EP0468620A2 - Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder - Google Patents

Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder Download PDF

Info

Publication number
EP0468620A2
EP0468620A2 EP19910303892 EP91303892A EP0468620A2 EP 0468620 A2 EP0468620 A2 EP 0468620A2 EP 19910303892 EP19910303892 EP 19910303892 EP 91303892 A EP91303892 A EP 91303892A EP 0468620 A2 EP0468620 A2 EP 0468620A2
Authority
EP
European Patent Office
Prior art keywords
meanderline
layers
traces formed
dimensions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19910303892
Other languages
English (en)
French (fr)
Other versions
EP0468620A3 (en
EP0468620B1 (de
Inventor
Terry M. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxar Space LLC
Original Assignee
Space Systems Loral LLC
Loral Space Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Systems Loral LLC, Loral Space Systems Inc filed Critical Space Systems Loral LLC
Publication of EP0468620A2 publication Critical patent/EP0468620A2/de
Publication of EP0468620A3 publication Critical patent/EP0468620A3/en
Application granted granted Critical
Publication of EP0468620B1 publication Critical patent/EP0468620B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave

Definitions

  • This invention relates to antennas having frequency reuse capabilities, and more particularly to antennas having a four port network or quadruplexer located in the antenna waveguide, a feed horn attached to the waveguide, and a polarizer disposed at the aperture of the antenna for converting linearly polarized signals to circularly polarized signals.
  • This device includes two coaxial waveguides, the outer waveguide being used for the transmission and reception of the four GHz band and the inner coaxial waveguide being utilized for the six GHz band.
  • a tunable configuration of screws and baffles within the waveguides are utilized to convert the linearly polarized signals into circularly polarized signals.
  • the device utilizes a grooved conical horn to transmit and receive signals.
  • the present invention is a dual frequency band antenna (10) having frequency reuse capability.
  • the antenna waveguide (12) includes a four port waveguide network which transmits and receives orthogonal, linearly polarized signals of each of two frequencies.
  • a pyramidal horn (14) is engaged to the mouth of the waveguide, and a meanderline polarizer (16) is engaged to the aperture (17) of the horn (14) to convert the signals from linear polarizations to circular polarizations.
  • the meanderline polarizer (16) includes five separated layers of meanderlines, wherein the first and fifth layers (50 and 58 respectively) include identical meanderlines, the second and fourth (52 and 56 respectively) layers include identical meanderlines that differ from those of the first and fifth layers, and the third layer (54) includes meanderlines that differ from the others in the first, second, fourth and fifth layers. It is an advantage of the present invention that it provides a dual band frequency reuse antenna having minimal cross-polarization.
  • the antenna 10 includes three main components, a waveguide 12, a horn 14 and a meanderline polarizer 16 that is attached to the aperture 17 of the horn 14.
  • the antenna 10 is preferably designed to be used with a parabolic reflector 18, such that the antenna 10 is fixedly mounted to a structure (not shown) and the antenna beam is scanned by movement of the reflector 18 relative to the fixedly mounted antenna 10.
  • the waveguide 12 includes a four port waveguide network.
  • Two of the ports 20 and 22 are designed for the transmission of orthogonal, linearly polarized signals of a first frequency, which in the preferred embodiment is a 4.035 to 4.200 GHz transmission band frequency.
  • the other two ports 24 and 26 are designed for the reception of orthogonal, linearly polarized signals of a different frequency, which in the preferred embodiment is a 6.260 to 6.425 GHz receiving band frequency.
  • the four independent, linearly polarized signals (1 from each port) are coupled into the common square waveguide 12, which in turn excites the pyramidal feed horn 14.
  • the meanderline polarizer 16 then converts the linearly polarized signals to circular polarizations, such that two oppositely, circularly polarized fields are radiated from the antenna 10 at the transmission band frequency.
  • the meanderline polarizer also converts two oppositely, circularly polarized signals to two orthogonal, linearly polarized signals at the receiving band frequency.
  • Each port 20, 22, 24 and 26 of the four port waveguide network includes an attachment flange 30, 32, 34 and 36 respectively, disposed about its outer end to which signal transmitting or receiving devices (not shown) are coupled.
  • the orthogonal ports 24 and 26 feed directly into the side and throat respectively of the waveguide 12, whereas orthogonal ports 20 and 22 are provided with additional waveguide structures 40 and 42 respectively which lead to the body of the waveguide 12.
