EP0480342B1 - Einkomponentenmischung zur Herstellung von Polyurethanschaum - Google Patents

Einkomponentenmischung zur Herstellung von Polyurethanschaum Download PDF

Info

Publication number
EP0480342B1
EP0480342B1 EP91117007A EP91117007A EP0480342B1 EP 0480342 B1 EP0480342 B1 EP 0480342B1 EP 91117007 A EP91117007 A EP 91117007A EP 91117007 A EP91117007 A EP 91117007A EP 0480342 B1 EP0480342 B1 EP 0480342B1
Authority
EP
European Patent Office
Prior art keywords
prepolymer
mixture
mpa
viscosity
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91117007A
Other languages
English (en)
French (fr)
Other versions
EP0480342A3 (en
EP0480342A2 (de
Inventor
Friedrich Walter Dipl.-Ing. Htl Mumenthaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBS ENGINEERING F W MUMENTHALER
Original Assignee
TBS ENGINEERING F W MUMENTHALER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBS ENGINEERING F W MUMENTHALER filed Critical TBS ENGINEERING F W MUMENTHALER
Publication of EP0480342A2 publication Critical patent/EP0480342A2/de
Publication of EP0480342A3 publication Critical patent/EP0480342A3/de
Application granted granted Critical
Publication of EP0480342B1 publication Critical patent/EP0480342B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/04Aerosol, e.g. polyurethane foam spray
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to a one-component mixture for the production of polyurethane foam which is free from propellant gases based on chlorinated fluorocarbons such as trichlorofluoromethane, dichlorodifluoromethane or chlorodifluoromethane, which damage the ozone layer.
  • the invention further relates to a method for producing such a one-component mixture.
  • the compressed gases are released to a considerable extent in the application and either form an ignitable mixture, as in the case of KW, or damage the ozone layer, as in the case of CFCs.
  • GB-A-1 460 863 discloses the use of He, CO 2 , N 2 , O 2 or air as a propellant for the production of polyurethane foams.
  • these polyurethane foams are not intended to be discharged from pressure vessels.
  • GB-A-2 053 943 also describes compositions for the production of pressure can polyurethane foams, in which environmentally compatible hydrocarbon-based blends are used in coordination with the viscosity of the prepolymer.
  • a one-component pressure vessel mixture for the production of polyurethane foam which contains a prepolymer containing NCO groups from a polyol and a polyisocyanate, and optionally flame retardants, stabilizers, plasticizers, catalysts and / or other conventional constituents, the prepolymer being a dynamic viscosity up to 12000 mPa.s, preferably up to 10000 mPa.s, measured at 20 ° C, wherein a viscosity-reducing solvent in the form of a low-boiling ether, ester or ketone is present in an amount which corresponds to the dynamic viscosity of the prepolymer to a value of 2500 to 10000, preferably to 7000 mPa.s, and that they with 0.5 to 35, 0 wt .-% He, Ne, Ar, N 2 , O 2 , CO 2 , N 2 O and / or air, based on the prepolymer contained, is added
  • the object of the invention is to develop a one-component polyurethane foam which has the properties of the known foams without continuing to use the ozone-depleting or explosive propellant gases.
  • the prepolymer is preferably constructed so that it has a molecular weight of 700 to 10,000, preferably 1400 to 6000 and an NCO content of 10-18%.
  • the viscosity-reducing solvents are ethers, such as dimethyl ether or diethyl ether, low-boiling esters, such as methalacetate or ethyl acetate, and ketones, such as acetone or methyl ethyl ketone, and fluorinated hydrocarbons, such as Freon 123 or Freon 134.
  • Preferred solvents are low-boiling ketones, such as acetone and methyl ethyl ketone.
  • Chlorinated fluorocarbons (CFCs) are out of the question because of their ozone-depleting behavior, and low-boiling hydrocarbons, such as propane or butane, are not preferred because of their relatively poor solvent properties.
  • Low-boiling viscosity-reducing solvents are understood to be those which evaporate from the foam applied within a short time.
