EP0473736B1 - Vorrichtung zur einspritzung eines brennstoff-gas-gemisches - Google Patents

Vorrichtung zur einspritzung eines brennstoff-gas-gemisches Download PDF

Info

Publication number
EP0473736B1
EP0473736B1 EP91904484A EP91904484A EP0473736B1 EP 0473736 B1 EP0473736 B1 EP 0473736B1 EP 91904484 A EP91904484 A EP 91904484A EP 91904484 A EP91904484 A EP 91904484A EP 0473736 B1 EP0473736 B1 EP 0473736B1
Authority
EP
European Patent Office
Prior art keywords
fuel
distribution
gas
valve
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91904484A
Other languages
English (en)
French (fr)
Other versions
EP0473736A1 (de
Inventor
Uwe Liskow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0473736A1 publication Critical patent/EP0473736A1/de
Application granted granted Critical
Publication of EP0473736B1 publication Critical patent/EP0473736B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M67/00Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/50Arrangement of fuel distributors, e.g. with means for supplying equal portion of metered fuel to injectors

Definitions

  • the invention is based on a device for injecting a fuel-gas mixture according to the preamble of claim 1.
  • GB-A-2 188 982 discloses a device of the generic type, but in which the spray openings, the fuel transport channels and the distribution lines are located below different angles to each other and the fuel transport channels open into a cylindrical space with which the gas supply opening and the distribution lines are connected axially opposite. This has the disadvantage that the fuel is transported unevenly in the distribution lines and is deposited there and in the cylindrical space.
  • a device for injecting a fuel-gas mixture with a distributor housing which has a gas supply opening concentric to a longitudinal axis of the valve and has distribution openings arranged in alignment with spray openings of a fuel injection valve, the gas supply opening having the distribution openings communicates.
  • the fuel jet is not sprayed from the spray openings directly, but rather as a free jet into the distributor openings, so that fuel mist and parts of the core jet hit the inner walls of the Meet the distributor housing.
  • the fuel jet since the fuel jet is not enveloped by the gas jet and the gas velocity is low, the gas in the distributor chamber formed by the distributor housing and the fuel injection valve has no significant directional effect on the fuel.
  • the device according to the invention for injecting a fuel-gas mixture with the features of claim 1 has the advantage of particularly precise fuel allocation to the individual distributor openings or to the individual cylinders of an internal combustion engine and largely homogeneous mixture formation.
  • the directed fuel jet is injected from the spray openings of the spray end via the fuel transport channels into the distributor openings of the distributor housing and transported completely downstream by the gas supplied via the gas gap, so that the formation of a fuel film on the inner walls of the distributor housing is prevented.
  • the gas gap at its narrowest point has a smaller cross-sectional area than the gas feed opening.
  • the narrow formation of the gas gap allows the gas flow to be metered to the individual distributor openings on the one hand, on the other hand the gas is accelerated towards the distributor openings at a high speed, so that the mixture formation is improved and the fuel flows back into upstream direction is prevented.
  • valve cap is provided with a number of truncated cone-shaped elevations corresponding to the number of distributor openings, through which the fuel transport channels run and which extend into the truncated cone-shaped recesses of the distributor housing project such a distance that the at least partially circumferential gas gaps are formed between the circumference of the elevations and the surface of the depressions.
  • the gas supply opening is connected to the gas gaps by a gas distribution space which is formed concentrically with the longitudinal axis of the valve between the valve cap and the distributor housing, so that the gas is supplied in a particularly uniform manner to the gas gaps.
  • the smallest diameter of the elevation is smaller than the diameter of the distributor opening, so that the elevation advantageously projects into the distributor opening.
  • a truncated cone-shaped casing of the elevation is step-shaped and rests with a first step on the depression of the distributor housing and forms the gas gap with a second step together with a wall of the depression.
  • a gas channel running between the valve cap and the distributor housing is formed from the gas supply opening to each gas gap, so that an exact gas supply to the respective gas gap and a large contact surface of the valve cap on the distributor housing running perpendicular to the longitudinal axis of the valve is made possible .
  • the cone angle of the truncated cone-shaped elevation of the valve cap is smaller than the cone angle of the truncated cone-shaped recess of the distributor housing, so that the gas undergoes high, continuous acceleration until it enters a mixture formation zone formed by the region of the distributor opening facing the injection opening of the fuel injection valve experiences.
  • the assembly of the valve cap in the distributor housing is also facilitated.
  • the shape and position tolerances of the elevations and depressions can be designed more generously, with the exception of the immediate area of the distributor openings.
  • the fuel transport channel is formed in a fuel tube that leads through the valve cap. This enables a valve cap which can be produced in a simple manner, since there is no need for fine machining of the fuel transport ducts and instead pipe material which can be cut to length is used.
  • the fuel tube protrudes into the recess of the distributor housing and if the at least partially circumferential gas gap is formed between the surface of the recess and the circumference of the fuel tube.
  • the valve cap can be produced in a particularly simple manner and on its circumference with large manufacturing tolerances.
  • the outer diameter of the fuel tube is smaller than the diameter of the distributor opening, so that the fuel tube advantageously projects into the distributor opening.
  • valve cap For an exact and concentric contact of the fuel injection valve with the valve cap, it is advantageous if the truncated cone-shaped spray end of the valve housing rests on a truncated cone-shaped contact surface of the valve cap.
  • valve cap rests with a collar on a shoulder of the distributor housing.
  • the position of the valve housing to the valve cap is determined by a circumferentially positive connection between the valve cap and the valve housing.
  • the position of the valve cap to the distributor housing is determined by a connection between the valve cap and the distributor housing that is form-fitting in the circumferential direction, so that prevents the valve cap from rotating relative to the distributor housing and thus ensures that the fuel transport channels are aligned with the distributor openings of the distributor housing.
  • FIG. 1 shows a first exemplary embodiment with a partially illustrated fuel injector
  • FIG. 2 shows a view of the valve cap in the direction of arrow X of the first exemplary embodiment
  • FIG. 3 shows a second exemplary embodiment with a partially illustrated fuel injector
  • FIG. 4 shows a view of the distributor housing in the direction of arrow Y of the second embodiment
  • Figure 5 shows a third and Figure 6 a fourth embodiment.
