EP0478481A1 - Procédé d'amélioration de la combustion pour brûleur à air soufflé et moyens destinés à le mettre en oeuvre - Google Patents

Procédé d'amélioration de la combustion pour brûleur à air soufflé et moyens destinés à le mettre en oeuvre Download PDF

Info

Publication number
EP0478481A1
EP0478481A1 EP91440076A EP91440076A EP0478481A1 EP 0478481 A1 EP0478481 A1 EP 0478481A1 EP 91440076 A EP91440076 A EP 91440076A EP 91440076 A EP91440076 A EP 91440076A EP 0478481 A1 EP0478481 A1 EP 0478481A1
Authority
EP
European Patent Office
Prior art keywords
combustion
air
flow
burner
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91440076A
Other languages
German (de)
English (en)
Inventor
Guy Pavese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0478481A1 publication Critical patent/EP0478481A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/00001Treating oxidant before combustion, e.g. by adding a catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/10Measuring temperature stack temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/13Measuring temperature outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the present invention relates to a combustion improvement method for a supply air burner.
  • the invention relates to an improved combustion process both in terms of energy and in terms of pollution by a catalytic gas supply using a programmable computer or any other intelligent system.
  • the present invention aims at improved combustion which consists in placing oneself in optimal combustion conditions.
  • the present invention also relates to clean combustion.
  • the present invention simultaneously aims at the two previously mentioned objectives of improvement energy and establishing conditions for clean combustion.
  • the clean optimal combustion method according to the invention is characterized in that the combustion is continuously corrected by injecting into the flow of the combustion air a variable, metered and controlled flow rate of a gaseous complex. catalytic and corrector and in that the flow rate of the combustion air is varied by varying the speed of the burner fan from the values of the main combustion parameters noted in the combustion gases and fumes and in operation of the boiler.
  • provision is made for monitoring the fouling of the boiler and the addition to the catalytic gaseous and corrective fluid of a fouling product.
  • the temperatures of flow and return of the heat transfer fluid are also monitored.
  • the combustion improvement method according to the present invention proceeds from the general inventive idea which consists in maintaining, during the entire operation of the burner, conditions of optimal combustion by varying the flow of combustion air and by adding, by addition to the flow of combustion air, a variable, metered and controlled flow rate of a gaseous catalytic complex, the variation of this flow rate being controlled by a central unit from the values of the main combustion parameters recorded in the combustion gases and fumes and from the general operating variables of a boiler.
  • the speed of the burner fan is varied to modify the flow of combustion air, that is to say the excess air, and thus correct and adapt the combustion and the catalytic gas supply. with a view to reducing the formation of polluting and corrosive products which are suitably neutralized elsewhere.
  • the optimal central combustion unit includes the various analyzers and circuits for determining the values of the physical quantities measured using the various sensors and probes.
  • a programmable calculator-regulator or any other intelligent system receives the various necessary information and acts on the burner fan taking into account the heating stages of the burner.
  • the method according to the invention applies more particularly to an existing boiler regulation having the particularity of controlling the commissioning and the heating stages of burners called "monoblock". These are burners whose air flap is mechanically controlled by the position of the fuel inlet valve or valve by means of adjustable cams, linkages or other mechanical means. In this type of burner, the air / fuel ratio is constant at the value set at the time of initial adjustment. The excess air does not follow the variations of atmospheric conditions and everything happens as if the burner remained adjusted for only one atmospheric condition.
  • This type of burner achieves powers of the order of 10,000 therms.
  • the method according to the invention is implemented in and around a boiler 1 equipped with a blast air burner 2 using fuel oil as liquid fuel, mentioned however by way of example.
  • the boiler is connected to a flue 3 making the connection of its outlet nozzle 4 to a chimney 5 with connection section 6 to the chimney.
  • the burner conventionally comprises a pump 7 connected through a filter 8 to the fuel reserve, an adjustable air inlet 9 in front of a suction chamber 10, a fan 11 and a barrel 12 for forming a flame 13 in a blown air flow with deflector and flame catch.
  • the adjustable air inlet 9 of the burner 2 is connected by one or more conduits such as 14, 15, 16 to a gaseous generator 17 for correcting multi-channel combustion generating a composite gas flow correcting for combustion, whose injection or supply to the burner is controlled by an optimal central combustion unit 18.
  • the catalytic complex is also a corrosion inhibitor. It causes a main exothermic reaction intended to increase the temperature of the flame, the heat transfer and to perfect the combustion. It is associated with surfactants, dispersants and peptizers giving it dispersing, detergency, anticorrosion and peptizing properties which make it possible to prolong the dispersion within the oil droplets and to cause the inflammation of the normally unburnt constituents and to difficult combustion.
  • the neutralization complex partly transforms the oxides of nitrogen and sulfur into neutral compounds which are harmless to the component parts of the boiler and the installation and which are not harmful to the environment. It also helps reduce carbon monoxide emissions. It forms a protective film on the walls of the combustion chamber and of exchanger elements which ensures their protection against all aggressive products generated by or resulting from combustion.
  • the scouring complex is sent in sequences, upon detection of fouling or a drop in performance. It makes it possible to disintegrate the soot layer, to avoid hard deposits with an encrusting character and to keep the exchange surfaces clean and all their qualities and properties.
  • a gaseous complex is brought to the burner in an amount of the order of a thousandth of the amount of oxidizing air and more particularly as indicated below, a ratio of between 10 and 50 ppm by mass between gas flow and fuel.
  • the combustion correction generator 17 is responsible for delivering to the burner, suitably dosed, the gaseous combustion correction complex from one or more commands from the optimal central combustion unit 18 which is designed to reset the boiler and the burner in an autonomous situation, that is to say the correction system disconnected, in the event of a malfunction of one of the devices of the combustion correction installation.
  • It comprises a control interface in the form of a programmable controller 19 acting in a grouped or individual manner on the channels of the gaseous generator 17 multichannel combustion correction each corresponding to a specific combustion correction product which will be supplied individually or simultaneously to the burner with one and / or the other of the different corrective products.
  • each path constitutes an elementary generator such as 20 for a specific gaseous product.
  • the present invention is aimed, without limitation, at three basic gaseous products.
  • Each channel is for example individually controlled by the programmable controller 19.