  • the dynamic viscosity of the prepolymer is 2500 to 10000, in particular up to 7000 mPa.s.
  • Helium, neon, argon, nitrogen, oxygen, carbon dioxide, N 2 O or air are added as pre-foaming and propellant gases, each individually or in any combination.
  • Preferred propellants are in particular carbon dioxide and N 2 O (laughing gas), which show a not insignificant solubility in organic liquids.
  • acetone or methyl ethyl ketone can be used as viscosity-reducing agents Solvent. Ketones, especially under pressures customary for pressure vessels, show a not inconsiderable solubility for CO 2 .
  • Carbon dioxide is preferably added in an amount of 0.5 to 10% by weight, particularly preferably 1 to 5% by weight, based on the prepolymer.
  • the one-component mixtures according to the invention for the production of polyurethane foam have a satisfactory storage stability.
  • Hydroxyl-containing polyesters and polyethers are suitable for the polyols.
  • Polyesters can be produced, for example, from polycarboxylic acids, preferably dicarboxylic acids and polyhydric alcohols.
  • Examples include polycarboxylic acids such as glutaric acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid and preferably succinic acid and adipic acid.
  • polyhydric alcohols are ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, glycerin, trimethylolpropane and pentaerythritol.
  • polyethers can be prepared from one or more alkylene oxides having 2-4 carbon atoms in the alkylene radical and a starter molecule which contains 2-4 preferably 2-3 active hydrogen atoms.
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, Styrene oxide, epichlorohydrin and preferably ethylene oxide and 1,2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as a mixture.
  • starter molecules are phosphoric acid, water, polycarboxylic acids, such as adipic acid, succinic acid and phthalic acid, and preferably polyhydroxyl compounds, such as ethylene glycol, propylene glycol, diethylene glycol, trimethylolpropane and glycerol.
  • isocyanates used are tolylene diisocyanates (2,4 and / or 2,6) isophorone diisocyanate, preferably diisocyanatodiphenylmethane (pure MDI, crude MDI), and mixtures thereof.
  • Trialkyl phosphates such as TCEP, TCPP, TOF, polybromobiphenyl ether, polybromobisphenol A, tetrabromophthalate diol and phosphorus- and halogen-containing polyols can be used as examples of flame retardants.
  • plasticizers Various flame retardants, butylbenzyl phthalate, dioctyl phthalate and tricresyl phosphate are used as examples of plasticizers.
  • catalysts examples include Texacat DM 70, Texact DMDEE, Texacat DMP, Niax Al, Niax A 99.
  • Copolymers of siloxane are suitable as stabilizers.
  • All starting materials should have a water content of less than 0.3% by weight, preferably less than 0.1% by weight.
  • the invention further relates to a method for producing the one-component mixture according to the invention.
  • the process is characterized in that a prepolymer with a dynamic viscosity of up to 12000 mPa.s, measured at 20 ° C., with the addition of the flame retardants that may be desired, is added in a reaction vessel under control of the reaction temperature by combining the required amounts of polyol and polyisocyanate.
  • the viscosity is of considerable importance for the application according to the invention. Special care must therefore be taken with prepolymer formation. In particular, the temperature during manufacture must be carefully controlled.
  • polyols preferably having a hydroxyl number of 45 to 230, preferably 170, and a molecular weight of 700 to 2600, preferably 1000 to 2000, are prepared as a mixture with a plasticizer, preferably butylbenzyl phthalate and / or a flame retardant, preferably TCEP and a foam stabilizer and set to a temperature of approx. 20 ° C.
  • a plasticizer preferably butylbenzyl phthalate and / or a flame retardant, preferably TCEP and a foam stabilizer
  • the water content should preferably be standardized to a value below 0.1%.