  • the device for injecting a fuel-gas mixture into an intake manifold or directly into the cylinders of an internal combustion engine shown for example in longitudinal section and in detail in FIG. 1, has a fuel injector 1 which, with its truncated cone-shaped spray end 3 of a valve housing 4, is formed concentrically with a valve longitudinal axis 2 a truncated cone-shaped contact surface 6 of a valve cap 7 rests, so that there is a simple, but nevertheless very exact centering of the fuel injector 1 with respect to the valve cap 7.
  • the valve cap 7 is arranged at least in the axial direction between the injection end 3 of the fuel injection valve 1 and a distributor housing 10 which surrounds the injection end 3, the valve cap 7 and at least partially the fuel injection valve 1 with a stepped longitudinal bore 11.
  • the fuel injector 1 has a valve closing body 14 which interacts with a fixed valve seat 12 and can be actuated as a function of the operating state. Downstream of the valve seat 12, the spray end 3 of the fuel injection valve 1 has, for example, four, corresponding to the number of cylinders of the internal combustion engine or the number of injection groups in which several cylinders of the internal combustion engine are combined, corresponding number of spray openings 15. In alignment with the spray openings 15, one in the valve cap 7 the number of spray openings 15 corresponds to the number of fuel transport channels 17 which are open on both sides and which each open into a distributor opening 19 arranged in the distributor housing 10 and concentrically with the spray openings 15. Starting from the distributor openings 19, distributor lines 18 run in alignment with the fuel transport channels 17 in the distributor housing 10.
  • a gas supply opening 20 runs concentrically to the longitudinal valve axis 2 in the distributor housing 10, which is adjoined in the axial direction by a gas distributor chamber 22 formed between the valve cap 7 and the distributor housing 10 in a recess 21 of the distributor housing 10.
  • the gas distribution space 22 establishes a section of the connection between the central gas supply opening 20 and the individual distribution openings 19.
  • the cross-sectional area of the Fuel transport channel 17 at least as large as the cross-sectional area of the spray opening 15 and the cross-sectional area of the distributor opening 19 at least as large as the cross-sectional area of the fuel transport channel 17.
  • a compensating bore 23 is formed in the valve cap 7 which has a cross-sectional area which is substantially smaller than the gas supply opening 20.
  • the compensating bore 23 connects the gas distribution chamber 22 to a compensating chamber 27 formed between an end face 24 of the injection end 3 of the fuel injector 1 and the valve cap 7.
  • the valve cap 7 is provided with a number of truncated cone-shaped elevations 25 corresponding to the number of distributor openings 19 and oriented towards one distributor opening 19, through which the fuel transport channels 17 run concentrically.
  • the elevations 25 with their frustoconical shell 29 protrude into the frusto-conical depressions 26 of the distributor housing 10 at such a distance that a circumferential narrow gas gap 28 is formed between the circumference of the elevations 25 and the surface of the depressions 26, so that the fuel jet emerges after the outlet the fuel transport channel 17 is completely covered by a gas jet.
  • Each gas gap 28 extends from the gas distributor space 22 to one of the distributor openings 19 forming the base of a depression 26.
  • the elevations 25 with the fuel transport channels 17 can end immediately above, at the same level as this or within the distributor openings 19, as shown in the drawing.
  • FIG. 2 shows a view of the valve cap 7 of the first exemplary embodiment shown in FIG. 1 in the direction of the arrow X.
  • the cylindrical gas distributor space 22 stands with the narrow gas gaps 28 tapering in the shape of a truncated cone towards the distributor openings 19, each via a throttle point 31 formed at the transition in connection, which due to the large reduction in cross-section cause an exact metering of the gas supplied to the distributor openings 19 via the gas gaps 28 and an acceleration of the gas.
  • the cross-sectional area of the gas gap 28 that tapers in the shape of a truncated cone leads to a further acceleration of the gas, so that the gas comprises the fuel emerging from the fuel transport channel 17 at high speed.
  • the fuel sprayed from the spray openings 15 is transported completely downstream and cannot pass through the gas gaps 28 upstream into the gas distribution space 22 and into the gas supply opening 20 or to the distribution openings 19 of the other cylinders or the other injection groups of the internal combustion engine.
  • the fuel gas mixture is sprayed via the distributor lines 18 and injection lines (not shown) into the intake manifold or directly into the cylinders of the internal combustion engine.
  • the gas is, for example, air branched off by a bypass in front of a throttle valve in the intake manifold of the internal combustion engine.
  • a bypass in front of a throttle valve in the intake manifold of the internal combustion engine it is also possible to use recirculated exhaust gas from the internal combustion engine to reduce the emission of pollutants or a gas (air, exhaust gas) conveyed by an additional fan.
  • valve cap 7 has a collar 35 which, with its collar surface 36 running perpendicular to the longitudinal axis 2 of the valve, bears against a shoulder surface 37 of a shoulder 38 of the distributor housing 10. The circumference of the collar 35 bears against a parallel section 39 of the longitudinal bore 11 of the distributor housing 10 facing away from the gas supply opening 20.
  • the position of the fuel injector 1 relative to the valve cap 7 is determined by a positive connection in the circumferential direction between the valve housing 4 of the fuel injector 1 and the valve cap 7.
  • a positioning lug 42 is formed, for example, on a longitudinal bore 41 which extends concentrically to the longitudinal valve axis 2 in the valve cap 7 and which cooperates with a positioning recess 43 formed on the circumference of the valve housing 4. This prevents the fuel injection valve 1 from rotating relative to the valve cap 7 and, at the same time, thus prevents the spray openings 15 at the spray end from being aligned 3 guaranteed with the fuel transport channels 17 of the valve cap 7.
  • valve cap 7 In order to ensure that the fuel transport channels 17 of the valve cap 7 are aligned with the distributor openings 19 of the distributor housing 10, the valve cap 7 must be prevented from rotating relative to the distributor housing 10.
  • the circumferentially positive connection between the valve cap 7 and the distributor housing 10 which determines the position of the valve cap 7 relative to the distributor housing 10 is, for example, a positioning lug 45 formed on the parallel section 39 of the distributor housing 10 and a cooperation on the circumference of the collar 35 of the valve cap 7 Positioning recess 46 created.
  • annular chamber 50 is provided, the radially extending boundary surfaces of which are formed by an end face 51 of the collar 35 of the valve cap 7, which faces away from the fuel transport channels 17 and is perpendicular to the longitudinal axis 2 of the valve, and by a retaining ring 52 fastened to the circumference of the valve housing 4 and its axially extending boundary surfaces are formed by the circumference of the valve housing 4 and by the parallel section 39 of the distributor housing 10.
  • a sealing ring 53 is arranged in the annular chamber 50.