  • a collective or individual air preparer 21 comprising a compartment such as 22 air dryer-dehumidifier is followed by a low flow pump 23 specific to each channel and several bubbling tanks or cans, for example two in number, 24 and 25, each filled for the same route with the same solution of one of the specific products indicated above.
  • These bubbling cans are mounted in series by tubing or bubbling conduits and terminated by a buffer tank 26.
  • Each production circuit continues, before the outlet, by a low flow alarm 27.
  • Each outlet is connected to the burner by a leads separate individual, previously referenced 14, 15 and 16, as shown in the figures.
  • the dryer 21 controls the humidity of the air and stabilizes it at around 40%.
  • the controller 19 individually controls the flow rate of the gaseous product by establishing and varying the air flow rate at the inlet or outlet of the air preparer using the low-flow pump 23 or an equivalent specific to each way.
  • An auxiliary supply pump (not shown) makes it possible to replenish each container with liquid from a reserve, for example by maintaining a constant level using an appropriate device.
  • Each gaseous product forming the gaseous correction complex is driven weakly, minimally, towards the burner by the effect of the internal pump 23 placed upstream on each of the paths of the generator 17 but also and above all by the depressogenic effect generated by the burner fan or turbine.
  • the pipes connecting to the burner open into the suction chamber 9 of the burner or into the flow of air blown along the barrel 12, thus benefiting from the general aeraulic drive.
  • the last tanks 25 and 26 are under negative pressure for reasons of safety and non-backflow into the other tanks of aqueous solutions and possibly even into the pump.
  • the tanks of the aqueous solutions are equipped with level detectors thus avoiding a unnecessary operation of air pumps due to lack of products
  • the tanks of the aqueous solutions are also equipped with pressure drop regulators ensuring by these devices the regular flow of the air pumps.
  • the correction gas circuit is also equipped with a device for stopping the pumps by overpressure in the conduits.
  • the speed of rotation of the fan is controlled by a speed controller 28 which acts on a given speed variation range of the burner drive motor which is also that of the fan without varying the pressure values. liquid fuel supply or without intervening on the heating rate.
  • This variable speed drive 28 is responsible for modifying the flow rate of the aspirated combustion air flow at any time in order to correct and adapt the excess combustion air to the optimal combustion conditions.
  • the flow of the correcting gas complex supplied to the burner and drawn in by it is controlled separately by the central unit.
  • the combustion air and corrector gas complex flow rates vary according to the values of the quantities and parameters monitored with a view to maintaining optimal combustion conditions during the total operating time of the burner.
  • the variation in the speed of rotation of the motor is obtained by means of a speed variator with frequency variation, this variator being controlled by the central unit.
  • the variation in the air flow rate extends over a range of 10% on either side of the preset value.
  • the combustion parameters are adjusted to lower the value of the soot and carbon monoxide formation point.
  • the assembly is controlled by the central combustion unit 18 for optimal combustion connected to the gas generator 17 of the combustion correcting gas flow, to the variable speed drive 28 and to the adjustable air inlet 9 of the burner, but also to various sensors of the main physical quantities and combustion parameters.
  • a sensor 29 for fuel flow there is a sensor 29 for fuel flow, a sensor 30 for the temperature of the combustion air, a sensor 31 for the flow of the combustion air or the position for opening the combustion air valve.
  • smoke outlet sensors mention is made of a smoke temperature sensor 34, an oxygen content sensor 35, a carbon oxide content sensor 36, a carbon dioxide content sensor 37, as well as another group 38 of sensors providing the content of polluting gases such as sulfur dioxide and its compounds, nitrogen oxide and its compounds.
  • a last sensor 39 makes it possible to measure the opacity of the fumes.
  • the parameters monitored are those which condition the quality, efficiency and cleanliness of the combustion.
  • the central unit 18 for optimal combustion acts on the basis of a computer-regulator 40, for example with a microprocessor, on the one hand on the speed of rotation of the fan motor, that is to say on the flow rate of oxidizing air, allowing to dose the excess air which plays an important role in the formation of nitrogen oxides, but also, on the other hand, according to a variant, on the rate of mixing of the combustion air with the gaseous combustion-correcting complex from the values of the parameters monitored according to a law of regulation and correction allowing optimum combustion conditions to be maintained at all times during burner operation.
  • a computer-regulator 40 for example with a microprocessor
  • the proportion of mass evaluation of the catalysts relative to the mass of fuel is between 10 and 50 ppm.
  • the total flow rate of the correcting gaseous complex required will determine the number of generating circuits of this gaseous complex to be commissioned on the basis of an average of 200 liters / hour per circuit for a fuel consumption equal to 30 KW / hour.
  • This process can be used in a simplified version, use in which the means include only the correction gas flow generator 17 which is managed by the programmable controller 19 operating from the fuel flow rate, the combustion air flow rate and the temperature of the fumes, the values of which are sensed by appropriate probes as indicated above.
  • the variation of the combustion air flow is controlled by the engine of the fan only from fuel flow rates and flue gas temperature.
  • the production circuits of the gas complex will be used, the aqueous solutions of which are composed of a support such as a light topping gas oil which will have dissolved a catalyst as in example of the cobalt or manganese or nickel or iron or chromium or cerium salts or mixtures or compositions of one or the other of these salts.
  • This regime is also that of operation at a low heating rate for which the addition of a combustion correcting gas in the combustion air makes it possible to significantly reduce the production of volatile materials and unburnt gases.
  • the circuits whose aqueous solutions are composed of mixtures of metal salts with chlorinated compounds such as ammonium or potassium chloride will be used.
  • the method according to the invention makes it possible to reduce the excess of air resulting in a correlative decrease in the production of nitrogen oxides which are, in part, by virtue of said method, transformed into nitrates while retaining optimal combustion .
  • the method according to the invention is applicable to any combustion from a solid, liquid or gaseous fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Procédé d'amélioration de la combustion. Procédé caractérisé en ce que l'on corrige en continu la combustion en injectant dans le flux de l'air comburant un débit variable, dosé et contrôlé, d'un complexe gazeux catalytique, neutralisant et inhibiteur de corrosion, en faisant varier le débit de l'air comburant par variation de la vitesse du ventilateur du brûleur à partir des valeurs des principaux paramètres de combustion relevées dans les gaz et fumées de combustion et à partir des paramètres de chaudière et de brûleur. Cette invention intéresse les fabricants de brûleurs et de chaudières et leurs exploitants. <IMAGE>