  • the waveguide structures 40 and 42 comprise a series of rectangular corrugations formed perpendicularly to the central axis of the waveguide structures 40 and 42.
  • support straps 46 are engaged across the outer surface of the corrugations to provide structural rigidity to the waveguide structures 40 and 42.
  • the corrugated waveguide structures 40 and 42 are dimensionally configured to act as a short circuit to the six GHz signals while allowing the four GHz signals to pass therethrough.
  • the linearly polarized six GHz receiving signal does not propagate into waveguide structures 40 and 42, but rather continues through the body of the waveguide 12 to the ports 24 and 26.
  • a central section 48 of the waveguide 12 located behind ports 20 and 22 is dimensionally sized to prevent the propagation of the four GHz transmission signals backwards through the waveguide 12 to the six GHz ports 24 and 26.
  • the feed horn 14 is a pyramidal horn having a flare angle of approximately 10 degrees and a square aperture having a side measurement of approximately 6 inches; its aperture 17 is located approximately 3.5 inches towards the reflector 18 from the focal point 50 of the reflector 18.
  • the meanderline polarizer is oriented relative to the square aperture 17 of the feed horn 14, such that the meanderlines run diagonally across the aperture 17 of the feed horn 14.
  • the improved meanderline polarizer 16 serves to transform the linearly polarized signals into circularly polarized signals at the aperture 17 of the antenna horn 14.
  • the signals that propagate within the horn 14 and waveguide 12 are entirely orthogonal, linearly polarized signals, and no circularly polarized signals propagate within the horn 14 or waveguide 12. This configuration results in the transmission and reception within the waveguide of orthogonal, linearly polarized signals with significantly reduced cross-polarization, whereby improved signal gain and reduced noise is achieved.
  • the meanderline polarizer 16 is a sandwich structure including five thin layers 50, 52, 54, 56 and 58, each having a plurality of meanderline traces 60, 62, 64, 66 and 68, respectively, formed thereon.
  • Four foam-like spacers 70, 72, 74 and 76 serve to separate the five meanderline layers.
  • the use of meanderline polarizers that are generally configured as described hereinabove is well known in the art, as particularly taught in U.S. Patent 3,754,271 issued to J. Epis on August 21, 1973.
  • a significant difference between the polarizer 16 of the present invention and the prior art polarizers resides in the utilization of meanderline traces of differing dimensions in the various layers 50, 52, 54, 56 and 58.
  • the meanderline traces in layers 50 and 58 are identical
  • the meanderline traces in layers 52 and 56 are identical, although differing in dimensions from the meanderline traces in layers 50 and 58.
  • the meanderline traces in layer 54 are different in dimension from those of any other layer.
  • the polarizer is a 9.0" square by 2.0" thick sandwich construction.
  • the sandwich consists of the four spacers 60, 62, 64 and 66 composed of Stanthyne 817 Foam, and the five layers 50, 52, 54, 56 and 58 are composed of etched 1/2 oz. copper clad 3 mill Kapton bonded together with Hysol 9309 adhesive. Bonding is done so as not to cover the traces.
  • the polarizer is bonded to a fiberglass frame 19 which is bolted to the aperture 17 of the horn 14.
  • the traces are preferably formed on the Kapton layers utilizing printed circuit board techniques to provide close tolerances and reliability to the device.
  • the dimensions of the meanderline traces in each layer can be expressed by four parameters that are designated as: A, the periodicity of a meanderline trace; H, the height of the meanderline trace; W, the width of the meanderline trace; and B, the distance between adjacent meanderline traces.
  • A the periodicity of a meanderline trace
  • H the height of the meanderline trace
  • W the width of the meanderline trace
  • B the distance between adjacent meanderline traces.
  • the following table provides the dimensions for each of the layers of the meanderline polarizer 16.
  • the present invention provides a reuse frequency capability. That is, that the same frequency can be used for transmitting two signals, one of which is circularly polarized in a first sense and the other of which is circularly polarized in an opposite sense. Additionally, the utilization of four ports in the waveguide network permits the simultaneous utilization of two reuse frequency signals, approximately 4 GHz and approximately 6 GHz.
  • the use of a meanderline polarizer at the aperture 17 of the feed horn 14 provides improved performance as compared to prior art devices which attempt to convert signals from circular polarization to linear polarization within the waveguide.
  • the improved meanderline polarizer reduces cross-polarization and thus contributes to the improved performance of the invention.