  • FIG. 3 shows a second exemplary embodiment of the invention with a partially illustrated fuel injection valve 1, in which the same and equivalent parts are identified by essentially the same reference numerals as in FIGS. 1 and 2.
  • the truncated cone-shaped casing 29 the elevation 25 is stepped.
  • the elevation 25 lies with a first step 61 on a wall 65 of the recess 26 of the distributor housing 10, so that a particularly exact and uniform formation of the gas gaps 28 is possible and thus, for example, a largely identical mixture is supplied to the individual cylinders of the internal combustion engine.
  • a recessed second stage 64 of the elevation 25 forms, together with the wall 65 of the recess 26, the gas gap 28.
  • FIG. 4 which shows a view of the distributor housing 10 of the second exemplary embodiment in the direction of the arrow Y, runs between the central one Gas supply opening 20 and the individual gas gaps 28 each have a gas channel 67 in the radial direction, which is formed between the valve cap 7 and the distributor housing 10, for example in the form of a groove 70 formed in a bottom surface 68 of the distributor housing 10 and delimited by the elevation 25 .
  • the gas channel 67 can be a rectangular as well as another, e.g. B. have semicircular cross-sectional shape. However, it is necessary that the cross-section of the gas channel 67 is significantly smaller than the cross-section of the gas supply opening 20, so that when the gas flows from the gas supply opening 20 in the gas channels 67, throttling takes place, which involves metering the individual distributor openings 19 via the gas gaps 28 supplied gas and an acceleration of the gas causes.
  • the gas gaps 28 tapering in the shape of a truncated cone in the direction of the distributor openings 19 further accelerate the gas, so that the gas comprises the fuel emerging from the fuel transport channels 17 at high speed.
  • FIG. 5 A third exemplary embodiment according to the invention is partially shown in FIG. 5, with the same parts having the same effect essentially the same reference numerals are identified as in FIGS. 1 to 4.
  • the circumferential gas gap 28 is formed between the circumference of the truncated cone-shaped elevation 25 and the surface of the truncated cone-shaped recess 26. Since the cone angle of the elevation 25 is smaller than the cone angle of the depression 26, the circumference of the elevation 25 and the surface of the depression 26 are designed to converge in the direction of the distributor opening 19. Accordingly, the gas gap 28 tapers very strongly starting from the central gas distributor space 22 to the distributor opening 19, so that there is a large, continuous reduction in the cross section of the gas gap 28.
  • the resulting throttling of the gas flow leads on the one hand to a metering of the gas supplied to the individual distributor openings 19, on the other hand the gas is continuously accelerated and comprises the fuel emerging from the fuel transport channel 17 at high speed.
  • the shape and position tolerances of the elevations 25 and the depressions 26 can be designed more generously, with the exception of in the immediate area of the distributor openings 19.
  • the assembly of the valve cap 7 in the distributor housing 10 is facilitated.
  • Fuel transport channels 17 are each formed by a fuel tube 75 which leads through the valve cap 7.
  • the fuel tubes 75 are made, for example, of pipe material that can be cut to length, so that they can be produced inexpensively.
  • valve cap 7 A simple and inexpensive manufacture of the valve cap 7 is also achieved in that the fuel tube 75 protrudes into the recess 26 of the distributor housing 10, and that the circumferential Gas gap 28 is formed between the frustoconical surface of the recess 26 and the circumference of the fuel tube 75, so that the requirements for the surface quality of the valve cap 7 are low, at least in the region of the elevations 25 at least partially surrounding the fuel tube 75.
  • the essential throttling of the gas takes place when the gas flows through the funnel-shaped gas gap 28, so that the metering and acceleration of the gas also take place there.
  • the fuel tubes 75 protrude into the distributor openings 19 of the distributor housing 10, provided that the outer diameter of the fuel tubes 75 is smaller than the diameter of the distributor openings 19, so that no fuel from the fuel transport channels 17 reaches the gas gaps 28 arranged further upstream can.
  • the fuel tube 75 and the valve cap 7 are formed in one piece.
  • the fuel is injected in a directed manner via the fuel transport channels 17 into the distributor openings 19.
  • the gas passes from a central gas supply opening 20 via a gas gap 28 to each of the Distribution openings 19 and there comprises the fuel at high speed, so that the fuel is transported completely downstream and forms a largely homogeneous fuel-gas mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei bereits vorgeschlagenen Vorrichtungen zur Einspritzung eines Brennstoff-Gas-Gemisches wird der Brennstoffstrahl von den Abspritzöffnungen eines Brennstoffeinspritzventils als Freistrahl in die Verteileröffnungen eines Verteilergehäuses gespritzt, so daß die Gefahr besteht, daß Brennstoffrandnebel und Teile des Kernstrahls auf die inneren Wände des Verteilergehäuses treffen. Die Bildung eines weitestgehend homogenen Brennstoff-Gas-Gemisches ist nicht gewährleistet. Die neue Vorrichtung mit den gerichtet aus den Abspritzöffnungen (15) über die Brennstofftransportkanäle (17) in die Verteileröffnungen (19) gespritzten Brennstoffstrahlen hat den Vorteil einer genauen Brennstoffzuteilung zu den einzelnen Verteileröffnungen (19) und einer weitestgehend homogenen Gemischbildung. Das Gas gelangt aus einer zentralen Gaszufuhröffnung (20) über einen Gasverteilerraum (22) und über je einen Gasspalt (28) zu je einer Verteileröffnung (19), wo es den jeweiligen Brennstoffstrahl umfaßt. Die Vorrichtung eignet sich besonders für fremdgezündete Brennkraftmaschinen.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches nach der Gattung des Patentanspruchs 1. Durch die GB-A-2 188 982 ist bereits eine gattungsgemäße Vorrichtung bekannt, bei der jedoch die Abspritzöffnungen, die Brennstofftransportkanäle und die Verteilerleitungen unter verschiedenen Winkeln zueinander verlaufen und die Brennstofftransportkanäle in einen zylindrischen Raum münden, mit dem axial gegenüberliegend die Gaszufuhröffnung sowie die Verteilerleitungen verbunden sind. Dadurch ergibt sich der Nachteil, daß der Brennstoff in den Verteilerleitungen ungleichmäßig transportiert wird und sich dort sowie in dem zylindrischen Raum niederschlägt.
