EP0468620A2 - Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder - Google Patents
Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder Download PDFInfo
- Publication number
- EP0468620A2 EP0468620A2 EP19910303892 EP91303892A EP0468620A2 EP 0468620 A2 EP0468620 A2 EP 0468620A2 EP 19910303892 EP19910303892 EP 19910303892 EP 91303892 A EP91303892 A EP 91303892A EP 0468620 A2 EP0468620 A2 EP 0468620A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- meanderline
- layers
- traces formed
- dimensions
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009977 dual effect Effects 0.000 title claims abstract description 26
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000005388 cross polarization Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 10
- 230000004075 alteration Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 235000011960 Brassica ruvo Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/245—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
- H01Q15/242—Polarisation converters
- H01Q15/244—Polarisation converters converting a linear polarised wave into a circular polarised wave
Definitions
- This invention relates to antennas having frequency reuse capabilities, and more particularly to antennas having a four port network or quadruplexer located in the antenna waveguide, a feed horn attached to the waveguide, and a polarizer disposed at the aperture of the antenna for converting linearly polarized signals to circularly polarized signals.
- This device includes two coaxial waveguides, the outer waveguide being used for the transmission and reception of the four GHz band and the inner coaxial waveguide being utilized for the six GHz band.
- a tunable configuration of screws and baffles within the waveguides are utilized to convert the linearly polarized signals into circularly polarized signals.
- the device utilizes a grooved conical horn to transmit and receive signals.
- the present invention is a dual frequency band antenna (10) having frequency reuse capability.
- the antenna waveguide (12) includes a four port waveguide network which transmits and receives orthogonal, linearly polarized signals of each of two frequencies.
- a pyramidal horn (14) is engaged to the mouth of the waveguide, and a meanderline polarizer (16) is engaged to the aperture (17) of the horn (14) to convert the signals from linear polarizations to circular polarizations.
- the meanderline polarizer (16) includes five separated layers of meanderlines, wherein the first and fifth layers (50 and 58 respectively) include identical meanderlines, the second and fourth (52 and 56 respectively) layers include identical meanderlines that differ from those of the first and fifth layers, and the third layer (54) includes meanderlines that differ from the others in the first, second, fourth and fifth layers. It is an advantage of the present invention that it provides a dual band frequency reuse antenna having minimal cross-polarization.
- the antenna 10 includes three main components, a waveguide 12, a horn 14 and a meanderline polarizer 16 that is attached to the aperture 17 of the horn 14.
- the antenna 10 is preferably designed to be used with a parabolic reflector 18, such that the antenna 10 is fixedly mounted to a structure (not shown) and the antenna beam is scanned by movement of the reflector 18 relative to the fixedly mounted antenna 10.
- the waveguide 12 includes a four port waveguide network.
- Two of the ports 20 and 22 are designed for the transmission of orthogonal, linearly polarized signals of a first frequency, which in the preferred embodiment is a 4.035 to 4.200 GHz transmission band frequency.
- the other two ports 24 and 26 are designed for the reception of orthogonal, linearly polarized signals of a different frequency, which in the preferred embodiment is a 6.260 to 6.425 GHz receiving band frequency.
- the four independent, linearly polarized signals (1 from each port) are coupled into the common square waveguide 12, which in turn excites the pyramidal feed horn 14.
- the meanderline polarizer 16 then converts the linearly polarized signals to circular polarizations, such that two oppositely, circularly polarized fields are radiated from the antenna 10 at the transmission band frequency.
- the meanderline polarizer also converts two oppositely, circularly polarized signals to two orthogonal, linearly polarized signals at the receiving band frequency.
- Each port 20, 22, 24 and 26 of the four port waveguide network includes an attachment flange 30, 32, 34 and 36 respectively, disposed about its outer end to which signal transmitting or receiving devices (not shown) are coupled.
- the orthogonal ports 24 and 26 feed directly into the side and throat respectively of the waveguide 12, whereas orthogonal ports 20 and 22 are provided with additional waveguide structures 40 and 42 respectively which lead to the body of the waveguide 12.