Description

  • La présente invention se rapporte à un procédé d'amélioration de la combustion pour un brûleur à air soufflé.
  • Plus particulièrement, l'invention vise un procédé de combustion améliorée tant sur le plan énergétique que sur le plan pollution par un apport gazeux catalytique à l'aide d'un calculateur programmable ou tout autre système intelligent.
  • Il s'applique à tous les types de brûleurs à air soufflé pour chaudière de puissance appliquée au chauffage domestique collectif ou industriel et aux divers combustibles : fioul, gaz ou autres utilisés par de tels brûleurs.
  • Tout d'abord, la présente invention vise une combustion améliorée qui consiste à se placer dans des conditions optimales de combustion.
  • Il s'agit de corriger la combustion pour accroître son rendement énergétique par une adjonction en continu, convenablement dosée et contrôlée, d'une quantité variable d'un fluide complexe à réaction exothermique chargé de rétablir en continu les conditions d'une combustion optimale la plus complète possible et ainsi, de diminuer à une valeur faible la quantité des matières volatiles imbrûlées.
  • La présente invention vise également une combustion propre.
  • Pour garantir le respect de l'environnement, la meilleure combustion possible au sens industriel doit s'accompagner du contrôle continu de la quantité et de la nature des rejets. Ce contrôle doit également servir à corriger en continu les conditions générales de combustion pour la nécessaire réduction des déchets nocifs à un niveau faible ou leur neutralisation ou transformation.
  • La présente invention vise simultanément les deux objectifs précédemment cités d'amélioration énergétique et d'établissement des conditions d'une combustion propre.
  • Elle vise également le maintien, en cours de fonctionnement et sur de longues durées, des conditions optimales de combustion par une surveillance et une correction en continu de celles-ci.
  • A cet effet, le procédé de combustion optimale propre selon l'invention se caractérise en ce que l'on corrige en continu la combustion en injectant dans le flux de l'air comburant un débit variable, dosé et contrôlé, d'un complexe gazeux catalytique et correcteur et en ce que l'on fait varier le débit de l'air comburant par variation de la vitesse du ventilateur du brûleur à partir des valeurs des principaux paramètres de combustion relevées dans les gaz et fumées de combustion et de fonctionnement de la chaudière.
  • Selon une autre caractéristique, on prévoit une surveillance de l'encrassement de la chaudière et l'adjonction au fluide gazeux catalytique et correcteur d'un produit de décrassement.
  • Selon encore une autre caractéristique on surveille également les températures de départ et de retour du fluide caloporteur.
  • Outre les principaux avantages de gain en rendement énergétique et de rejets inoffensifs ou en tous cas moins nocifs pour l'environnement, l'invention présente de nombreux avantages supplémentaires justifiant encore plus son intérêt :
    • . diminution sensible de l'encrassement de la chaudière et des cheminées ;
    • . réduction importante de la production de matières volatiles imbrûlées ;
    • . fréquence plus faible pour l'entretien du brûleur et le ramonage de la cheminée : fumées plus légères et moins grasses ;
    • . économie de combustible ;
    • . combustion propre : les suies se transforment en poudre grise ;
    • . moins de corrosion et longévité augmentée des chaudières ;
    • . diminution notable des rejets polluants ;
    • . appareillage et dispositifs pouvant s'adapter à la régulation existante.
  • Par ailleurs, le rejet à l'atmosphère de gaz et fumées de combustion contenant notablement moins de matières volatiles nocives ou de transformés moins nocifs pour l'environnement comme dans le procédé selon l'invention ne constitue pas encore, dans notre monde moderne, un avantage industriel. Il doit pourtant être considéré comme une des valeurs actuelles les plus importantes.
  • Les caractéristiques techniques et d'autres avantages de l'invention sont consignés dans la description qui suit, effectuée à titre d'exemple non limitatif sur un mode d'exécution en référence aux dessins accompagnants dans lesquels :
    • . la figure 1 est le schéma général d'ensemble de l'installation montrant les liaisons entre les différentes parties composantes ;
    • . la figure 2 est une vue schématique de détail du raccordement au brûleur ;
    • . la figure 3 est une vue schématique illustrant la composition générale du générateur de complexe gazeux de correction.
  • Le procédé d'amélioration de la combustion selon la présente invention procède de l'idée générale inventive qui consiste à maintenir pendant tout le fonctionnement du brûleur des conditions de combustion optimale par variation du débit d'air comburant et en apportant, par adjonction au flux d'air comburant, un débit variable, dosé et contrôlé, d'un complexe catalytique gazeux, la variation de ce débit étant commandée par une unité centrale à partir des valeurs des principaux paramètres de combustion relevés dans les gaz et fumées de combustion et à partir des variables générales de fonctionnement d'une chaudière.
  • Selon une autre caractéristique, on fait varier la vitesse du ventilateur du brûleur pour modifier le débit d'air comburant, c'est-à-dire l'excès d'air, et corriger et adapter ainsi la combustion et l'apport gazeux catalytique en vue de réduire la formation des produits polluants et corrosifs qui sont convenablement neutralisés par ailleurs.
  • Pour ce faire, l'unité centrale de combustion optimale comporte les différents analyseurs et circuits de détermination des valeurs des grandeurs physiques mesurées à l'aide des différents capteurs et sondes.
  • De façon non exhaustive, on peut citer :
    • . le débit du combustible
    • . le capteur de débit d'air comburant
    • . la température de l'air comburant à l'entrée
    • . les températures aller et retour du fluide caloporteur
    • . les caractéristiques des gaz de combustion :
      • température des fumées
      • opacité des fumées
      • teneur en oxygène,
      • teneur en oxyde de carbone,
      • teneur en oxyde d'azote,
      • teneur en oxyde de soufre
  • Afin de coordonner, de gérer et de commander le fonctionnement d'ensemble, un calculateur-régulateur programmable ou tout autre système intelligent reçoit les diverses informations nécessaires et agit sur le ventilateur du brûleur en tenant compte des allures de chauffe du brûleur.
  • Le procédé selon l'invention s'applique plus particulièrement à une régulation de chaudière existante ayant la particularité de commander la mise en service et les allures de chauffe de brûleurs appelés " monobloc ". Il s'agit de brûleurs dont le volet d'air est asservi mécaniquement à la position du clapet ou de la vanne d'entrée du combustible par des moyens de cames règlables, de tringleries ou autres moyens mécaniques. Dans ce type de brûleurs, le rapport air/combustible est constant à la valeur fixée au moment du règlage de départ. L'excès d'air ne suit pas les variations des conditions atmosphériques et tout se passe comme si le brûleur restait règlé pour une seule condition atmosphérique.
  • Ce type de brûleurs atteignent des puissances de l'ordre de 10 000 thermies.
  • On décrira maintenant ci-après par le détail les caractéristiques techniques de l'invention et de l'installation dans laquelle la chaudière est choisie à combustible liquide, par exemple à combustible connu sous le dénomination fioul.
  • Bien entendu, le procédé fonctionne aussi bien avec un brûleur à combustible gazeux.
  • Le procédé selon l'invention est mis en oeuvre dans et autour d'une chaudière 1 équipée d'un brûleur 2 à air soufflé utilisant comme combustible liquide le fioul, cité cependant à titre d'exemple. La chaudière est raccordée à un conduit de fumées 3 réalisant le raccordement de sa buse de sortie 4 à une cheminée 5 à tronçon de raccordement 6 à la cheminée.