  • In der nicht vorveröffentlichten WO 91/04408 ist bereits eine Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches mit einem Verteilergehäuse vorgeschlagen worden, das eine konzentrisch zu einer Ventillängsachse verlaufende Gaszufuhröffnung sowie fluchtend zu Abspritzöffnungen eines Brennstoffeinspritzventils angeordnete Verteileröffnungen aufweist, wobei die Gaszufuhröffnung mit den Verteileröffnungen in Verbindung steht. Der Brennstoffstrahl wird aber von den Abspritzöffnungen nicht unmittelbar, sondern als Freistrahl in die Verteileröffnungen gespritzt, so daß Brennstoffrandnebel und Teile des Kernstrahls auf die inneren Wände des Verteilergehäuses treffen. Da zudem der Brennstoffstrahl nicht von dem Gasstrahl umhüllt und die Gasgeschwindigkeit gering ist, übt das Gas in der von Verteilergehäuse und Brennstoffeinspritzventil gebildeten Verteilerkammer keine wesentliche Richtungswirkung auf den Brennstoff aus. Es besteht besonders bei einer Schrägstellung des Brennstoffeinspritzventils die Gefahr, daß der Brennstoffwandfilm im Randbereich der Gasströmung stromaufwärts zur Gaszufuhröffnung zurückfließt oder zu einer anderen Verteileröffnung gelangt. In den Ecken oder Kanten der Verteilerkammer kann sich Brennstoff ablagern, der z. B. nach dem Abschalten des Brennstoffeinspritzventils zu einem störenden Nachtropfen führt. Eine zuverlässige und exakte Zumessung des Brennstoffs zu den einzelnen Verteileröffnungen ist also durch diese vorgeschlagene Vorrichtung nicht immer gewährleistet.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches mit den Merkmalen des Patentanspruches 1 hat demgegenüber den Vorteil einer besonders genauen Brennstoffzuteilung zu den einzelnen Verteileröffnungen bzw. zu den einzelnen Zylindern einer Brennkraftmaschine und einer weitestgehend homogenen Gemischbildung. Der gerichtete Brennstoffstrahl wird aus den Abspritzöffnungen des Abspritzendes über die Brennstofftransportkanäle in die Verteileröffnungen des Verteilergehäuses gespritzt und durch das über den Gasspalt zugeführte Gas vollständig stromabwärts weitertransportiert, so daß die Bildung eines Brennstoffilms an den inneren Wänden des Verteilergehäuses verhindert wird.
  • In der Gemischbildungszone sind nahezu keine Ecken, Kanten oder Spalte ausgebildet, in denen sich Brennstoff ablagern kann, der z. B. nach dem Abschalten des Brennstoffeinspritzventils zu einem störenden Nachtropfen und zu einer inhomogenen Ausbildung des Brennstoff-Gas-Gemisches führt.
  • Durch die in den abhängigen Patentansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Patentanspruch 1 angegebenen Vorrichtung möglich.
  • Vorteilhaft ist es, wenn der Gasspalt an seiner engsten Stelle eine im Vergleich zu der Gaszufuhröffnung kleinere Querschnittsfläche aufweist. Die enge Ausbildung des Gasspaltes erlaubt durch die Drosselung des Gasstromes zum einen eine Zumessung des Gases zu den einzelnen Verteileröffnungen, zum anderen wird das Gas in Richtung auf die Verteileröffnungen hin auf eine hohe Geschwindigkeit beschleunigt, so daß die Gemischbildung verbessert und ein Zurücklaufen des Brennstoffs in stromaufwärtiger Richtung verhindert wird.
  • Für eine besonders einfache Ausbildung der Brennstofftransportkanäle und der Gasspalte ist es vorteilhaft, wenn die Ventilkappe mit einer der Zahl der Verteileröffnungen entsprechenden Anzahl kegelstumpfförmiger, auf jeweils eine Verteileröffnung hin ausgerichteter Erhebungen versehen ist, durch die die Brennstofftransportkanäle verlaufen und die in kegelstumpfförmige Vertiefungen des Verteilergehäuses mit einem derartigen Abstand ragen, daß zwischen dem Umfang der Erhebungen und der Oberfläche der Vertiefungen die zumindest teilweise umlaufenden Gasspalte gebildet werden.
  • Es ist vorteilhaft, wenn die Gaszufuhröffnung mit den Gasspalten durch einen konzentrisch zu der Ventillängsachse zwischen der Ventilkappe und dem Verteilergehäuse ausgebildeten Gasverteilerraum verbunden ist, so daß eine besonders gleichmäßige Zufuhr des Gases zu den Gasspalten erfolgt.
  • Besonders vorteilhaft ist es, wenn der kleinste Durchmesser der Erhebung kleiner ist als der Durchmesser der Verteileröffnung, so daß die Erhebung vorteilhafterweise in die Verteileröffnung hineinragt.
  • Neben der Ausbildung des Gasspaltes durch die Vertiefung des Verteilergehäuses ist es ebenfalls vorteilhaft, wenn ein kegelstumpfförmiger Mantel der Erhebung stufenförmig ausgebildet ist und mit einer ersten Stufe an der Vertiefung des Verteilergehäuses anliegt sowie mit einer zweiten Stufe zusammen mit einer Wandung der Vertiefung den Gasspalt bildet. Diese Gestaltung ermöglicht eine durch die zahlreichen Anlageflächen der Ventilkappe an dem Verteilergehäuse besonders exakte und gleichförmige Ausbildung der Gasspalte.
  • Dabei ist es vorteilhaft, wenn von der Gaszufuhröffnung zu jedem Gasspalt je ein zwischen der Ventilkappe und dem Verteilergehäuse verlaufender Gaskanal ausgebildet ist, so daß eine exakte Gaszufuhr zu dem jeweiligen Gasspalt sowie eine große senkrecht zu der Ventillängsachse verlaufende Anlagefläche der Ventilkappe an dem Verteilergehäuse ermöglicht wird.
  • Von Vorteil ist es, wenn der Kegelwinkel der kegelstumpfförmigen Erhebung der Ventilkappe kleiner ist als der Kegelwinkel der kegelstumpfförmigen Vertiefung des Verteilergehäuses, so daß das Gas eine hohe, kontinuierliche Beschleunigung bis zum Eintritt in eine durch den der Abspritzöffnung des Brennstoffeinspritzventils zugewandten Bereich der Verteileröffnung gebildete Gemischbildungszone erfährt. Zudem wird die Montage der Ventilkappe in dem Verteilergehäuse erleichtert. Die Form- und Lagetoleranzen der Erhebungen und der Vertiefungen können, mit Ausnahme im unmittelbaren Bereich der Verteileröffnungen, großzügiger ausgelegt werden.
  • Ebenfalls vorteilhaft ist es, wenn der Brennstofftransportkanal in einem Brennstoffröhrchen ausgebildet ist, das durch die Ventilkappe führt. Dies ermöglicht eine auf einfache Art und Weise herstellbare Ventilkappe, da die Feinbearbeitung der Brennstofftransportkanäle entfällt und stattdessen ablängbares Rohrmaterial verwendet wird.
  • Dabei ist es vorteilhaft, wenn das Brennstoffröhrchen in die Vertiefung des Verteilergehäuses ragt und wenn der zumindest teilweise umlaufende Gasspalt zwischen der Oberfläche der Vertiefung und dem Umfang des Brennstoffröhrchens gebildet wird. Dadurch ist die Ventilkappe auf besonders einfache Art und Weise und an ihrem Umfang mit großen Fertigungstoleranzen herstellbar.
  • Von Vorteil ist es, wenn der äußere Durchmesser des Brennstoffröhrchens kleiner ist als der Durchmesser der Verteileröffnung, so daß das Brennstoffröhrchen vorteilhafterweise in die Verteileröffnung ragt.
  • Für eine exakte und konzentrische Anlage des Brennstoffeinspritzventils an der Ventilkappe ist es vorteilhaft, wenn das kegelstumpfförmige Abspritzende des Ventilgehäuses an einer kegelstumpfförmigen Anlagefläche der Ventilkappe anliegt.
  • Zur Abstützung der Ventilkappe an dem Verteilergehäuse und zur exakten und gleichförmigen Ausbildung der einzelnen Gasspalte ist es besonders vorteilhaft, wenn die Ventilkappe mit einem Bund an einer Schulter des Verteilergehäuses anliegt.
  • Um ein Verdrehen des Brennstoffeinspritzventils gegenüber der Ventilkappe zu verhindern und damit ein Fluchten der Abspritzöffnungen des Abspritzendes mit den Brennstofftransportkanälen der Ventilkappe zu gewährleisten ist es vorteilhaft, wenn die Position von Ventilgehäuse zu Ventilkappe durch eine in Umfangsrichtung formschlüssige Verbindung zwischen Ventilkappe und Ventilgehäuse bestimmt ist.
  • Ebenfalls vorteilhaft ist es, wenn die Position von Ventilkappe zu Verteilergehäuse durch eine in Umfangsrichtung formschlüssige Verbindung zwischen Ventilkappe und Verteilergehäuse bestimmt ist, so daß ein Verdrehen der Ventilkappe gegenüber dem Verteilergehäuse verhindert und damit ein Fluchten der Brennstofftransportkanäle mit den Verteileröffnungen des Verteilergehäuses gewährleistet ist.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel mit einem teilweise dargestellten Brennstoffeinspritzventil, Figur 2 eine Ansicht der Ventilkappe in Richtung des Pfeiles X des ersten Ausführungsbeispiels, Figur 3 ein zweites Ausführungsbeispiel mit einem teilweise dargestellten Brennstoffeinspritzventil, Figur 4 eine Ansicht des Verteilergehäuses in Richtung des Pfeiles Y des zweiten Ausführungsbeispiels, Figur 5 ein drittes und Figur 6 ein viertes Ausführungsbeispiel.
  • Beschreibung der Ausführungsbeispiele