- the waveguide structures 40 and 42 comprise a series of rectangular corrugations formed perpendicularly to the central axis of the waveguide structures 40 and 42.
- support straps 46 are engaged across the outer surface of the corrugations to provide structural rigidity to the waveguide structures 40 and 42.
- the corrugated waveguide structures 40 and 42 are dimensionally configured to act as a short circuit to the six GHz signals while allowing the four GHz signals to pass therethrough.
- the linearly polarized six GHz receiving signal does not propagate into waveguide structures 40 and 42, but rather continues through the body of the waveguide 12 to the ports 24 and 26.
- a central section 48 of the waveguide 12 located behind ports 20 and 22 is dimensionally sized to prevent the propagation of the four GHz transmission signals backwards through the waveguide 12 to the six GHz ports 24 and 26.
- the feed horn 14 is a pyramidal horn having a flare angle of approximately 10 degrees and a square aperture having a side measurement of approximately 6 inches; its aperture 17 is located approximately 3.5 inches towards the reflector 18 from the focal point 50 of the reflector 18.
- the meanderline polarizer is oriented relative to the square aperture 17 of the feed horn 14, such that the meanderlines run diagonally across the aperture 17 of the feed horn 14.
- the improved meanderline polarizer 16 serves to transform the linearly polarized signals into circularly polarized signals at the aperture 17 of the antenna horn 14.
- the signals that propagate within the horn 14 and waveguide 12 are entirely orthogonal, linearly polarized signals, and no circularly polarized signals propagate within the horn 14 or waveguide 12. This configuration results in the transmission and reception within the waveguide of orthogonal, linearly polarized signals with significantly reduced cross-polarization, whereby improved signal gain and reduced noise is achieved.
- the meanderline polarizer 16 is a sandwich structure including five thin layers 50, 52, 54, 56 and 58, each having a plurality of meanderline traces 60, 62, 64, 66 and 68, respectively, formed thereon.
- Four foam-like spacers 70, 72, 74 and 76 serve to separate the five meanderline layers.
- the use of meanderline polarizers that are generally configured as described hereinabove is well known in the art, as particularly taught in U.S. Patent 3,754,271 issued to J. Epis on August 21, 1973.
- a significant difference between the polarizer 16 of the present invention and the prior art polarizers resides in the utilization of meanderline traces of differing dimensions in the various layers 50, 52, 54, 56 and 58.
- the meanderline traces in layers 50 and 58 are identical
- the meanderline traces in layers 52 and 56 are identical, although differing in dimensions from the meanderline traces in layers 50 and 58.
- the meanderline traces in layer 54 are different in dimension from those of any other layer.
- the polarizer is a 9.0" square by 2.0" thick sandwich construction.
- the sandwich consists of the four spacers 60, 62, 64 and 66 composed of Stanthyne 817 Foam, and the five layers 50, 52, 54, 56 and 58 are composed of etched 1/2 oz. copper clad 3 mill Kapton bonded together with Hysol 9309 adhesive. Bonding is done so as not to cover the traces.
- the polarizer is bonded to a fiberglass frame 19 which is bolted to the aperture 17 of the horn 14.
- the traces are preferably formed on the Kapton layers utilizing printed circuit board techniques to provide close tolerances and reliability to the device.
- the dimensions of the meanderline traces in each layer can be expressed by four parameters that are designated as: A, the periodicity of a meanderline trace; H, the height of the meanderline trace; W, the width of the meanderline trace; and B, the distance between adjacent meanderline traces.
- A the periodicity of a meanderline trace
- H the height of the meanderline trace
- W the width of the meanderline trace
- B the distance between adjacent meanderline traces.
- the following table provides the dimensions for each of the layers of the meanderline polarizer 16.
- the present invention provides a reuse frequency capability. That is, that the same frequency can be used for transmitting two signals, one of which is circularly polarized in a first sense and the other of which is circularly polarized in an opposite sense. Additionally, the utilization of four ports in the waveguide network permits the simultaneous utilization of two reuse frequency signals, approximately 4 GHz and approximately 6 GHz.