  • the isocyanate is placed in a temperature-controlled stirred kettle and blanketed with dry nitrogen. After the template has been heated to 25 ° C., the polyol mixture is slowly added with stirring. The temperature should be kept between 30 ° C and 40 ° C.
  • the contents of the kettle are heated to 80 ° C within 2-3 hours and held at this temperature for two hours. It is then cooled to 20 ° C. Whether the substances in the polyol mixture are added separately or all at once depends on the amount of mass and the possibility of cooling. It has proven to be advantageous to keep some of the non-reactive flame retardants and plasticizers separate and to counter them with targeted additions of undesirable temperature increases.
  • Solvent admixtures take place after cooling down; if the temperature is too high it would evaporate.
  • the catalysts are used for specific prepolymer control.
  • the mixture can be filled into pressure vessels, for example aerosol cans. After sealing, the selected propellant or mixtures are applied. It has proven useful to press the gas in several batches one after the other in order to give the gas the possibility of an optimal solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Die Erfindung betrifft eine Einkomponentenmischung zur Herstellung von Polyurethanschaum, welche frei ist von Treibgasen auf Basis chlorierter Fluorkohlenwasserstoffe wie Trichlorfluormethan, Dichlordifluormethan oder Chlordifluormethan, welche die Ozonschicht schädigen. Die Erfindung betrifft ferner ein Verfahren zur Herstellung solcher Einkomponentenmischung.
  • Die Herstellung von Einkomponenten Mischungen für Polyurethan schäume ist allgemein bekannt und kann wie folgt dargestellt werden.
  • Dazu wird ein Gemisch aus wahlweise Polyolen, Weichmacher, Flammschutzmitteln, Schaumstabilisatoren und Katalysatoren mit Isocyanat, z.B. Roh- MDI im gewünschten Verhältnis zur Reaktion gebracht. Dies geschieht in einem Reaktor oder einem Druckbehälter, z.B. einer Aerosoldose.
  • Die Prepolymerbildung erfolgt selbständig unter positiver Wärmetönung. Die Prepolymermischung wird anschließend mit Druckgas, wie FCKW (Fluorchlorkohlenwasserstoff) oder KW (Kohlenwasserstoff) beaufschlagt. Das Druckgas erfüllt drei Aufgaben:
    • 1) Austreibgas der Schaummasse aus dem Druckbehälter
    • 2) Verschäumungsmittel für die Schaummasse
    • 3) Lösungsmittel zur Viskositätserniedrigung der Schaummasse.
  • Die Druckgase werden im Anwendungsfall im erheblichen Maße freigesetzt und bilden entweder, wie bei den KW, ein zündfähiges Gemisch oder schädigen, wie bei den FCKW, die Ozonschicht.
  • Aus GB-A-1 460 863 ist die Verwendung von He, CO2, N2, O2 oder Luft als Treibgas zur Herstellung von Polyurethanschäumen bekannt. Diese Polyurethanschäume sind allerdings nicht zum Austrag aus Druckbehältern bestimmt. Ferner beschreibt GB-A-2 053 943 Zusammensetzungen zur Herstellung von Druckdosen-Polyurethanschäumen, bei denen umweltverträgliche Abmischungen auf Kohlenwasserstoffbasis in Abstimmung mit der Viskosität des Prepolymers zum Einsatz kommen.
  • Diese Aufgabe wird durch eine Einkomponenten-Druckbehältermischung zur Herstellung von Polyurethanschaum gelöst, welche ein NCO-Gruppen enthaltendes Prepolymer aus einem Polyol und einem Polyisocyanat, sowie ggf. Flammschutzmittel, Stabilisatoren, Weichmacher, Katalysatoren und/oder andere übliche Bestandteile enthält, wobei das Prepolymer eine dynamische Viskosität bis 12000 mPa.s, vorzugsweise bis 10000 mPa.s, gemessen bei 20° C, aufweist, wobei ein die Viskosität herabsetzendes Lösungsmittel in Form eines niedrigsiedenden Ethers, Esters oder Ketons in einer Menge zugegen ist, die die dynamische Viskosität des Prepolymers auf einen Wert von 2500 bis 10000, vorzugsweise bis 7000 mPa.s herabsetzt, und daß sie mit 0,5 bis 35, 0 Gew.-% He, Ne, Ar, N2, O2, CO2, N2O und/oder Luft, bezogen auf enthaltenes Prepolymer, als Vorschäum- und Treibgas versetzt ist, wobei die Mischung wenigstens einen Teil davon gelöst enthält.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Einkomponent-Polyurethanschaum zu entwickeln, der die Eigenschaften der bekannten Schäume aufweist, ohne die ozonschädlichen bzw. explosiven Treibgase weiter zu benutzen.