  • Die in Figur 1 beispielsweise im Längsschnitt und ausschnittweise dargestellte Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches in ein Saugrohr oder unmittelbar in die Zylinder einer Brennkraftmaschine besitzt ein Brennstoffeinspritzventil 1, das mit seinem konzentrisch zu einer Ventillängsachse 2 ausgebildeten kegelstumpfförmigen Abspritzende 3 eines Ventilgehäuses 4 an einer kegelstumpfförmigen Anlagefläche 6 einer Ventilkappe 7 anliegt, so daß sich eine einfache, aber dennoch sehr exakte Zentrierung des Brennstoffeinspritzventils 1 gegenüber der Ventilkappe 7 ergibt. Die Ventilkappe 7 ist zumindest in axialer Richtung zwischen dem Abspritzende 3 des Brennstoffeinspritzventils 1 und einem Verteilergehäuse 10, das mit einer abgestuften Längsbohrung 11 das Abspritzende 3, die Ventilkappe 7 und zumindest teilweise das Brennstoffeinspritzventil 1 umgreift, angeordnet.
  • Das Brennstoffeinspritzventil 1 weist einen mit einem festen Ventilsitz 12 zusammenwirkenden, betriebszustandsabhängig betätigbaren Ventilschließkörper 14 auf. Stromabwärts des Ventilsitzes 12 hat das Abspritzende 3 des Brennstoffeinspritzventils 1 beispielsweise vier, der Zylinderzahl der Brennkraftmaschine oder der Zahl der Einspritzgruppen, in denen mehrere Zylinder der Brennkraftmaschine zusammengefaßt sind, entsprechende Anzahl von Abspritzöffnungen 15. Fluchtend zu den Abspritzöffnungen 15 sind in der Ventilkappe 7 eine der Zahl der Abspritzöffnungen 15 entsprechende Anzahl von nach beiden Seiten offenen Brennstofftransportkanälen 17 ausgebildet, die in je eine in dem Verteilergehäuse 10 konzentrisch zu den Abspritzöffnungen 15 angeordnete Verteileröffnung 19 münden. Ausgehend von den Verteileröffnungen 19 verlaufen fluchtend zu den Brennstofftransportkanälen 17 Verteilerleitungen 18 im Verteilergehäuse 10.
  • Konzentrisch zu der Ventillängsachse 2 verläuft in dem Verteilergehäuse 10 eine Gaszufuhröffnung 20, an die sich in axialer Richtung ein zwischen der Ventilkappe 7 und dem Verteilergehäuse 10 in einer Ausnehmung 21 des Verteilergehäuses 10 ausgebildeter Gasverteilerraum 22 anschließt. Der Gasverteilerraum 22 stellt einen Abschnitt der Verbindung zwischen der zentralen Gaszufuhröffnung 20 und den einzelnen Verteileröffnungen 19 her.
  • Um zu verhindern, daß der Brennstoffstrahl auf die Wandungen des Brennstofftransportkanals 17 und/oder auf die Wandungen der Verteileröffnung 19 bzw. der Verteilerleitung 18 trifft und sich so an den Wandungen ein Brennstoffilm niederschlägt und die Bildung des gewünschten Gemisches gestört wird, ist die Querschnittsfläche des Brennstofftransportkanals 17 zumindest genauso groß wie die Querschnittsfläche der Abspritzöffnung 15 und die Querschnittsfläche der Verteileröffnung 19 wenigstens genauso groß wie die Querschnittsfläche des Brennstofftransportkanals 17.
  • Ebenfalls konzentrisch zu der Ventillängsachse 2 ist in der Ventilkappe 7 eine eine im Vergleich zu der Gaszufuhröffnung 20 wesentlich kleinere Querschnittsfläche aufweisende Ausgleichsbohrung 23 ausgebildet. Die Ausgleichsbohrung 23 verbindet den Gasverteilerraum 22 mit einem zwischen einer Stirnfläche 24 des Abspritzendes 3 des Brennstoffeinspritzventils 1 und der Ventilkappe 7 ausgebildeten Ausgleichsraum 27. Bei der Montage des Brennstoffeinspritzventils 1 gegen die Ventilkappe 7 wird so erreicht, daß die sich zwischen dem Brennstoffeinspritzventil 1 und der Ventilkappe 7 befindende Luft durch die Ausgleichsbohrung 23 entweichen kann. Kommt es beim Betrieb der erfindungsgemäßen Vorrichtung wider Erwarten zu Undichtigkeiten zwischen der flüssigkeitsdichten Anlage des Brennstoffeinspritzventils 1 an der Ventilkappe 7, so gelangt der Brennstoffnebel durch die Ausgleichsbohrung 23 in den Gasverteilerraum 22 und wird von dort den Verteileröffnungen 19 mittels des Gasstromes zugeführt.
  • Die Ventilkappe 7 ist mit einer der Zahl der Verteileröffnungen 19 entsprechenden Anzahl kegelstumpfförmiger, auf jeweils eine Verteileröffnung 19 hin ausgerichteter Erhebungen 25 versehen, durch die die Brennstofftransportkanäle 17 konzentrisch verlaufen. Die Erhebungen 25 mit ihrem kegelstumpfförmigen Mantel 29 ragen in kegelstumpfförmige Vertiefungen 26 des Verteilergehäuses 10 mit einem derartigen Abstand, daß zwischen dem Umfang der Erhebungen 25 und der Oberfläche der Vertiefungen 26 ein umlaufender enger Gasspalt 28 gebildet ist, so daß der Brennstoffstrahl nach dem Austritt aus dem Brennstofftransportkanal 17 vollständig von einem Gasstrahl umfaßt ist. Jeder Gasspalt 28 erstreckt sich dabei von dem Gasverteilerraum 22 zu je einer der den Grund einer Vertiefung 26 bildenden Verteileröffnung 19. Ist das Flächenverhältnis der engsten Fläche des Gasspaltes 28 zur Verteileröffnung 19 zu klein, so besteht die Gefahr, daß die von den Abspritzöffnungen 15 des Brennstoffeinspritzventils 1 abgespritzte Brennstoffmenge durch die Rückwirkung der Gasströmung beeinflußt wird. Die Erhebungen 25 mit den Brennstofftransportkanälen 17 können unmittelbar oberhalb, auf gleicher Höhe wie diese oder innerhalb der Verteileröffnungen 19 enden, wie es in der Zeichnung dargestellt ist.
  • Die Figur 2 zeigt eine Ansicht der Ventilkappe 7 des ersten, in der Figur 1 dargestellten Ausführungsbeispiels in Richtung des Pfeiles X. Der zylinderförmige Gasverteilerraum 22 steht mit den kegelstumpfförmig zu den Verteileröffnungen 19 hin sich verjüngenden engen Gasspalten 28 über jeweils eine am Übergang gebildete Drosselstelle 31 in Verbindung, die durch die große Querschnittsverringerung eine exakte Zumessung des den Verteileröffnungen 19 über die Gasspalte 28 zugeführten Gases sowie eine Beschleunigung des Gases bewirken. Die sich stromabwärts kegelstumpfförmig verjüngende Querschnittsfläche des Gasspaltes 28 führt zu einer weiteren Beschleunigung des Gases, so daß das Gas mit hoher Geschwindigkeit den aus dem Brennstofftransportkanal 17 austretenden Brennstoff umfaßt.
  • Dadurch wird zum einen die Bildung eines weitestgehend homogenen Brennstoff-Gas-Gemisches erleichtert, zum anderen wird der aus den Abspritzöffnungen 15 gespritzte Brennstoff vollständig stromabwärts weitertransportiert und kann nicht durch die Gasspalte 28 stromaufwärts in den Gasverteilerraum 22 und in die Gaszufuhröffnung 20 oder zu den Verteileröffnungen 19 der anderen Zylinder bzw. der anderen Einspritzgruppen der Brennkraftmaschine gelangen. Das BrennstoffGas-Gemisch wird über die Verteilerleitungen 18 und nicht dargestellte Einspritzleitungen in das Saugrohr oder unmittelbar in die Zylinder der Brennkraftmaschine abgespritzt.
  • Bei dem Gas handelt es sich beispielsweise um durch einen Bypass vor einer Drosselklappe in dem Saugrohr der Brennkraftmaschine abgezweigte Luft. Es ist aber auch die Verwendung rückgeführten Abgases der Brennkraftmaschine zur Reduzierung der Schadstoffabgabe oder eines durch ein Zusatzgebläse geförderten Gases (Luft, Abgas) möglich.
  • Die Zufuhr einer gleichen Gasmenge mit möglichst gleicher Geschwindigkeit zu Gemischbildungszonen 33, die in den den Abspritzöffnungen 15 zugewandten Bereichen der Verteilerleitungen 18 in der Nähe der einzelnen Verteileröffnungen 19 gebildet sind, ist erforderlich, um beispielsweise den einzelnen Zylindern der Brennkraftmaschine ein weitestgehend identisches Gemisch zur Verfügung zu stellen. Voraussetzung hierfür ist die exakte und gleichförmige Ausbildung der einzelnen Gasspalte 28. Zu diesem Zweck weist die Ventilkappe 7 einen Bund 35 auf, der mit seiner senkrecht zu der Ventillängsachse 2 verlaufenden Bundfläche 36 an einer Schulterfläche 37 einer Schulter 38 des Verteilergehäuses 10 anliegt. Mit seinem Umfang liegt der Bund 35 an einem der Gaszufuhröffnung 20 abgewandten Parallelabschnitt 39 der Längsbohrung 11 des Verteilergehäuses 10 an.
  • Die Position des Brennstoffeinspritzventils 1 zu der Ventilkappe 7 wird durch eine in Umfangsrichtung formschlüssige Verbindung zwischen dem Ventilgehäuse 4 des Brennstoffeinspritzventils 1 und der Ventilkappe 7 bestimmt. Dazu ist beispielsweise an einer konzentrisch zu der Ventillängsachse 2 in der Ventilkappe 7 verlaufenden Längsbohrung 41 eine Positioniernase 42 ausgebildet, die mit einer an dem Umfang des Ventilgehäuses 4 ausgebildeten Positionierausnehmung 43 zusammenwirkt. So wird ein Verdrehen des Brennstoffeinspritzventils 1 gegenüber der Ventilkappe 7 verhindert und damit zugleich ein Fluchten der Abspritzöffnungen 15 des Abspritzendes 3 mit den Brennstofftransportkanälen 17 der Ventilkappe 7 gewährleistet.