  • Le brûleur comporte classiquement une pompe 7 raccordée à travers un filtre 8 à la réserve de combustible, une entrée d'air réglable 9 devant une chambre d'aspiration 10, un ventilateur 11 ainsi qu'un canon 12 de formation d'une flamme 13 dans un flux d'air soufflé avec déflecteur et accroche-flamme.
  • Conformément à l'invention, l'entrée d'air réglable 9 du brûleur 2 est reliée par un ou plusieurs conduits tels que 14, 15, 16 à un générateur gazeux 17 de correction de combustion multivoies générant un flux gazeux composite correcteur de combustion, dont l'injection ou l'apport au brûleur est commandé par une unité centrale de combustion optimale 18.
  • Selon le présent procédé d'amélioration de la combustion, on génère puis on fournit au brûleur sur son entrée d'air ou au voisinage de celle-ci, ou dans le canon de projection de l'air soufflé, un complexe gazeux de correction de combustion provenant d'au moins trois sources élémentaires distinctes correspondant à trois produits gazeux séparés, fournis par le générateur 17 de correction de combustion et présentant des propriétés différentes :
    • . catalytique et inhibiteur de corrosion
    • . de neutralisation
    • . de décrassage.
    dont les rôles et les fonctions sont indiqués ci-après.
  • Le complexe catalytique est également inhibiteur de corrosion. Il provoque une réaction principale exothermique destinée à augmenter la température de la flamme, le transfert calorifique et à parfaire la combustion. Il est associé à des agents tensioactifs, dispersants et peptisants lui conférant des propriétés de dispersion, de détergence, d'anticorrosion et peptisantes qui permettent de prolonger la dispersion au sein des gouttelettes de fioul et de provoquer l'inflammation des constituants normalement imbrûlés et à combustion difficile.
  • Le complexe de neutralisation transforme en partie les oxydes d'azote et de soufre en composés neutres sans danger pour les pièces composantes de la chaudière et de l'installation et sans aucun caractère nocif pour l'environnement. Il permet également de réduire les émissions d'oxyde de carbone. Il forme un film protecteur sur les parois de la chambre de combustion et des éléments échangeurs qui assure leur protection contre tous les produits agressifs engendrés par ou résultant de la combustion.
  • Le complexe de décrassage est envoyé par séquences, lors de la détection d'un encrassement ou d'une baisse de performances. Il permet de désagréger la couche de suie, d'éviter les dépôts durs à caractère incrustant et de garder aux surfaces d'échange leur propreté et toutes leurs qualités et propriétés.
  • On citera ci-après quelques produits possibles pour la production du flux gazeux correcteur.
    • 1. Flux catalytique et inhibiteur de corrosion.
      On adoptera une solution aqueuse peroxydée complexe de sels organo-métalliques associés à des produits tensio-actifs tels que sels de fer, cuivre, manganèse, cobalt, chrome.
      Cette solution est traversée par barbotage d'un flux d'air contrôlé.
    • 2. Flux gazeux neutralisant.
      On adoptera une solution aqueuse peroxydée de sels alcalino-terreux tels que des sels de baryum, de cérium, de lithium, de potassium, d'ammonium ou équivalents.
      Cette solution est traversée par barbotage d'un flux d'air contrôlé.
    • 3. Flux gazeux de décrassage.
      Il s'agit d'un flux gazeux obtenu à partir de produits permettant de diminuer la température de fusion des matières volatiles imbrûlées.
      On adoptera une solution aqueuse peroxydée et légèrement chlorée obtenue à base de sodium, de potassium ou d'ammonium. Ces sels peuvent être remplacés par des nitrates.
  • En ce qui concerne l'aspect quantitatif, on apporte au brûleur un complexe gazeux en quantité de l'ordre du millième de la quantité d'air comburant et plus particulièrement comme indiqué ci-après un rapport compris entre 10 et 50 ppm en masse entre le flux gazeux et le combustible.
  • Le générateur de correction de combustion 17 est chargé de délivrer au brûleur, convenablement dosé, le complexe gazeux de correction de combustion à partir d'une ou de plusieurs commandes provenant de l'unité centrale de combustion optimale 18 qui est conçue pour remettre la chaudière et le brûleur en situation autonome, c'est-à-dire installation de correction déconnectée, en cas de mauvais fonctionnement d'un des dispositifs de l'installation de correction de combustion.
  • Il comporte une interface de commande sous la forme d'un automate programmable 19 agissant de façon groupée ou individuelle sur les voies du générateur gazeux 17 multivoies de correction de combustion correspondant chacune à un produit spécifique de correction de combustion qui sera fourni individuellement ou simultanément au brûleur avec l'un et/ou l'autre des produits correcteurs distincts.
  • Comme indiqué, chaque voie constitue un générateur élémentaire tel que 20 pour un produit gazeux spécifique.
  • La présente invention vise de façon non limitative trois produits gazeux de base.
  • Chaque voie est par exemple commandée individuellement par l'automate programmable 19. Un préparateur d'air 21 collectif ou individuel comprenant un compartiment tel que 22 assécheur-deshumidificateur d'air est suivi d'une pompe à faible débit 23 propre à chaque voie et de plusieurs réservoirs ou bidons de barbotage, par exemple au nombre de deux, 24 et 25, remplis chacun pour la même voie de la même solution d'un des produits spécifiques indiqués ci-dessus. Ces bidons de barbotage sont montés en série par des tubulures ou conduits de barbotage et terminés par un réservoir tampon 26. Chaque circuit de production se poursuit, avant la sortie, par une alarme de débit bas 27. Chaque sortie est reliée au brûleur par un conduit individuel séparé, référencé précédemment 14, 15 et 16, comme le montrent les figures.
  • L'assècheur 21 contrôle le degré hygrométrique de l'air et le stabilise à environ 40%.
  • L'automate 19 commande individuellement le débit du produit gazeux par établissement et variation du débit d'air à l'entrée ou à la sortie du préparateur d'air à l'aide de la pompe à faible débit 23 ou un équivalent propre à chaque voie. Une pompe auxiliaire d'alimentation (non représentée) permet de réapprovisionner en liquide chaque bidon à partir d'une réserve en maintenant par exemple un niveau constant à l'aide d'un dispositif approprié.
  • Chaque produit gazeux formant le complexe gazeux de correction est entraîné faiblement, de façon minimale, vers le brûleur par l'effet de la pompe interne 23 placée en amont sur chacune des voies du générateur 17 mais aussi et surtout par l'effet déprimogène engendré par le ventilateur ou la turbine du brûleur. Pour ce faire, les conduits de liaison au brûleur débouchent dans la chambre d'aspiration 9 du brûleur ou dans le flux d'air soufflé le long du canon 12 bénéficiant ainsi de l'entrainement général aéraulique.
  • Ainsi, moyennant une commande appropriée provenant de l'unité centrale 18 à travers l'automate programmable 19, on peut doser sur chaque voie, à volonté et graduellement, le débit du produit apporté au brûleur et aspiré par celui-ci.
  • En raison de l'emplacement en amont de la pompe 23, les derniers réservoirs 25 et 26 sont sous pression négative pour des raisons de sécurité et de non refoulement dans les autres réservoirs des solutions aqueuses et éventuellement même dans la pompe.
  • Les réservoirs des solutions aqueuses sont équipés de détecteurs de niveau évitant ainsi un fonctionnement inutile des pompes à air par manque de produits
  • Les réservoirs des solutions aqueuses sont également équipés de régulateurs de pertes de charges assurant par ces dispositifs le débit régulier des pompes à air.
  • Le circuit de gaz de correction est également équipé d'un dispositif d'arrêt des pompes par surpression dans les conduits.
