4 to 8, characterized in that the fuel injection (4) in the cone cavity (14) of the premix burner (B, C) is a conically spreading in the flow direction, the inner walls of the Cone cavity (14) forms non-wetting fuel column (5), which by a Combustion air flow (15) flowing tangentially into the cone cavity (14) via the inlet slots (19, 20) and an axial combustion air flow (15a) that surrounds the ignition of the mixture of combustion air (15, 15a) and fuel (12, 13 ) takes place at the outlet of the premix burner (B, C), with a backflow zone (6) stabilizing the flame front (7) in the area of the burner mouth.
EP90119900A 1990-10-17 1990-10-17 Gas-turbine combustion chamber Expired - Lifetime EP0481111B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT90119900T ATE124528T1 (en) 1990-10-17 1990-10-17 COMBUSTION CHAMBER OF A GAS TURBINE.
EP90119900A EP0481111B1 (en) 1990-10-17 1990-10-17 Gas-turbine combustion chamber
DE59009353T DE59009353D1 (en) 1990-10-17 1990-10-17 Combustion chamber of a gas turbine.
PL29190291A PL291902A1 (en) 1990-10-17 1991-10-02 Gas turbine combustion chamber and method of operating a burner in such chamber
US07/775,603 US5274993A (en) 1990-10-17 1991-10-15 Combustion chamber of a gas turbine including pilot burners having precombustion chambers
CA002053587A CA2053587A1 (en) 1990-10-17 1991-10-16 Combustion chamber of a gas turbine
JP26918891A JP3179154B2 (en) 1990-10-17 1991-10-17 Gas turbine combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90119900A EP0481111B1 (en) 1990-10-17 1990-10-17 Gas-turbine combustion chamber

Publications (2)

Publication Number Publication Date
EP0481111A1 true EP0481111A1 (en) 1992-04-22
EP0481111B1 EP0481111B1 (en) 1995-06-28

Family

ID=8204623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119900A Expired - Lifetime EP0481111B1 (en) 1990-10-17 1990-10-17 Gas-turbine combustion chamber

Country Status (7)

Country Link
US (1) US5274993A (en)
EP (1) EP0481111B1 (en)
JP (1) JP3179154B2 (en)
AT (1) ATE124528T1 (en)
CA (1) CA2053587A1 (en)
DE (1) DE59009353D1 (en)
PL (1) PL291902A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694799A1 (en) * 1992-08-12 1994-02-18 Snecma Conventional annular combustion chamber with several injectors - includes base mounted circumferentially alternately for pilot and full gas providing idling or take off power with air blown to fuel cone
FR2695460A1 (en) * 1992-09-09 1994-03-11 Snecma Gas annular turbine combustion chamber with several injectors - includes injectors in tubular base domes for idling, with full gas take off injectors alternating circumferentially and domes being interconnected
DE4336096B4 (en) * 1992-11-13 2004-07-08 Alstom Device for reducing vibrations in combustion chambers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502796B4 (en) * 1995-01-30 2004-10-28 Alstom burner
DE19510743A1 (en) * 1995-02-20 1996-09-26 Abb Management Ag Combustion chamber with two stage combustion
DE69625744T2 (en) * 1995-06-05 2003-10-16 Rolls Royce Corp Lean premix burner with low NOx emissions for industrial gas turbines
DE19548853A1 (en) * 1995-12-27 1997-07-03 Abb Research Ltd Cone burner
DE19619873A1 (en) * 1996-05-17 1997-11-20 Abb Research Ltd burner
SE9802707L (en) * 1998-08-11 2000-02-12 Abb Ab Burner chamber device and method for reducing the influence of acoustic pressure fluctuations in a burner chamber device
DE19948674B4 (en) * 1999-10-08 2012-04-12 Alstom Combustion device, in particular for the drive of gas turbines
US6360776B1 (en) 2000-11-01 2002-03-26 Rolls-Royce Corporation Apparatus for premixing in a gas turbine engine
DE10108560A1 (en) * 2001-02-22 2002-09-05 Alstom Switzerland Ltd Method for operating an annular combustion chamber and an associated annular combustion chamber
JP4134311B2 (en) * 2002-03-08 2008-08-20 独立行政法人 宇宙航空研究開発機構 Gas turbine combustor
US6968699B2 (en) * 2003-05-08 2005-11-29 General Electric Company Sector staging combustor
DE102006051286A1 (en) * 2006-10-26 2008-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion device, has combustion chamber with combustion space and air injecting device including multiple nozzles arranged on circular line, where nozzles have openings formed as slotted holes in combustion space
GB2455289B (en) * 2007-12-03 2010-04-07 Siemens Ag Improvements in or relating to burners for a gas-turbine engine
US8122700B2 (en) * 2008-04-28 2012-02-28 United Technologies Corp. Premix nozzles and gas turbine engine systems involving such nozzles
EP2434222B1 (en) * 2010-09-24 2019-02-27 Ansaldo Energia IP UK Limited Method for operating a combustion chamber
US8479521B2 (en) * 2011-01-24 2013-07-09 United Technologies Corporation Gas turbine combustor with liner air admission holes associated with interspersed main and pilot swirler assemblies
US9689571B2 (en) * 2014-01-15 2017-06-27 Delavan Inc. Offset stem fuel distributor
CN106482154A (en) * 2016-10-31 2017-03-08 南京航空航天大学 The lean premixed preevaporated low contamination combustion chamber that a kind of main is atomized with splashing type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor
EP0387532A1 (en) * 1989-03-15 1990-09-19 Asea Brown Boveri Ag Gas turbine combustion chamber
EP0401529A1 (en) * 1989-06-06 1990-12-12 Asea Brown Boveri Ag Gas turbine combustion chamber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194358A (en) * 1977-12-15 1980-03-25 General Electric Company Double annular combustor configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor
EP0387532A1 (en) * 1989-03-15 1990-09-19 Asea Brown Boveri Ag Gas turbine combustion chamber
EP0401529A1 (en) * 1989-06-06 1990-12-12 Asea Brown Boveri Ag Gas turbine combustion chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694799A1 (en) * 1992-08-12 1994-02-18 Snecma Conventional annular combustion chamber with several injectors - includes base mounted circumferentially alternately for pilot and full gas providing idling or take off power with air blown to fuel cone
FR2695460A1 (en) * 1992-09-09 1994-03-11 Snecma Gas annular turbine combustion chamber with several injectors - includes injectors in tubular base domes for idling, with full gas take off injectors alternating circumferentially and domes being interconnected
US5335491A (en) * 1992-09-09 1994-08-09 Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. Combustion chamber with axially displaced fuel injectors
DE4336096B4 (en) * 1992-11-13 2004-07-08 Alstom Device for reducing vibrations in combustion chambers