  • Das Prepolymer ist vorzugsweise so aufgebaut, daß es ein Molekulargewicht von 700 bis 10000, vorzugsweise 1400 bis 6000 und einen NCO-Gehalt von 10-18% aufweist.
  • Die Viskosität vermindernden Lösungsmittel sind Ether, wie Dimethylether oder Diethylether, niedrigsiedene Ester, wie Methalacetat oder Ethylacetat, und Ketone, wie Aceton oder Methylethylketon, sowie fluorierte Kohlenwasserstoffe, wie Freon 123 oder Freon 134. Bevorzugte Lösungsmittel sind niedrigsiedende Ketone, wie Aceton und Methylethylketon. Chlorierte Fluorkohlenwasserstoffe (FCKW's) kommen wegen ihres ozonabbauenden Verhaltens nicht in Frage, niedrigsiedende Kohlenwasserstoffe, wie Propan oder Butan, sind wegen ihrer relativ schlechten Lösungsmitttel eingenschaften nicht bevorzugt. Unter niedrigsiedenden viskositätsmindernden Lösungsmitteln werden solche verstanden, die innerhalb kurzer Zeit aus dem ausgebrachten Schaum verdunsten.
  • In Gegenwart des viskositätsmindernden Lösungsmittels beträgt die dynamische Viskosität des Prepolymeren 2500 bis 10000, insbesondere bis 7000 mPa.s.
  • Als Vorschäum- und Treibgase werden Helium, Neon, Argon, Stickstoff, Sauerstoff, Kohlendioxid, N2O oder Luft zugesetzt, jeweils für sich allein oder in beliebiger Kombination. Bevorzugte Treibgase sind insbesondere Kohlendioxid und N2O (Lachgas), die eine nicht unerhebliche Löslichkeit in organischen Flüssigkeiten zeigen. Bei Verwendung von Kohlendioxid und/oder N2O bietet sich die Verwendung von Aceton oder Methylethylketon als viskositatsvermindernde Lösungsmittel an. Ketone, insbesondere unter für Druckbehälter üblichen Drücken, zeigen ein nicht unerhebliches Lösungsvermögen für CO2.
  • Kohlendioxid wird bevorzugt in einer Menge von 0,5 bis 10 Gew.-%, besonders bevorzugt 1 bis 5 Gew.-%, bezogen auf das Prepolymer, zugesetzt.
  • Die erfindungsgemäßen Einkomponentenmischungen für die Herstellung von Polyurethanschaum weisen eine zufriedenstellende Lagerstabilität auf.
  • Für die Polyole kommen hydroxylgruppenhaltige Polyester und Polyether in Frage.
  • Polyester können beispielsweise aus Polycarbonsäuren, vorzugsweise Dicarbonsäuren und mehrwertigen Alkoholen hergestellt werden.
  • Genannt seien beispielhaft Polycarbonsäuren, wie Glutarsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und vorzugsweise Bernsteinsäure und Adipinsäure,. Beispiele für mehrwertige Alkohole sind Ethylenglykol, 1,2-Propylenglykol, 1,4-Butandiol, Diethylenglykol, Dipropylenglykol, 1,6-Hexandiol, Glycerin, Trimethylolpropan und Pentaerythrit.
  • Polyether können beispielsweise aus einem oder mehreren Alkylenoxiden mit 2-4 Kohlenstoffatomen im Alkylenrest und einem Startermolekül, das 2-4 vorzugsweise 2-3 aktive Wasserstoffatome enthält, hergestellt werden.
  • Geeignete Alkylenoxide sind beispielsweise Tetrahydrofuran, 1,3-Propylenoxid, 1,2- bzw. 2,3-Butylenoxid, Styroloxid, Epichlorhydrin und vorzugsweise Ethylenoxid und 1,2-Propylenoxid.
  • Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischung verwendet werden.
  • Als Startermoleküle kommen beispielsweise in Betracht Phosphorsäure, Wasser, Polycarbonsäuren, wie Adipinsäure, Bernsteinsäure und Phthalsäure, und vorzugsweise Polyhydroxylverbindungen, wie Ethylenglycol, Propylenglycol, Diethylenglycol, Trimethylolpropan und Glycerin.
  • Als Isocyanat kommen beispielhaft zum Einsatz Toluylendiisocyanate (2,4 und/oder 2,6) Isophorondiisocyanat, vorzugsweise Diisocyanatodiphenylmethan (Rein-MDI, Roh-MDI), sowie Gemische daraus.
  • Als Flammschutzmittel können beispielhaft zum Einsatz kommen Trialkylphosphate, wie TCEP, TCPP, TOF, Polybrombiphenylether, Polybrombisphenol A, Tetrabromphthalatdiol, sowie phosphor- und halogenhaltige Polyole.
  • Als Weichmacher kommen beispielhaft zum Einsatz diverse Flammschutzmittel, Butylbenzylphthalat, Dioctylphthalat und Trikresylphosphat.
  • Als Katalysatoren können beispielhaft zum Einsatz kommen Texacat DM 70, Texact DMDEE, Texacat DMP, Niax Al, Niax A 99.