  • Um ein Fluchten der Brennstofftransportkanäle 17 der Ventilkappe 7 mit den Verteileröffnungen 19 des Verteilergehäuses 10 zu gewährleisten, ist ein Verdrehen der Ventilkappe 7 gegenüber dem Verteilergehäuse 10 zu verhindern. Die die Position von Ventilkappe 7 zum Verteilergehäuse 10 bestimmende, in Umfangsrichtung formschlüssige Verbindung zwischen Ventilkappe 7 und Verteilergehäuse 10 ist beispielsweise durch eine an dem Parallelabschnitt 39 des Verteilergehäuses 10 ausgebildete Positioniernase 45 und eine mit dieser zusammenwirkenden, am Umfang des Bundes 35 der Ventilkappe 7 ausgebildeten Positionierausnehmung 46 geschaffen.
  • Das Abspritzende 3 ist gegenüber der Ventilkappe 7 und die Ventilkappe 7 gegenüber dem Verteilergehäuse 10 flüssigkeitsdicht abgedichtet. Zu diesem Zweck ist eine Ringkammer 50 vorgesehen, deren radial verlaufende Begrenzungsflächen durch eine den Brennstofftransportkanälen 17 abgewandte, senkrecht zu der Ventillängsachse 2 ausgebildete Stirnfläche 51 des Bundes 35 der Ventilkappe 7 sowie durch einen am Umfang des Ventilgehäuses 4 befestigten Haltering 52 und deren axial verlaufende Begrenzungsflächen durch den Umfang des Ventilgehäuses 4 sowie durch den Parallelabschnitt 39 des Verteilergehäuses 10 gebildet sind. In der Ringkammer 50 ist beispielsweise ein Dichtring 53 angeordnet.
  • Die Figur 3 zeigt ein zweites Ausführungsbeispiel der Erfindung mit einem teilweise dargestellten Brennstoffeinspritzventil 1, bei dem die gleichen und gleichwirkenden Teile durch im wesentlichen die gleichen Bezugszeichen gekennzeichnet sind wie bei den Figuren 1 und 2. Im Gegensatz zu dem ersten Ausführungsbeispiel ist der kegelstumpfförmige Mantel 29 der Erhebung 25 stufenförmig ausgebildet.
  • Die Erhebung 25 liegt mit einer ersten Stufe 61 an einer Wandung 65 der Vertiefung 26 des Verteilergehäuses 10 an, so daß eine besonders exakte und gleichmäßige Ausbildung der Gasspalte 28 ermöglicht und damit beispielsweise den einzelnen Zylinder der Brennkraftmaschine ein weitestgehend identisches Gemisch zugeführt wird.
  • Eine zurückgesetzte zweite Stufe 64 der Erhebung 25 bildet zusammen mit der Wandung 65 der Vertiefung 26 den Gasspalt 28. Wie auch in der Figur 4, die eine Ansicht des Verteilergehäuses 10 des zweiten Ausführungsbeispiels in Richtung des Pfeiles Y zeigt, dargestellt, verläuft zwischen der zentralen Gaszufuhröffnung 20 und den einzelnen Gasspalten 28 in radialer Richtung je ein Gaskanal 67, der zwischen der Ventilkappe 7 und dem Verteilergehäuse 10 beispielsweise in Form je einer in einer Bodenfläche 68 des Verteilergehäuses 10 ausgebildeten Nut 70, die von der Erhebung 25 begrenzt wird, ausgebildet ist.
  • Der Gaskanal 67 kann sowohl eine rechteckige als auch eine andere, z. B. halbkreisförmige Querschnittsform aufweisen. Erforderlich ist aber, daß der Querschnitt des Gaskanals 67 wesentlich kleiner ist als der Querschnitt der Gaszufuhröffnung 20, so daß beim Strömen des Gases von der Gaszufuhröffnung 20 in den Gaskanälen 67 eine Drosselung stattfindet, die eine Zumessung des den einzelnen Verteileröffnungen 19 über die Gasspalte 28 zugeführten Gases sowie eine Beschleunigung des Gases bewirkt. Die sich in Richtung zu den Verteileröffnungen 19 kegelstumpfförmig verjüngenden Gasspalte 28 führen zu einer weiteren Beschleunigung des Gases, so daß das Gas mit hoher Geschwindigkeit den aus den Brennstofftransportkanälen 17 austretenden Brennstoff umfaßt.
  • Ein drittes erfindungsgemäßes Ausführungsbeispiel ist in der Figur 5 teilweise dargestellt, wobei gleiche und gleichwirkende Teile durch im wesentlichen die gleichen Bezugszeichen gekennzeichnet sind wie in den Figuren 1 bis 4. Der umlaufende Gasspalt 28 ist zwischen dem Umfang der kegelstumpfförmigen Erhebung 25 und der Oberfläche der kegelstumpfförmigen Vertiefung 26 gebildet. Da der Kegelwinkel der Erhebung 25 kleiner ist als der Kegelwinkel der Vertiefung 26, sind der Umfang der Erhebung 25 und die Oberfläche der Vertiefung 26 in Richtung der Verteileröffnung 19 aufeinander zulaufend ausgebildet. Der Gasspalt 28 verjüngt sich dementsprechend ausgehend von dem zentralen Gasverteilerraum 22 zu der Verteileröffnung 19 sehr stark, so daß sich eine große, kontinuierliche Querschnittsverringerung des Gasspaltes 28 ergibt. Die hieraus resultierende Drosselung des Gasstromes führt zum einen zu einer Zumessung des den einzelnen Verteileröffnungen 19 zugeführten Gases, zum anderen wird das Gas kontinuierlich beschleunigt und umfaßt mit hoher Geschwindigkeit den aus dem Brennstofftransportkanal 17 austretenden Brennstoff. Die Form- und Lagetoleranzen der Erhebungen 25 und der Vertiefungen 26 können, mit Ausnahme im unmittelbaren Bereich der Verteileröffnungen 19, großzügiger ausgelegt werden. Zudem wird die Montage der Ventilkappe 7 in das Verteilergehäuse 10 erleichtert.
  • Bei einem vierten in der Figur 6 teilweise dargestellten Ausführungsbeispiel sind gleiche und gleichwirkende Teile durch im wesentlichen die gleichen Bezugszeichen gekennzeichnet wie bei den Figuren 1 bis 5. Der Brennstoff wird aus den Abspritzöffnungen 15 abgespritzt und gelangt über die Brennstofftransportkanäle 17 in die Verteileröffnungen 19. Die Brennstofftransportkanäle 17 werden durch je ein Brennstoffröhrchen 75 gebildet, das durch die Ventilkappe 7 führt. Die Brennstoffröhrchen 75 sind beispielsweise aus ablängbarem Rohrmaterial hergestellt, so daß sie sich kostengünstig herstellen lassen. Eine einfache und preiswerte Herstellung der Ventilkappe 7 wird außerdem dadurch erreicht, daß das Brennstoffröhrchen 75 in die Vertiefung 26 des Verteilergehäuses 10 ragt, und daß der umlaufende Gasspalt 28 zwischen der kegelstumpfförmigen Oberfläche der Vertiefung 26 und dem Umfang des Brennstoffröhrchens 75 gebildet wird, so daß die Anforderungen an die Oberflächenqualität der Ventilkappe 7 zumindest im Bereich der zumindest noch teilweise die Brennstoffröhrchen 75 umschließenden Erhebungen 25 gering sind.
  • Die wesentliche Drosselung des Gases findet beim Strömen des Gases durch den trichterförmig zusammenlaufenden Gasspalt 28 statt, so daß dort auch die Zumessung sowie die Beschleunigung des Gases erfolgt.
  • Es ist auch möglich, daß die Brennstoffröhrchen 75 in die Verteileröffnungen 19 des Verteilergehäuses 10 ragen, sofern der äußere Durchmesser der Brennstoffröhrchen 75 kleiner ist als der Durchmesser der Verteileröffnungen 19, so daß kein Brennstoff von den Brennstofftransportkanälen 17 in die weiter stromaufwärts angeordneten Gasspalte 28 gelangen kann.
  • Aus Gründen einer einfachen Herstellung ist es ebenfalls möglich, daß das Brennstoffröhrchen 75 und die Ventilkappe 7 einteilig ausgebildet sind.
  • Die aufwendige Positionierung des Brennstoffeinspritzventils 1 gegenüber der Ventilkappe 7, damit die Abspritzöffnungen 15 mit den Brennstofftransportkanälen 17 fluchten, wird vereinfacht, wenn das Brennstoffröhrchen zumindest teilweise durch das Abspritzende 3 des Ventilgehäuses 4 führt.
  • Bei den in den Ausführungsbeispielen dargestellten erfindungsgemäßen Vorrichtungen zur Einspritzung eines Brennstoff-Gas-Gemisches wird der Brennstoff gerichtet über die Brennstofftransportkanäle 17 in die Verteileröffnungen 19 gespritzt. Das Gas gelangt aus einer zentralen Gaszufuhröffnung 20 über einen Gasspalt 28 zu je einer der Verteileröffnungen 19 und umfaßt dort den Brennstoff mit hoher Geschwindigkeit, so daß der Brennstoff vollständig stromabwärts weitertransportiert wird und sich ein weitestgehend homogenes Brennstoff-Gas-Gemisch bildet.