- the use of a meanderline polarizer at the aperture 17 of the feed horn 14 provides improved performance as compared to prior art devices which attempt to convert signals from circular polarization to linear polarization within the waveguide.
- the improved meanderline polarizer reduces cross-polarization and thus contributes to the improved performance of the invention.
Landscapes
- Waveguide Aerials (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Aerials With Secondary Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55903490A | 1990-07-26 | 1990-07-26 | |
US559034 | 1990-07-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0468620A2 true EP0468620A2 (de) | 1992-01-29 |
EP0468620A3 EP0468620A3 (en) | 1992-05-20 |
EP0468620B1 EP0468620B1 (de) | 1995-12-27 |
Family
ID=24232016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91303892A Expired - Lifetime EP0468620B1 (de) | 1990-07-26 | 1991-04-30 | Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0468620B1 (de) |
JP (1) | JP2651962B2 (de) |
CA (2) | CA2041572C (de) |
DE (1) | DE69115783T2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107093802A (zh) * | 2017-03-20 | 2017-08-25 | 东南大学 | 口径面相位和幅度均匀分布的高增益透镜天线 |
WO2019028070A1 (en) | 2017-08-01 | 2019-02-07 | Lockheed Martin Corporation | WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08139502A (ja) * | 1994-11-14 | 1996-05-31 | Nec Corp | 円偏波発生器 |
WO2009110755A2 (ko) * | 2008-03-05 | 2009-09-11 | 주식회사 인텔리안테크놀로지스 | 반사경 안테나 및 혼 안테나을 이용한 다중 대역 신호 송/수신 장치 및 그 방법 |
CN114709622B (zh) * | 2022-03-31 | 2024-04-23 | 重庆邮电大学 | 一种基于超表面结构的极化单元、极化转换器和制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754271A (en) * | 1972-07-03 | 1973-08-21 | Gte Sylvania Inc | Broadband antenna polarizer |
EP0042612A1 (de) * | 1980-06-24 | 1981-12-30 | Siemens Aktiengesellschaft | Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen |
EP0045682A1 (de) * | 1980-07-31 | 1982-02-10 | Thomson-Csf | Speiseanordnung für eine Sende/Empfangsantenne |
JPH01126803A (ja) * | 1987-11-12 | 1989-05-18 | Mitsubishi Electric Corp | ホーンアンテナ装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2529392B1 (fr) * | 1982-06-25 | 1985-06-28 | Thomson Csf | Dispositif de multiplexage pour grouper deux bandes de frequences et multiplexeur comportant un tel dispositif |
JPS60176302A (ja) * | 1984-02-22 | 1985-09-10 | Mitsubishi Electric Corp | 偏分波器 |
JPH0611085B2 (ja) * | 1987-02-23 | 1994-02-09 | 三菱電機株式会社 | 円偏波アレ−アンテナ |
-
1991
- 1991-04-30 DE DE69115783T patent/DE69115783T2/de not_active Expired - Fee Related
- 1991-04-30 EP EP91303892A patent/EP0468620B1/de not_active Expired - Lifetime
- 1991-05-01 CA CA002041572A patent/CA2041572C/en not_active Expired - Fee Related
- 1991-07-05 JP JP3191142A patent/JP2651962B2/ja not_active Expired - Lifetime
- 1991-07-12 CA CA2046975A patent/CA2046975A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754271A (en) * | 1972-07-03 | 1973-08-21 | Gte Sylvania Inc | Broadband antenna polarizer |
EP0042612A1 (de) * | 1980-06-24 | 1981-12-30 | Siemens Aktiengesellschaft | Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen |
EP0045682A1 (de) * | 1980-07-31 | 1982-02-10 | Thomson-Csf | Speiseanordnung für eine Sende/Empfangsantenne |