  • Comme indiqué, on prévoit dans le cadre de la présente invention au moins trois voies distinctes correspondant aux trois produits de base. Toutefois, ce nombre n'est pas limitatif et on peut envisager d'adjoindre d'autres voies, telles que des voies en production continue ou momentanée d'oxygénation, de vaporisation ou tout autre apport de produit(s) dont les propriétés entrent dans le cadre et l'esprit de l'invention.
  • Conformément à l'invention, la vitesse de rotation du ventilateur est commandée par un variateur de vitesse 28 qui agit sur une plage de variation de vitesse donnée du moteur d'entraînement du brûleur qui est aussi celui du ventilateur sans faire varier les valeurs de pression d'alimentation en combustible liquide ou sans intervenir sur l'allure de chauffe.
  • Ce variateur de vitesse 28 est chargé de modifier à tout moment le débit du flux d'air comburant aspiré afin de corriger et d'adapter l'excès d'air comburant aux conditions de combustion optimale. Le flux du complexe gazeux correcteur apporté au brûleur et aspiré par lui est commandé séparément par l'unité centrale. Les débits d'air comburant et du complexe gazeux correcteur varient en fonction des valeurs des grandeurs et paramètres surveillés en vue du maintien des conditions optimales de combustion pendant la durée totale de fonctionnement du brûleur.
  • Selon une variante préférée, la variation de vitesse de rotation du moteur est obtenue au moyen d'un variateur de vitesse à variation de fréquence, ce variateur étant commandé par l'unité centrale. La variation du débit de l'air s'étend sur une plage de 10% de part et d'autre de la valeur prérèglée.
  • Cette variation du débit d'entrée d'air permet de :
    • . pallier les variations d'excès d'air pour l'obtention d'un meilleur rendement de combustion en se rapprochant au maximum de la courbe stoechiométrique ;
    • . diminuer les surpressions lors de l'allumage et au démarrage ;
    • . stabiliser les pressions intérieures du foyer qui sont modifiées par les variations de tirage naturel ;
    • . pallier les variations atmosphériques qui modifient les caractéristiques physiques de l'air comburant ;
  • Selon l'invention, on règle les paramètres de combustion pour abaisser la valeur du point de formation des suies et de l'oxyde de carbone.
  • L'ensemble est commandé par l'unité centrale 18 de combustion optimale reliée au générateur gazeux 17 du flux gazeux correcteur de combustion, au variateur de vitesse 28 et à l'entrée réglable 9 d'air du brûleur, mais aussi à divers capteurs des principales grandeurs physiques et des paramètres de combustion.
  • Selon une variante, on peut également agir sur l'ouverture de l'entrée réglable 9 d'air au brûleur pour modifier le débit de l'air comburant.
  • Ces capteurs sont disposés en divers endroits extérieurs à la chaudière.
  • Ils se partagent selon les trois groupes suivants:
    • . les capteurs de brûleur, disposés dans ou à proximité du brûleur ;
    • . les capteurs de chaudière ;
    • . les capteurs de sortie placés dans le tronçon de raccordement 6 à une distance de la sortie de la chaudière égale à environ deux fois et demi le diamètre de ladite sortie.
  • Parmi les capteurs de brûleur, on distingue un capteur 29 de débit de combustible, un capteur 30 de température de l'air comburant, un capteur 31 de débit de l'air comburant ou de position d'ouverture du clapet d'air comburant.
  • Parmi les capteurs de chaudières, il faut mentionner de façon non exhaustive, deux capteurs de température du fluide caloporteur. Il s'agit des capteurs de température d'entrée 32 et de sortie 33 du fluide caloporteur permettant de mesurer la différence de température entre l'entrée et la sortie du circuit de distribution du fluide de chauffage.
  • Parmi les capteurs de sortie de fumées, on cite un capteur 34 de température des fumées, un capteur 35 de teneur en oxygène, un capteur 36 de teneur en oxyde de carbone, un capteur 37 de teneur en gaz carbonique, ainsi qu'un autre groupe 38 de capteurs fournissant la teneur en gaz polluants tels que l'anhydride sulfureux et ses composés, l'oxyde d'azote et ses composés. Un dernier capteur 39 permet de mesurer l'opacité des fumées.
  • Les paramètres surveillés sont ceux conditionnant la qualité, le rendement et la propreté de la combustion.
  • L'unité centrale 18 de combustion optimale agit à partir d'un calculateur-régulateur 40, par exemple à microprocesseur, d'une part sur la vitesse de rotation du moteur du ventilateur, c'est-à-dire sur le débit du flux d'air comburant, permettant de doser l'excès d'air qui joue un rôle important dans la formation des oxydes d'azote, mais aussi, d'autre part, selon une variante, sur le taux de mélange de l'air comburant avec le complexe gazeux correcteur de combustion à partir des valeurs des paramètres surveillés selon une loi de régulation et de correction permettant de maintenir à tout moment, pendant le fonctionnement du brûleur, des conditions de combustion optimale.
  • La proportion d'évaluation massique des catalyseurs par rapport à la masse de combustible est comprise entre 10 et 50 ppm.
  • Le débit du complexe gazeux correcteur est déterminé principalement par les considérations suivantes :
    • . la capacité d'enrichissement de l'air au taux d'humidité présent à la sortie du deshumidificateur à travers les solutions aqueuses que l'air doit traverser ;
    • . la vitesse de passage du complexe gazeux correcteur qui est fonction de l'aspiration de l'air comburant engendrée par la turbine du brûleur.
  • Le débit total du complexe gazeux correcteur nécessaire déterminera le nombre de circuits générateurs de ce complexe gazeux à mettre en service sur la base d'une moyenne de 200 litres/heure par circuit pour une consommation de combustible égale à 30 KW/heure.
  • Ce procédé peut être utilisé en version simplifiée, utilisation dans laquelle les moyens ne comprennent que le générateur de flux gazeux de correction 17 qui est géré par l'automate programmable 19 fonctionnant à partir du débit du combustible, du débit d'air comburant et de la température des fumées dont les valeurs sont captées par des sondes appropriées telles qu'indiquées ci-dessus.
  • Selon ce procédé simplifié, on commande la variation du débit d'air comburant par le moteur du ventilateur seulement à partir des débits du combustible et de la température des fumées.
  • Durant la phase d'allumage et de montée en température jusqu'au régime permanent on utilisera les circuits de production du complexe gazeux dont les solutions aqueuses sont composées d'un support tel qu'un gasoil léger de topping qui aura solubilisé un catalyseur comme par exemple des sels de cobalt ou de manganèse ou de nickel ou de fer ou de chrome ou de cérium ou des mélanges ou compositions de l'un ou l'autre de ces sels.
  • Ce régime est également celui du fonctionnement en faible allure de chauffe pour lequel l'adjonction d'un gaz correcteur de combustion dans l'air comburant permet de réduire notablement la production de matières volatiles et de gaz imbrulés.
  • Durant la phase de combustion supérieure ou régime permanent, on utilisera les circuits dont les solutions aqueuses sont composées de mélanges de sels métalliques avec des composés chlorés tels que du chlorure d'ammonium ou de potassium.
  • On rappelle ici que le procédé selon l'invention permet de diminuer l'excès d'air entraînant une diminution corrélative de production d'oxydes d'azote qui sont, en partie, grâce audit procédé, transformés en nitrates tout en gardant une combustion optimale.
  • On rappelle également ici que le procédé selon l'invention est applicable à toute combustion à partir d'un combustible solide, liquide ou gazeux.
  • Par ailleurs, on peut envisager d'employer le procédé ci-dessus pour des applications de traitement d'odeurs résultant de combustions, de pyrolyses, de cuissons ou autres sources de dégagement gazeux.
  • Il est bien entendu qu'au-delà des moyens décrits, diverses modifications évidentes et variantes simples entrent dans le cadre de la présente invention.