  • Als Stabilisatoren eignen sich Copolymere aus Siloxan.
  • Alle Ausgangsstoffe sollen einen Wassergehalt von weniger als 0,3 Gew.-% aufweisen, bevorzugt weniger als 0,1 Gew.-%.
  • Die Erfindung betrifft weiter ein Verfahren zur Herstellung der erfindungsgemäßen Einkomponentenmischung.
  • Das Verfahren ist dadurch gekennzeichnet, daß in einem Reaktionsbehälter unter Steuerung der Reaktionstemperatur durch Zusammengeben der dafür benötigten Mengen an Polyol und Polyisocyanat ein Prepolymer mit einer dynamischen Viskosität bis 12000 mPa.s, gemessen bei 20°C, unter Zugabe der ggf. gewünschten Flammschutzmittel, Stabilisatoren, Weichmacher, Katalysatoren und/oder anderer üblichen Bestandteile sowie eines die Viskosität herabsetzenden Lösungsmittels in Form eines niedrigsiedenden Ethers, Esters oder Ketons in einer Menge, die die dynamische Viskosität des Prepolymers auf einen Wert von 2500 bis 10000, vorzugsweise bis 7000 mPa.s herabsetzt, gebildet wird und die Mischung, ggf. nach Abfüllen in einen Druckbehälter, mit He, Ne, Ar, N2, O2, CO2, N2O und/oder Luft als Vorschäum- oder Treibgas in einer Menge von 0,5 bis 35,0 Gew.-%, bezogen auf das Prepolymer, versetzt wird.
  • Die Viskosität ist für die erfindungsgemäße Anwendung von erheblicher Bedeutung. Daher muß der Prepolymerbildung besondere Sorgfalt gewidmet werden. Insbesondere muß die Temperatur bei der Herstellung sorgfältig gesteuert werden.
  • Im folgenden wird die Herstellung beispielhaft beschrieben, wobei die Reaktion in einem separaten Behälter stattfindet; die Komponenten können aber auch direkt in einem Aerosol- oder Druckbehälter umgesetzt werden, wenn die Einhaltung der erforderlichen Bedingungen gewährleistet ist.
  • Zur Prepolymerherstellung werden Polyole, vorzugsweise mit einer Hydroxylzahl von 45 bis 230, bevorzugt 170, und einem Molekulargewicht von 700 bis 2600, bevorzugt 1000 bis 2000, mit einem Weichmacher, vorzugsweise Butylbenzylphthalat und/oder einem Flammschutzmittel, vorzugsweise TCEP und einem Schaumstabilisator als Mischung hergestellt und auf eine Temperatur von ca. 20°C eingestellt.
  • Vorzugsweise sollte für die Reproduzierbarkeit der Wassergehalt auf einen Wert unter 0,1% standardisiert werden.
  • Beispiel
  • In einem temperierbaren Rührkessel wird das Isocyanat vorgelegt und mit trockenem Stickstoff überlagert. Nachdem die Vorlage auf 25°C temperiert ist, wird die Polyolmischung langsam unter Rühren zugegeben. Dabei soll die Temperatur zwischen 30°C und 40°C gehalten werden.
  • Sobald die exotherme Reaktion abklingt, wird der Kesselinhalt innerhalb von 2-3 Stunden auf 80°C erwärmt und zwei Stunden bei dieser Temperatur gehalten. Danach wird auf 20°C abgekühlt. Ob die Substanzen der Polyolmischung getrennt oder auf einmal zugegeben werden, hängt von der Menge der Masse und der Kühlmöglichkeit ab. Es hat sich als vorteilhaft erwiesen, einen Teil der nicht reaktiven Flammschutzmittel und Weichmacher getrennt zu halten und mit diesen durch gezielte Zugabe unerwünschten Temperatursteigerungen zu begegnen.
  • Lösungsmittelbeimischungen erfolgen nach dem Herunterkühlen, bei zu hohen Temperaturen würde es verdampfen. Die Katalysatoren werden artspezifisch zur Prepolymersteuerung eingesetzt.
  • Nachdem alle Substanzen eingefüllt sind und alle Reaktionen wunschgemäß zum Stillstand gekommen sind, kann die Mischung in Druckbehälter, z.B. Aerosoldosen, eingefüllt werden. Nach dem Verschließen erfolgt die Beaufschlagung mit dem gewählten Treibgas bzw. den gewählten Mischungen. Es hat sich bewährt, das Gas in mehreren Chargen nacheinander einzupressen, um so dem Gas die Möglichkeit der optimalen Lösung zu geben.
  • In der nachfolgenden Tabelle sind dementsprechend hergestellte Einkomponentenmischungen aufgeführt, deren Zusammensetzung in Gew.-Teilen angegeben ist. Tabelle
    4,4'-Diphenylmethandiisocyanat 55 55 55
    Gemisch Di- und Trifunktioneller Polyether 27 30 26
    Butylbenzylphthalat 16 20 20
    Schaumstabilisator 1,2 1,5 2
    Katalysator 0,3 0,3 0,3
    Aceton 5 - 5
    Ethylacetat - 5 -
    CO2 1,8 2,0 -
    He - - 2,0