Claims (19)

  1. Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches mit einem Brennstoffeinspritzventil, das einen betriebszustandsabhängig betätigbaren Ventilschließkörper (14) und eine der Zylinderzahl oder der Zahl der Einspritzgruppen, in der mehrere Zylinder zusammengefaßt sind, entsprechende Anzahl von Abspritzöffnungen (15) in einem Abspritzende (3) eines Ventilgehäuses (4) aufweist, und mit einem Verteilergehäuse (10), das eine konzentrisch zu einer Ventillängsachse (2) verlaufende Gaszufuhröffnung (20) sowie Verteilerleitungen (18) mit Verteileröffnungen (19) aufweist, wobei die Gaszufuhröffnung (20) mit den Verteileröffnungen (19) in Verbindung steht und zumindest in axialer Richtung zwischen dem Abspritzende (3) und dem Verteilergehäuse (10) eine Ventilkappe (7) angeordnet ist, durch die an die Abspritzöffnungen (15) anschließend eine der Zahl der Abspritzöffnungen (15) entsprechende Anzahl von Brennstofftransportkanälen (17) führen, dadurch gekennzeichnet, daß die auf den Flächen der Abspritzöffnungen (15) senkrecht stehenden Mittenachsen, die Brennstofftransportkanäle (17) und die Verteilerleitungen (18) zueinander parallel verlaufen sowie die Brennstofftransportkanäle (17) unmittelbar in je eine der Verteileröffnungen (19) münden und über ihren Umfang zumindest teilweise von einem mit der Gaszufuhröffnung (20) verbundenen Gasspalt (28) umgeben sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Gasspalt (28) an seiner engsten Stelle eine im Vergleich zu der Gaszufuhröffnung (20) kleinere Querschnittsfläche aufweist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ventilkappe (7) mit einer der Zahl der Verteileröffnungen (19) entsprechenden Anzahl kegelstumpfförmiger, auf jeweils eine Verteileröffnung (19) hin ausgerichteter Erhebungen (25) versehen ist, durch die die Brennstofftransportkanäle (17) verlaufen und die in kegelstumpfförmige Vertiefungen (26) des Verteilergehäuses (10) mit einem derartigen Abstand ragen, daß zwischen dem Umfang der Erhebungen (25) und der Oberfläche der Vertiefungen (26) die zumindest teilweise umlaufenden Gasspalte (28) gebildet werden.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Gaszufuhröffnung (20) mit den Gasspalten (28) durch einen konzentrisch zu der Ventillängsachse (2) zwischen der Ventilkappe (7) und dem Verteilergehäuse (10) ausgebildeten Gasverteilerraum (22) verbunden ist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der kleinste Durchmesser der Erhebung (25) kleiner ist als der Durchmesser der Verteileröffnung (19).
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Erhebung (25) in die Verteileröffnung (19) hineinragt.
  7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß ein kegelstumpfförmiger Mantel (29) der Erhebung (25) stufenförmig ausgebildet ist und mit einer ersten Stufe (61) an der Vertiefung (26) des Verteilergehäuses (10) anliegt sowie mit einer zweiten Stufe (64) zusammen mit einer Wandung (65) der Vertiefung (26) den Gasspalt (28) bildet.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß von der Gaszufuhröffnung (20) zu jedem Gasspalt (28) je ein zwischen der Ventilkappe (7) und dem Verteilergehäuse (10) verlaufender Gaskanal (67) ausgebildet ist.
  9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß der Kegelwinkel der kegelstumpfförmigen Erhebung (25) kleiner ist als der Kegelwinkel der kegelstumpfförmigen Vertiefung (26).
  10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Brennstofftransportkanal (17) in einem Brennstoffröhrchen (75) ausgebildet ist, das durch die Ventilkappe (7) führt.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das Brennstoffröhrchen (75) zumindest teilweise durch das Abspritzende (3) des Ventilgehäuses (4) führt.
  12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Brennstoffröhrchen (75) in die Vertiefung (26) des Verteilergehäuses (10) ragt und daß der zumindest teilweise umlaufende Gasspalt (28) zwischen der Oberfläche der Vertiefung (26) und dem Umfang des Brennstoffröhrchens (75) gebildet wird.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der äußere Durchmesser des Brennstoffröhrchens (75) kleiner ist als der Durchmesser der Verteileröffnung (19).
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß das Brennstoffröhrchen (75) in die Verteileröffnung (19) ragt.
  15. Vorrichtung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß die Brennstoffröhrchen (75) und die Ventilkappe (7) einteilig ausgebildet sind.
  16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das kegelstumpfförmige Abspritzende (3) des Ventilgehäuses (4) an einer kegelstumpfförmigen Anlagefläche (6) der Ventilkappe (7) anliegt.
  17. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Ventilkappe (7) mit einem Bund (35) an einer Schulter (38) des Verteilergehäuses (4) anliegt.
  18. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Position von Ventilkappe (7) zu Ventilgehäuse (4) durch eine in Umfangsrichtung formschlüssige Verbindung zwischen Ventilkappe (7) und Ventilgehäuse (4) bestimmt ist.
  19. Vorrichtung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß die Position von Ventilkappe (7) zu Verteilergehäuse (10) durch eine in Umfangsrichtung formschlüssige Verbindung zwischen Ventilkappe (7) und Verteilergehäuse (10) bestimmt ist.
EP91904484A 1990-03-23 1991-02-23 Vorrichtung zur einspritzung eines brennstoff-gas-gemisches Expired - Lifetime EP0473736B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4009320 1990-03-23
DE4009320A DE4009320A1 (de) 1990-03-23 1990-03-23 Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
PCT/DE1991/000151 WO1991014865A1 (de) 1990-03-23 1991-02-23 Vorrichtung zur einspritzung eines brennstoff-gas-gemisches