Claims (12)

  1. Procédé de combustion optimale par adjonction au flux d'air comburant d'un complexe gazeux et maintien des conditions optimales de combustion pour chaudière équipée d'un brûleur à air soufflé, caractérisé en ce que l'on enrichit l'air comburant d'un complexe gazeux de correction de combustion et que l'on fait varier le débit d'air comburant pour adapter la combustion par un excès d'air juste en-dessous de la formation de suie et d'oxyde de carbone, par variation de vitesse du ventilateur du brûleur à partir des principaux paramètres de la combustion et du fonctionnement de la chaudière, le complexe gazeux correcteur permettant de garder la combustion optimale.
  2. Procédé selon la revendication 1, caractérisé en ce que la variation du débit du complexe gazeux est obtenu par la variation de la vitesse de rotation de la turbine du brûleur.
  3. Procédé selon les revendications 1 et 2 caractérisé en ce que le complexe de correction de combustion est un mélange d'un flux gazeux catalytique et d'un flux gazeux inhibiteur de corrosion et séquentiellement d'un flux gazeux de décrassage.
  4. Procédé selon les revendications 1 et 2, caractérisé en ce que l'on règle les conditions de la combustion juste en-dessous du point de formation des séries et de l'oxyde de carbone
  5. Procédé selon les revendications précédentes, caractérisé en ce que le complexe gazeux contient séquentiellement un flux gazeux de neutralisation à l'égard de l'anhydride sulfureux et sulfurique.
  6. Procédé selon les revendications précédentes, caractérisé en ce que le flux gazeux catalytique et inhibiteur de corrosion est obtenu par barbotage d'un flux d'air dans une solution aqueuse peroxydée de sels organo-métalliques associés à des produits tensio-actifs.
  7. Procédé selon les revendications précédentes, caractérisé en ce que le flux gazeux neutralisant est obtenu par barbotage d'un flux d'air dans une solution aqueuse peroxydée de sels alcalino-terreux.
  8. Procédé selon les revendications précédentes, caractérisé en ce que le flux gazeux de décrassage est obtenu par barbotage d'un flux d'air dans une solution aqueuse peroxydée et légèrement chlorée à base de sodium, de potassium ou d'ammonium.
  9. Procédé selon l'une des revendications précédentes caractérisé en ce que durant la phase d'allumage et de montée en température jusqu'au régime permanent on utilisera les circuits de production du complexe gazeux dont les solutions aqueuses sont composées d'un support tel qu'un gasoil léger de topping qui aura solubilisé un catalyseur comme par exemple des sels de cobalt ou de manganèse ou de nickel ou de fer ou de chrome ou de cérium ou des mélanges ou des compositions de l'un ou l'autre de ces sels.
  10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on commande la variation du débit d'air uniquement à partir du débit du combustible et de la température des fumées.
  11. Moyens destinés à mettre en oeuvre le procédé ci-dessus, caractérisé en ce qu'il comprend, autour d'une chaudière équipée d'un brûleur à air soufflé, plusieurs groupes de capteurs dont des capteurs de brûleur, des capteurs de chaudière et des capteurs de sortie des fumées, une unité centrale commandant le variateur de vitesse du moteur du ventilateur pour adapter le flux d'air comburant aux variations de combustion, en vue de maintenir les conditions d'une combustion optimale sans formation de suie, et un générateur de complexe gazeux de correction commandé par l'unité centrale et relié par plusieurs conduits à la chambre d'aspiration du brûleur.
  12. Moyens selon la revendication 11, caractérisés en ce que le générateur de complexe gazeux de combustion se compose de plusieurs générateurs élémentaires indépendants alimentés par un préparateur d'air et formés chacun par une pompe à air à faible débit, plusieurs bidons de barbotage traversés par la tubulure de transport du produit gazeux et une alarme de débit située près de la sortie, l'ensemble étant commandé en débit par un automate programmable lui-même commandé par l'unité centrale.
EP91440076A 1990-09-24 1991-09-24 Procédé d'amélioration de la combustion pour brûleur à air soufflé et moyens destinés à le mettre en oeuvre Withdrawn EP0478481A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9011907A FR2667134B1 (fr) 1990-09-24 1990-09-24 Procede d'amelioration de la combustion pour bruleur a air souffle et moyens destines a le mettre en óoeuvre.
FR9011907 1990-09-24