Claims (10)

  1. Einkomponenten-Druckbehältermischung zur Herstellung von Polyurethanschaum, welche ein NCO-Gruppen enthaltendes Prepolymer aus einem Polyol und einem Polyisocyanat, sowie gegebenenfalls Flammschutzmittel, Stabilisatoren, Weichmacher, Katalysatoren und/oder andere übliche Bestandteile enthält, dadurch gekennzeichnet, daß das Prepolymer eine dynamische Viskosität bis 12000 mPa.s, vorzugsweise bis 10000 mPa.s, gemessen bei 20° C, aufweist, wobei ein die Viskosität herabsetzendes Lösungsmittel in Form eines niedrigsiedenden Ethers, Esters, Ketons, oder fluorierten Kohlenwasserstoffs in einer Menge zugegen ist, die die dynamische Viskosität des Prepolymers auf einen Wert von 2500 bis 10000, vorzugsweise bis 7000 mPa.s einstellt, und daß sie mit 0,5 bis 35,0 Gew.-% He, Ne, Ar, N2, O2, CO2, N2O und/oder Luft, bezogen auf enthaltenes Prepolymer, als Vorschäum- und Treibgas versetzt ist, wobei die Mischung wenigstens einen Teil davon gelöst enthält.
  2. Mischung nach Anspruch 1, gekennzeichnet durch ein Molekulargewicht des Prepolymeren von 700 bis 10000, vorzugsweise von 1400 bis 6000.
  3. Mischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Prepolymer einen NCO-Gruppengehalt von 10 bis 18 Gew.-% hat.
  4. Mischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie weiterhin ein Siloxancopolymeres als Stabilisator enthält.
  5. Mischung nach einander Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Lösungsmittel Aceton oder Ethylmethylketon ist.
  6. Mischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein Prepolymer aus einem Polyol mit einem Molekulargewicht von 700 bis 2600 und einer Hydroxylzahl von 45 bis 230 enthält.
  7. Mischung nach Anspruch 6, dadurch gekennzeichnet, daß sie ein Prepolymer aus einem Polyol mit einem Molekulargewicht von 1000 bis 2000 und einer Hydroxylzahl von 170 enthält.
  8. Mischung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie mit 0,5 bis 10, vorzugsweise 1 bis 5 Gew.-% CO2, bezogen auf das Prepolymer, versetzt ist.
  9. Verfahren zur Herstellung einer Mischung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in einem Reaktionsbehälter unter Steuerung der Reaktionstemperatur durch Zusammengeben der dafür benötigten Mengen an Polyol und Polyisocyanat ein Prepolymer mit einer dynamischen Viskosität bis 12000 mPa.s, gemessen bei 20° C, gebildet wird, unter Zugabe der gegebenenfalls erwünschten Flammschutzmittel, Stabilisatoren, Weichmacher, Katalysatoren, und/oder anderer übliche Bestandteile sowie eines die Viskosität herabsetzenden Lösungsmittels in Form eines niedrigsiedenden Ethers, Esters oder Ketons in einer Menge, die die dynamische Viskosität des Prepolymers auf einen Wert von 2500 bis 10000, vorzugsweise bis 7000 mPa.s herabsetzt, und die Mischung, gegebenenfalls nach Abfüllen in einen Druckbehälter, mit He, Ne, Ar, N2, O2, CO2, N2O und/oder Luft als Vorschäum- oder Treibgas in einer Menge von 0,5 bis 35,0 Gew.-%, bezogen auf das Prepolymer, versetzt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Reaktionsbehälter eine Aerosoldose oder ein Druckbehälter zum Ausbringen des Schaums ist.
EP91117007A 1990-10-11 1991-10-05 Einkomponentenmischung zur Herstellung von Polyurethanschaum Expired - Lifetime EP0480342B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4032294A DE4032294A1 (de) 1990-10-11 1990-10-11 Einkomponentenmischung zur herstellung von polyurethanschaum
DE4032294 1990-10-11