Also Published As

Publication number Publication date
EP0481111B1 (en) 1995-06-28
DE59009353D1 (en) 1995-08-03
US5274993A (en) 1994-01-04
ATE124528T1 (en) 1995-07-15
PL291902A1 (en) 1992-04-21
JPH04260722A (en) 1992-09-16
JP3179154B2 (en) 2001-06-25
CA2053587A1 (en) 1992-04-18

Similar Documents

Publication Publication Date Title
EP0387532B1 (en) Gas turbine combustion chamber
EP0481111B1 (en) Gas-turbine combustion chamber
EP0321809B1 (en) Process for combustion of liquid fuel in a burner
EP0401529B1 (en) Gas turbine combustion chamber
EP0571782B1 (en) Gasturbine combustor and operating method
DE4426351B4 (en) Combustion chamber for a gas turbine
EP0576697B1 (en) Combustor chamber for a gas turbine
EP0542044B1 (en) Annular combustion system
EP0777081B1 (en) Premix burner
WO2006069861A1 (en) Premix burner comprising a mixing section
EP0718561B1 (en) Combustor
EP1645802A2 (en) Premix Burner
EP0521325B1 (en) Combustion chamber
EP0641971B1 (en) Method for operating a premix burner and premix burner for execution of the method
EP0394800B1 (en) Premix burner for generating a hot gas
EP0816759B1 (en) Premix burner and method of operating the burner
EP0909921B1 (en) Burner for operating a heat generator
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
DE19537636B4 (en) Power plant
DE4412315A1 (en) Method of operating gas turbine combustion chamber
DE4242003A1 (en) Process heat generator
EP0730121A2 (en) Premix burner
EP0780628B1 (en) Premix burner for a heat generator
EP0866269B1 (en) Boiler for heat generation
DE10042315A1 (en) Burner for heat generator comprises three injectors for gaseous or liquid fuel, swirl generator, mixing section , and transfer ducts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19920905

17Q First examination report despatched

Effective date: 19931207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950628

Ref country code: BE

Effective date: 19950628

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950628

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950628

REF Corresponds to:

Ref document number: 124528

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009353

Country of ref document: DE

Date of ref document: 19950803

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950928

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091017