Publications (1)

Publication Number Publication Date
EP0478481A1 true EP0478481A1 (fr) 1992-04-01

Family

ID=9400694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91440076A Withdrawn EP0478481A1 (fr) 1990-09-24 1991-09-24 Procédé d'amélioration de la combustion pour brûleur à air soufflé et moyens destinés à le mettre en oeuvre

Country Status (4)

Country Link
US (1) US6039261A (fr)
EP (1) EP0478481A1 (fr)
CA (1) CA2052089A1 (fr)
FR (1) FR2667134B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837214A1 (fr) * 2002-03-12 2003-09-19 Marcel Bonnaud Procede pour combattre la formation des oxydes de soufre et d'azote resultant de la combustion des hydrocarbures liquides ou gazeux et du charbon et du bois
FR2939185A1 (fr) * 2008-12-03 2010-06-04 Catalysair Sa Equipement de reduction de la pollution et d'economie de combustible pour corps de chauffe
CN103047009A (zh) * 2011-10-14 2013-04-17 阿尔斯通技术有限公司 操作燃气轮机的方法
CN109985452A (zh) * 2019-04-28 2019-07-09 伍祥桂 一种提高氧化风机高压空气含氧量的装置及方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712604B2 (en) * 2001-06-15 2004-03-30 Honeywell International Inc. Cautious optimization strategy for emission reduction
US6948926B2 (en) * 2002-02-04 2005-09-27 Clean Diesel Technologies, Inc. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst
JP4172938B2 (ja) * 2002-02-14 2008-10-29 昭和電工株式会社 排ガスの処理方法および処理装置
EP3078909B1 (fr) * 2002-10-10 2022-05-11 LPP Combustion, LLC Procédé de vaporisation de combustibles liquides pour combustion
US8069676B2 (en) 2002-11-13 2011-12-06 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
CA2506269C (fr) 2002-11-13 2012-08-14 Deka Products Limited Partnership Distillation de liquides par cycle a vapeur sous pression
US8511105B2 (en) 2002-11-13 2013-08-20 Deka Products Limited Partnership Water vending apparatus
EP1756475B1 (fr) * 2004-05-06 2012-11-14 New Power Concepts LLC Bruleur a combustible gazeux
KR101201624B1 (ko) 2004-12-08 2012-11-14 엘피피 컴버션, 엘엘씨 액체 탄화수소 연료의 컨디셔닝을 위한 방법 및 장치
US8177545B2 (en) * 2004-12-17 2012-05-15 Texaco Inc. Method for operating a combustor having a catalyst bed
ITPI20050094A1 (it) * 2005-09-02 2007-03-03 Socoen Sviluppo Srl Composto chimico per la catalisi della combustione ed apparati impieganti detto composto
ITMI20052092A1 (it) * 2005-11-04 2007-05-05 Lorenzo Verlato Sistema di controllo e gestione per una apparecchiatura di riscaldamento di ambienti
US8529646B2 (en) * 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
US11826681B2 (en) 2006-06-30 2023-11-28 Deka Products Limited Partneship Water vapor distillation apparatus, method and system
GB0700316D0 (en) * 2007-01-09 2007-02-14 Marchant Stephen D Boiler performance indicator (BPI)
KR101967001B1 (ko) 2007-06-07 2019-04-08 데카 프로덕츠 리미티드 파트너쉽 증류 장치 및 압축기
US11884555B2 (en) 2007-06-07 2024-01-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
PT2078911E (pt) * 2008-01-10 2011-12-02 Douglas Technical Ltd Processo para a secagem contínua de materiais a granel, em particular, de fibras de madeira e/ou aparas de madeira
MX2011001778A (es) 2008-08-15 2011-05-10 Deka Products Lp Aparato expendedor de agua.
US9249988B2 (en) * 2010-11-24 2016-02-02 Grand Mate Co., Ted. Direct vent/power vent water heater and method of testing for safety thereof
US9086068B2 (en) 2011-09-16 2015-07-21 Grand Mate Co., Ltd. Method of detecting safety of water heater
WO2014018896A1 (fr) 2012-07-27 2014-01-30 Deka Products Limited Partnership Commande de la conductivité dans une sortie d'eau de production destinée à un évaporateur
US10429297B2 (en) * 2017-01-26 2019-10-01 Acumentor Llc Monitoring opacity of smoke exhausted by wood stove and controlling wood stove based on same
PT111114A (pt) * 2018-08-30 2020-03-02 Bosch Termotecnologia Sa Processo para regular um dispositivo de aquecimento
US11428407B2 (en) * 2018-09-26 2022-08-30 Cowles Operating Company Combustion air proving apparatus with burner cut-off capability and method of performing the same
JP2021183888A (ja) * 2020-05-22 2021-12-02 リンナイ株式会社 燃焼装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444890A1 (fr) * 1978-12-21 1980-07-18 Chevron Res Procede et appareil d'optimisation du fonctionnement d'une zone de combustion a tirage naturel
FR2498300A1 (fr) * 1981-01-21 1982-07-23 Janot Andre Procede et installation d'un dispositif pour ameliorer les performances de combustion d'un combustible
FR2502300A2 (fr) * 1979-06-28 1982-09-24 Gaillardin Jacqueline Procede et dispositif pour accroitre le rendement d'appareils a combustion et diminuer leur corrosion
EP0225996A1 (fr) * 1985-10-25 1987-06-24 Mitsubishi Denki Kabushiki Kaisha Système de régulation de débit pour dispositif avec alimentation et décharge d'un fluide
US4793268A (en) * 1987-11-27 1988-12-27 Apollo Technologies Int'l Method for controlling additive feed in a boiler system
EP0322132A1 (fr) * 1987-12-03 1989-06-28 British Gas plc Dispositif à brûleur au fuel et une méthode de contrôle
EP0352619A2 (fr) * 1988-07-29 1990-01-31 MARTIN GmbH für Umwelt- und Energietechnik Méthode de régulation de la puissance de combustion pour installations de combustion
FR2644874A2 (fr) * 1987-01-30 1990-09-28 Applic Indles Thermiques Procede et appareil pour le ramonage chimique continu des generateurs de chaleur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295816A (en) * 1977-12-20 1981-10-20 Robinson B Joel Catalyst delivery system
IT1205425B (it) * 1980-10-14 1989-03-23 Andrea Venturini Impianto di catalizzazione della combustione di combustibili commerciali
US4368035A (en) * 1981-05-01 1983-01-11 Mccartny Gerald A Method and apparatus for heating aggregate
JPS59231308A (ja) * 1983-06-13 1984-12-26 Toyota Motor Corp 燃焼炉のNOx制御方法
GB8406106D0 (en) * 1984-03-08 1984-04-11 Davair Heating Ltd Oil burner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444890A1 (fr) * 1978-12-21 1980-07-18 Chevron Res Procede et appareil d'optimisation du fonctionnement d'une zone de combustion a tirage naturel
FR2502300A2 (fr) * 1979-06-28 1982-09-24 Gaillardin Jacqueline Procede et dispositif pour accroitre le rendement d'appareils a combustion et diminuer leur corrosion
FR2498300A1 (fr) * 1981-01-21 1982-07-23 Janot Andre Procede et installation d'un dispositif pour ameliorer les performances de combustion d'un combustible
EP0225996A1 (fr) * 1985-10-25 1987-06-24 Mitsubishi Denki Kabushiki Kaisha Système de régulation de débit pour dispositif avec alimentation et décharge d'un fluide
FR2644874A2 (fr) * 1987-01-30 1990-09-28 Applic Indles Thermiques Procede et appareil pour le ramonage chimique continu des generateurs de chaleur
US4793268A (en) * 1987-11-27 1988-12-27 Apollo Technologies Int'l Method for controlling additive feed in a boiler system
EP0322132A1 (fr) * 1987-12-03 1989-06-28 British Gas plc Dispositif à brûleur au fuel et une méthode de contrôle
EP0352619A2 (fr) * 1988-07-29 1990-01-31 MARTIN GmbH für Umwelt- und Energietechnik Méthode de régulation de la puissance de combustion pour installations de combustion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 111 (M-379)(1834) 15 Mai 1985 & JP-A-59 231 308 ( TOYOTA JIDOSHA ) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837214A1 (fr) * 2002-03-12 2003-09-19 Marcel Bonnaud Procede pour combattre la formation des oxydes de soufre et d'azote resultant de la combustion des hydrocarbures liquides ou gazeux et du charbon et du bois
FR2939185A1 (fr) * 2008-12-03 2010-06-04 Catalysair Sa Equipement de reduction de la pollution et d'economie de combustible pour corps de chauffe
WO2010063771A1 (fr) * 2008-12-03 2010-06-10 Catalysair Sa Equipement de reduction de la pollution et d'economie de combustible pour corps de chauffe
CN102282420A (zh) * 2008-12-03 2011-12-14 卡塔力兹股份有限公司 用于加热体的降低污染和节约燃料的设备
CN102282420B (zh) * 2008-12-03 2014-07-02 卡塔力兹股份有限公司 用于加热体的降低污染和节约燃料的设备
CN103047009A (zh) * 2011-10-14 2013-04-17 阿尔斯通技术有限公司 操作燃气轮机的方法
EP2581583A1 (fr) * 2011-10-14 2013-04-17 Alstom Technology Ltd Procédé d'exploitation d'une turbine à gaz
CN103047009B (zh) * 2011-10-14 2016-06-22 通用电器技术有限公司 操作燃气轮机的方法
US9429079B2 (en) 2011-10-14 2016-08-30 General Electric Technology Gmbh Method and apparatus for detecting combustion conditions in combustors of a sequential combustion gas turbine engine
CN109985452A (zh) * 2019-04-28 2019-07-09 伍祥桂 一种提高氧化风机高压空气含氧量的装置及方法
CN109985452B (zh) * 2019-04-28 2024-06-11 伍祥桂 一种提高氧化风机高压空气含氧量的装置及方法

Also Published As

Publication number Publication date
FR2667134A1 (fr) 1992-03-27
FR2667134B1 (fr) 1995-07-21
US6039261A (en) 2000-03-21
CA2052089A1 (fr) 1992-03-25

Similar Documents

Publication Publication Date Title
EP0478481A1 (fr) Procédé d&#39;amélioration de la combustion pour brûleur à air soufflé et moyens destinés à le mettre en oeuvre
CA2074306C (fr) Procede et installation de combustion pulsee
FR2477267A1 (fr) Procede et appareil d&#39;optimisation d&#39;une zone de combustion a tirage naturel
EP2153130B1 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
FR2509434A1 (fr) Procede et dispositif pour la recirculation de gaz de carneau dans une chaudiere a combustible solide et chaudiere l&#39;utilisant
CN105074334B (zh) 船用锅炉及船用锅炉的运行方法
JP2010007894A (ja) 廃液ガス化処理装置
WO2022214421A1 (fr) Systeme de combustion utilisant comme comburant un melange de dioxygene et d&#39;un gaz deshumidifie obtenu a partir des fumees de combustion
WO2004079260A1 (fr) Generateur a foyers de combustion successifs destine a la productiion de vapeur
CN110285446A (zh) 一种控制燃气轮机氮氧化物排放的方法
EP0226534A1 (fr) Procédé pour alimenter un brûleur d&#39;une chaudière en un mélange comburant
CA2273159C (fr) Prechauffage du gaz en ligne
JP2001280604A (ja) 混焼バーナおよびそれを用いた排ガス処理装置
WO2010063771A1 (fr) Equipement de reduction de la pollution et d&#39;economie de combustible pour corps de chauffe
FR2494424A1 (fr) Dispositif de recuperation des chaleurs perdues pour empecher la corrosion par les oxydes de soufre
RU2237835C1 (ru) Факельная установка для сжигания сбросных газов
JP2696448B2 (ja) ごみ焼却炉
KR20010103226A (ko) 폐가스를 연료로 하는 완전연소 시스템
KR200178420Y1 (ko) 온실용 난방보일러를 이용한 온실의 이산화탄소 공급장치
RU1776922C (ru) Способ управлени процессом сжигани жидких стоков
FR3075932A1 (fr) Procede d&#39;optimisation de la limitation des emissions de poussieres pour les turbines a gaz alimentees au fioul lourd.
FR2502300A2 (fr) Procede et dispositif pour accroitre le rendement d&#39;appareils a combustion et diminuer leur corrosion
JP2007051847A (ja) 燃焼装置の検査方法およびその検査方法により検査を実行する燃焼装置
FR3014540A1 (fr) Chaudiere a combustibles solides et condensation
Williams Fuels, Furnaces, and Fired Equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19921001

17Q First examination report despatched

Effective date: 19940728

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970402