Publications (3)

Publication Number Publication Date
EP0480342A2 EP0480342A2 (de) 1992-04-15
EP0480342A3 EP0480342A3 (en) 1992-11-25
EP0480342B1 true EP0480342B1 (de) 1996-12-27

Family

ID=6416095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117007A Expired - Lifetime EP0480342B1 (de) 1990-10-11 1991-10-05 Einkomponentenmischung zur Herstellung von Polyurethanschaum

Country Status (2)

Country Link
EP (1) EP0480342B1 (de)
DE (2) DE4032294A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212362A1 (de) * 1992-04-13 1993-10-14 Linde Ag Herstellung aufgeschäumter Kunststoffe
EP0684960B1 (de) * 1993-02-10 1998-08-05 Rathor Ag Prepolymerzusammensetzung für dämmschäume
US6552097B1 (en) * 1993-02-10 2003-04-22 Rathor Ag Prepolymer compositions for insulating foams
DE4443431A1 (de) * 1994-12-06 1996-06-13 Elastogran Gmbh Unter Druck stehende, Treibmittel enthaltende Isocyanat-Semirpräpolymermischungen auf Basis von Lignin-polyether-polyolen, ihre Verwendung zur Herstellung von Polyurethan-Schaumstoffen und ein Verfahren hierfür
DE19831285A1 (de) * 1998-07-13 2000-01-20 Rathor Ag Appenzell Prepolymerabmischung mit Silan-terminierten Prepolymeren
DE19939926B4 (de) * 1999-08-23 2016-07-07 Rathor Ag Prepolymerzusammensetzung zur Erzeugung von Isolierschäumen mit erhöhter Schaumausbeute und ihre Verwendung
EP1798255A1 (de) * 2005-12-14 2007-06-20 de Schrijver, Aster Reaktivverdünner für Ein- oder Zwei-Komponenten Polyurethanschaumstoffe
EP2383304A1 (de) 2010-04-27 2011-11-02 de Schrijver, Aster Zusammensetzung für Einkomponenten-Polyurethanschaumstoffe
EP2481764A1 (de) 2011-01-27 2012-08-01 de Schrijver, Aster Zusammensetzung für Einkomponenten-Polyurethanschaumstoffe mit niedrigem freiem monomerischem MDI-Gehalt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1023098A (en) * 1973-05-18 1977-12-20 The Dow Chemical Company Air frothed polyurethane foams
DE3022578A1 (de) * 1979-06-18 1981-05-27 Convenience Products, Inc., St. Louis, Mo. Verfahren zur herstellung eines einkomponenten-polyurethan-verschaeumungssystems zwecks erzeugung feuchtigkeitsabweisender polyurethanschaeume
DE3911784A1 (de) * 1989-04-11 1990-10-18 Peter Buesgen Lagerstabile einkomponenten-polyurethanschaummischung
DE4025843A1 (de) * 1990-08-16 1992-02-20 Peter Buesgen Lagerstabile einkomponenten-mischung zur herstellung von polyurethanschaum