Landscapes

  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Aerials With Secondary Devices (AREA)
EP91303892A 1990-07-26 1991-04-30 Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder Expired - Lifetime EP0468620B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55903490A 1990-07-26 1990-07-26
US559034 1990-07-26

Publications (3)

Publication Number Publication Date
EP0468620A2 true EP0468620A2 (de) 1992-01-29
EP0468620A3 EP0468620A3 (en) 1992-05-20
EP0468620B1 EP0468620B1 (de) 1995-12-27

Family

ID=24232016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91303892A Expired - Lifetime EP0468620B1 (de) 1990-07-26 1991-04-30 Zweibandantenne mit Mehrfachausnutzung der Frequenzbänder

Country Status (4)

Country Link
EP (1) EP0468620B1 (de)
JP (1) JP2651962B2 (de)
CA (2) CA2041572C (de)
DE (1) DE69115783T2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093802A (zh) * 2017-03-20 2017-08-25 东南大学 口径面相位和幅度均匀分布的高增益透镜天线
WO2019028070A1 (en) 2017-08-01 2019-02-07 Lockheed Martin Corporation WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139502A (ja) * 1994-11-14 1996-05-31 Nec Corp 円偏波発生器
WO2009110755A2 (ko) * 2008-03-05 2009-09-11 주식회사 인텔리안테크놀로지스 반사경 안테나 및 혼 안테나을 이용한 다중 대역 신호 송/수신 장치 및 그 방법
CN114709622B (zh) * 2022-03-31 2024-04-23 重庆邮电大学 一种基于超表面结构的极化单元、极化转换器和制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754271A (en) * 1972-07-03 1973-08-21 Gte Sylvania Inc Broadband antenna polarizer
EP0042612A1 (de) * 1980-06-24 1981-12-30 Siemens Aktiengesellschaft Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen
EP0045682A1 (de) * 1980-07-31 1982-02-10 Thomson-Csf Speiseanordnung für eine Sende/Empfangsantenne
JPH01126803A (ja) * 1987-11-12 1989-05-18 Mitsubishi Electric Corp ホーンアンテナ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529392B1 (fr) * 1982-06-25 1985-06-28 Thomson Csf Dispositif de multiplexage pour grouper deux bandes de frequences et multiplexeur comportant un tel dispositif
JPS60176302A (ja) * 1984-02-22 1985-09-10 Mitsubishi Electric Corp 偏分波器
JPH0611085B2 (ja) * 1987-02-23 1994-02-09 三菱電機株式会社 円偏波アレ−アンテナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754271A (en) * 1972-07-03 1973-08-21 Gte Sylvania Inc Broadband antenna polarizer
EP0042612A1 (de) * 1980-06-24 1981-12-30 Siemens Aktiengesellschaft Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen
EP0045682A1 (de) * 1980-07-31 1982-02-10 Thomson-Csf Speiseanordnung für eine Sende/Empfangsantenne
JPH01126803A (ja) * 1987-11-12 1989-05-18 Mitsubishi Electric Corp ホーンアンテナ装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BBC RESEARCH DEPARTMENT REPORT. no. 7, July 1988, TADWORTH GB pages 1 - 10; M.C.D. MADDOCKS ET AL.: 'Polarisation converters for a DBS flat-plane antenna' *
NTG-FACHBERICHTE,VOL.52,1975,PAGES 203-208 G.MöRZ et al.:"Speisesysteme zur Erzeugung von Dualpolarisation hoher Entkopplung für Boden stationsantennen mit Frequenzdoppelausnutzung" *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 374 (E-808)18 August 1989 & JP-A-1 126 803 ( MITSUBISHI ELECTRIC CORP ) 18 May 1989 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093802A (zh) * 2017-03-20 2017-08-25 东南大学 口径面相位和幅度均匀分布的高增益透镜天线
CN107093802B (zh) * 2017-03-20 2019-07-23 东南大学 口径面相位和幅度均匀分布的高增益透镜天线
WO2019028070A1 (en) 2017-08-01 2019-02-07 Lockheed Martin Corporation WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES
EP3662536A4 (de) * 2017-08-01 2021-04-28 Lockheed Martin Corporation Wellenleiter-apertur-design für geosatelliten

Also Published As

Publication number Publication date
EP0468620A3 (en) 1992-05-20
JP2651962B2 (ja) 1997-09-10
DE69115783T2 (de) 1996-07-25
DE69115783D1 (de) 1996-02-08
CA2041572A1 (en) 1992-01-27
CA2046975A1 (en) 1992-01-27
CA2041572C (en) 1999-11-09
JPH05136624A (ja) 1993-06-01
EP0468620B1 (de) 1995-12-27

Similar Documents

Publication Publication Date Title
US5258768A (en) Dual band frequency reuse antenna
US5596336A (en) Low profile TEM mode slot array antenna
JP2733472B2 (ja) 導波管スロット・アンテナ及びその製造方法並びに導波管の結合構造
KR100624049B1 (ko) 원편파 수신용 정방 격자 혼 배열 안테나
US3389394A (en) Multiple frequency antenna
AU603103B2 (en) Microwave antenna
JP3029231B2 (ja) 二重円形偏波temモードのスロットアレーアンテナ
US5223848A (en) Duplexing circularly polarized composite
JPH07176950A (ja) 衛星通信用アンテナ
US5793330A (en) Interleaved planar array antenna system providing opposite circular polarizations
JPH09326631A (ja) マイクロ波平面アレイアンテナ
US20020005806A1 (en) Dual band antenna
CA2041572C (en) Dual band frequency reuse antenna
JPH08505504A (ja) 広角偏波器
US5233361A (en) Planar high-frequency aerial for circular polarization
CA1263180A (en) Linearly polarized grid reflector antenna systems with improved cross-polarization performance
JP2002299949A (ja) 平面アレーアンテナ
JPH0590826A (ja) マイクロストリツプアンテナ
JPH06125214A (ja) 平面アンテナ
JPS63318826A (ja) 無線装置
JPH11112227A (ja) 衛星放送受信用の平面アンテナ
JPS61102802A (ja) 偏分波器
KR100429684B1 (ko) 편파 선택형 평면 안테나
KR200355454Y1 (ko) 원편파 수신용 정방 격자 혼 배열 안테나
KR0150724B1 (ko) 평면안테나 급전장치의 도파관 구조

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMITH, TERRY M.

17P Request for examination filed

Effective date: 19921120

17Q First examination report despatched

Effective date: 19940607

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69115783

Country of ref document: DE

Date of ref document: 19960208

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020401

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020424

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430