Publications (2)

Publication Number Publication Date
EP0473736A1 EP0473736A1 (de) 1992-03-11
EP0473736B1 true EP0473736B1 (de) 1995-07-05

Family

ID=6402874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91904484A Expired - Lifetime EP0473736B1 (de) 1990-03-23 1991-02-23 Vorrichtung zur einspritzung eines brennstoff-gas-gemisches

Country Status (5)

Country Link
US (1) US5203308A (de)
EP (1) EP0473736B1 (de)
JP (1) JPH04505795A (de)
DE (2) DE4009320A1 (de)
WO (1) WO1991014865A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170766A (en) * 1992-01-16 1992-12-15 Orbital Walbro Corporation Fuel and air injection for multi-cylinder internal combustion engines
RU2109976C1 (ru) * 1992-05-15 1998-04-27 Орбитал Энджин Компани (Аустрэлия) ПТИ, Лимитед Способ работы двигателя внутреннего сгорания и устройство для введения горючего в него
FR2722541B1 (fr) * 1994-07-12 1996-09-20 Magneti Marelli France Sa Injecteur de carburant "bi-jet" a aassistance pneumatique de pulverisation, pour moteur a combustioninterne alimente par injection
DE19529375A1 (de) * 1995-08-10 1997-02-13 Bosch Gmbh Robert Brennstoffeinspritzventil
US6427660B1 (en) * 2000-07-20 2002-08-06 Ford Global Technologies, Inc. Dual fuel compression ignition engine
US8360052B2 (en) * 2008-09-30 2013-01-29 Martin E Nix Half parabolic dish reflector with planar reflector solar smelter
CA3002057A1 (en) * 2015-10-16 2017-04-20 Nostrum Energy Pte. Ltd. Method of modifying a conventional direct injector and modified injector assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570598A (en) * 1985-04-15 1986-02-18 Ford Motor Company Air assist fuel distributor type fuel injection system
US4709681A (en) * 1986-03-04 1987-12-01 Volkswagen Ag Fuel injection device
DE3708776A1 (de) * 1986-03-29 1987-10-01 Volkswagen Ag Kraftstoffeinspritzeinrichtung
US4708117A (en) * 1986-04-14 1987-11-24 Colt Industries Inc. Multi-point fuel injection apparatus
DE3816332A1 (de) * 1987-05-23 1988-12-15 Volkswagen Ag Kraftstoffeinspritzeinrichtung
US4909220A (en) * 1987-08-03 1990-03-20 General Motors Corporation Fuel injection

Also Published As

Publication number Publication date
WO1991014865A1 (de) 1991-10-03
EP0473736A1 (de) 1992-03-11
DE4009320A1 (de) 1991-09-26
JPH04505795A (ja) 1992-10-08
DE59105916D1 (de) 1995-08-10
US5203308A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
DE3217674C2 (de) Brennkammer für eine Gasturbine
DE4119206C2 (de) Brennstoffeinspritzvorrichtung für Brennkraftmaschinen
DE3633612C2 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
EP0484681B1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
EP0515810B1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE19625059A1 (de) Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE4129834A1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
EP0786049B1 (de) Brennstoffeinspritzventil
DE2038646A1 (de) Elektromagnetisch betaetigbares Einspritzventil fuer Saugrohreinspritzanlagen
EP0473736B1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
DE4004897C1 (en) IC engine fuel charge feed - has mix injection orifice coaxial to valve axis in base of sleeve
DE2807345C2 (de)
DE2910275A1 (de) Kraftstoffzufuehrungseinrichtung
EP0681104A1 (de) Brennstoffeinspritzventil
DE3600154C2 (de)
DE916365C (de) Druckluft-Einspritzbrennkraftmaschine mit Fremdzuendung
EP0083001A1 (de) Kraftstoffeinspritzsystem für Kraftstoffdirekteinspritzung bei Brennkraftmaschinen
DE10050751A1 (de) Brennstoffeinspritzventil
WO1991013253A1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
DE2500097A1 (de) Zerstaeubungsduese fuer fluessigkeit, insbesondere fuer fluessige kraft- oder brennstoffe
WO1991014093A1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
EP0482136B1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
WO1992014052A1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
DE19519838C2 (de) Verfahren zur Beeinflussung der Ausrichtung von Brennstoff an einem Brennstoffeinspritzventil und Brennstoffeinspritzventil
DE1751517A1 (de) Mantelstromgasturbinenstrahltriebwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 19940620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950705

REF Corresponds to:

Ref document number: 59105916

Country of ref document: DE

Date of ref document: 19950810

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101