Also Published As

Publication number Publication date
EP0480342A3 (en) 1992-11-25
EP0480342A2 (de) 1992-04-15
DE4032294A1 (de) 1992-04-16
DE59108432D1 (de) 1997-02-06

Similar Documents

Publication Publication Date Title
EP2812370B1 (de) Verfahren zum herstellen eines polyurethan-polyisocyanurat-hartschaumstoffs
DE69705420T2 (de) Polyurethanhartschäume
EP1650240B1 (de) Weichelastische Polyurethan Schaumstoffe geringer Rohdichten und Stauchhärte
EP0684968B1 (de) Prepolymerzusammensetzung für dämmschäume
EP2480583B1 (de) Monomerarme polyurethanschäume
US3034996A (en) Preparation of low density polyurethane foam
EP1059328A1 (de) Einkomponenten-Polyurethanschäummassen mit verbesserter Aushärtung
EP0905160B1 (de) Lagerstabile, treibmittelhaltige Emulsionen zur Herstellung von Hartschaumstoffen auf Isocyanatbasis
DE602004002361T2 (de) Katalysatormischungen zur Herstellung von Polyurethanschäumen mit niedriger thermischer Desorption
EP1689798B1 (de) Monomerarme prepolymerzusammensetzung aus unsymmetrischen polyisocyanaten und sterisch gehinderten polyolen
EP0480342B1 (de) Einkomponentenmischung zur Herstellung von Polyurethanschaum
EP2091992A1 (de) Polyphenylenpolymethylenpolyisocyanat und seine verwendung zur herstellung von polyurethan-schaumstoffen
EP2739663B1 (de) Monomerarme polyurethanschäume
EP0731818B1 (de) Mit nichtionischen tensiden modifizierte polyurethanschäume
EP0746580B1 (de) Schaumkunststoff aus einweg-druckbehältern
DE4025843A1 (de) Lagerstabile einkomponenten-mischung zur herstellung von polyurethanschaum
EP0759043B1 (de) Verwendung von polyurethanprepolymeren enthaltend reaktionsprodukte von polyestern auf basis oleochemischer polyole zur herstellung von polyurethan-schaumstoffen
EP0742250B1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE10044712A1 (de) Verfahren zur Herstellung von schalldämpfenden Polyurethanschäumen
DE4038400A1 (de) 2-komponenten-polyurethanschaumsystem und verfahren zu seiner herstellung
EP1544229B1 (de) Verfahren zur Herstellung von Polyurethanintegralschaumstoffen
DE4441696A1 (de) Schaumkunststoff aus Einweg-Druckbehaeltern
DE10108445A1 (de) Druckbehälter enthaltend Umsetzungsprodukt zur Herstellung eines elastischen Schaumstoffes
DE19731680A1 (de) Verfahren zur Herstellung von Prepolymeren mit endständigen Isocyanatgruppen
DE19654150A1 (de) Verfahren zur Herstellung von Einkomponentenmischungen, diese Einkomponentenmischungen und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930517

17Q First examination report despatched

Effective date: 19940711

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT PATENTANWAELTE VSP

REF Corresponds to:

Ref document number: 59108432

Country of ref document: DE

Date of ref document: 19970206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991008

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991027

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090302

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501