JPH01126803A (ja) * | 1987-11-12 | 1989-05-18 | Mitsubishi Electric Corp | ホーンアンテナ装置 |
Non-Patent Citations (3)
Title |
---|
BBC RESEARCH DEPARTMENT REPORT. no. 7, July 1988, TADWORTH GB pages 1 - 10; M.C.D. MADDOCKS ET AL.: 'Polarisation converters for a DBS flat-plane antenna' * |
NTG-FACHBERICHTE,VOL.52,1975,PAGES 203-208 G.MöRZ et al.:"Speisesysteme zur Erzeugung von Dualpolarisation hoher Entkopplung für Boden stationsantennen mit Frequenzdoppelausnutzung" * |
PATENT ABSTRACTS OF JAPAN vol. 13, no. 374 (E-808)18 August 1989 & JP-A-1 126 803 ( MITSUBISHI ELECTRIC CORP ) 18 May 1989 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107093802A (zh) * | 2017-03-20 | 2017-08-25 | 东南大学 | 口径面相位和幅度均匀分布的高增益透镜天线 |
CN107093802B (zh) * | 2017-03-20 | 2019-07-23 | 东南大学 | 口径面相位和幅度均匀分布的高增益透镜天线 |
WO2019028070A1 (en) | 2017-08-01 | 2019-02-07 | Lockheed Martin Corporation | WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES |
EP3662536A4 (de) * | 2017-08-01 | 2021-04-28 | Lockheed Martin Corporation | Wellenleiter-apertur-design für geosatelliten |
Also Published As
Publication number | Publication date |
---|---|
EP0468620A3 (en) | 1992-05-20 |
JP2651962B2 (ja) | 1997-09-10 |
DE69115783T2 (de) | 1996-07-25 |
DE69115783D1 (de) | 1996-02-08 |
CA2041572A1 (en) | 1992-01-27 |
CA2046975A1 (en) | 1992-01-27 |
CA2041572C (en) | 1999-11-09 |
JPH05136624A (ja) | 1993-06-01 |
EP0468620B1 (de) | 1995-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5258768A (en) | Dual band frequency reuse antenna | |
US5596336A (en) | Low profile TEM mode slot array antenna | |
JP2733472B2 (ja) | 導波管スロット・アンテナ及びその製造方法並びに導波管の結合構造 | |
KR100624049B1 (ko) | 원편파 수신용 정방 격자 혼 배열 안테나 | |
US3389394A (en) | Multiple frequency antenna | |
AU603103B2 (en) | Microwave antenna | |
JP3029231B2 (ja) | 二重円形偏波temモードのスロットアレーアンテナ | |
US5223848A (en) | Duplexing circularly polarized composite | |
JPH07176950A (ja) | 衛星通信用アンテナ | |
US5793330A (en) | Interleaved planar array antenna system providing opposite circular polarizations | |
JPH09326631A (ja) | マイクロ波平面アレイアンテナ | |
US20020005806A1 (en) | Dual band antenna | |
CA2041572C (en) | Dual band frequency reuse antenna | |
JPH08505504A (ja) | 広角偏波器 | |
US5233361A (en) | Planar high-frequency aerial for circular polarization | |
CA1263180A (en) | Linearly polarized grid reflector antenna systems with improved cross-polarization performance | |
JP2002299949A (ja) | 平面アレーアンテナ | |
JPH0590826A (ja) | マイクロストリツプアンテナ | |
JPH06125214A (ja) | 平面アンテナ | |
JPS63318826A (ja) | 無線装置 | |
JPH11112227A (ja) | 衛星放送受信用の平面アンテナ | |
JPS61102802A (ja) | 偏分波器 | |
KR100429684B1 (ko) | 편파 선택형 평면 안테나 | |
KR200355454Y1 (ko) | 원편파 수신용 정방 격자 혼 배열 안테나 | |
KR0150724B1 (ko) | 평면안테나 급전장치의 도파관 구조 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SMITH, TERRY M. |
|
17P | Request for examination filed |
Effective date: 19921120 |
|
17Q | First examination report despatched |
Effective date: 19940607 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69115783 Country of ref document: DE Date of ref document: 19960208 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020401 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020418 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020424 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |