EP0466119B1 - Vorrichtung und Verfahren zur Prüfung von Dokumenten - Google Patents

Vorrichtung und Verfahren zur Prüfung von Dokumenten Download PDF

Info

Publication number
EP0466119B1
EP0466119B1 EP91111438A EP91111438A EP0466119B1 EP 0466119 B1 EP0466119 B1 EP 0466119B1 EP 91111438 A EP91111438 A EP 91111438A EP 91111438 A EP91111438 A EP 91111438A EP 0466119 B1 EP0466119 B1 EP 0466119B1
Authority
EP
European Patent Office
Prior art keywords
light
document
fluorescent
light guide
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91111438A
Other languages
English (en)
French (fr)
Other versions
EP0466119A3 (en
EP0466119A2 (de
Inventor
Bernd Wunderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAO Gesellschaft fuer Automation und Organisation mbH
Original Assignee
GAO Gesellschaft fuer Automation und Organisation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GAO Gesellschaft fuer Automation und Organisation mbH filed Critical GAO Gesellschaft fuer Automation und Organisation mbH
Publication of EP0466119A2 publication Critical patent/EP0466119A2/de
Publication of EP0466119A3 publication Critical patent/EP0466119A3/de
Application granted granted Critical
Publication of EP0466119B1 publication Critical patent/EP0466119B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details

Definitions

  • the invention relates to a device or a Procedure for checking documents with a control unit and a scanner for recording the from Document remitted and / or by the document transmitted light.
  • banknotes are counted, checked and sorted almost only with fully automatic sorting and testing machines. These machines recognize or check the banknotes based on various criteria. Preferred test criteria are the size, the thickness and the printed image of the Grades. Most of the measurements on the printed image take place Cases by means of electro-optical processes, this is the banknote over the entire surface or in predetermined surface areas scanned with electro-optical sensors. The so obtained measurement signals are either directly or after signal processing with predefined acceptance ranges compared. The comparison result is mostly along with the results of further measurements for assessment the banknote used.
  • CH-PS 476 356 describes a device which in As part of the optical check, banknotes also on your checks characteristic color shades. For testing the banknote in a limited area Light from a broadband light source is illuminated. The reflected light is here in an optical Cutting system, such as a glass prism, in different wavelength ranges separated. The in the Color brightness present in the respective wavelength ranges comes with several, assigned photoelectric Detectors recorded. The measurement signals are in Threshold levels evaluated so that if they match a correct signal of the measured values with the tolerance ranges is delivered.
  • DE-OS 38 15 375 describes a device for testing the authenticity of documents based on color.
  • the device is composed of several similar modules.
  • Each module consists of a lighting system consisting of light guides and a photo sensor. Specific Optical components such as color filters ensure that each module only in a selected spectral range is sensitive.
  • the document is sent to the Guided past modules; the photo sensors of the Modules line the document in different predetermined lines Spectral ranges and forward the measured values to Evaluation device further.
  • each spectral range the modules with all the necessary components to provide multiple times what besides the big one Construction volume for a noticeable increase in the price of the machines leads, especially if - as suggested in the DE-OS - expensive fiber bundles used as light guides will.
  • the use of filters for spectral separation the light component not only increases the cost of the testing device, but also worsens efficiency between that available on the measuring surface Light output to the irradiated light output.
  • the invention has for its object a device and a corresponding method for optical Examination of documents in at least two spectral ones Propose areas, the above disadvantages be avoided.
  • An essential feature of the solution according to the invention is in that to illuminate the document with light different spectral ranges one with fluorescent material provided light guide is used, the at the same time as a light guide for other radiation sources is being used.
  • fluorescent material Light guides for example so-called fluorescent plates, have been known for a long time. They consist of a transparent plastic in which fluorescent Dye molecules are stored. Acting on the plate Light is absorbed by the molecules and generally emitted again as longer-wave light. The light emitted in the plate in all spatial directions becomes to a large extent in the plate via total reflections collected and occurs at the plate edges as High intensity fluorescent light.
  • Fluorescent plates can be a document on very simple Way with light of a first spectral range with large Illuminated intensity and very homogeneous distribution will.
  • the fluorescent plate only serves as Light guide.
  • the light from this second spectral source will coupled over one of the edges or narrow sides of the plate and occurs over total reflections in the plate on another edge.
  • Spectral range are preferably light emitting diodes used. Due to their design, LEDs emit light their light in a limited solid angle range, whereby effective coupling of light into the light guide can be achieved.
  • the light from the second spectral source can also from a second fluorescent plate are generated that to the one generating the first light Plate is optically coupled.
  • the lighting geometry varies in a variety of ways will.
  • a plate-shaped light guide is a homogeneous column-shaped illumination of the security possible. That from the edge of the plate in the form of a Lobe emerging light can be used directly to illuminate the Object to be used. But it is also possible by appropriate shaping of the trailing edge, by Imaging of the trailing edge on the test object or by the superimposition of several light lobes of several exit surfaces one or more fluorescent plates set the desired lighting geometry.
  • Illuminate an area of the document with Light of different spectral ranges requires if filter arrangements are to be dispensed with, one different kind of separation of the light components to a selective To enable analysis in the spectral ranges used.
  • the different spectral sources whose Light components directly or indirectly via a common one Optical fibers are guided to the measuring point in such a way modulate that the measuring range only in one Spectral range is illuminated.
  • the spectral sources are therefore time-alternating in time-division multiplexing switched on and off, the switching frequency is chosen so high that during the run a sufficient number of measured values are recorded in a document can be.
  • Switching regulator provided in addition to a fast clocking the radiation sources are low loss automatic Enable brightness control.
  • FIG. 1 shows a first embodiment highly schematic arrangement of the device according to the invention for checking securities, for example Banknotes, using two spectral sources and one Fluorescent plate.
  • a banknote 1 in is transported by means of a transport system 6
  • the plate 3 consists of a plastic in which a fluorescent dye is homogeneously distributed. Such Plates are commercially available.
  • the immediately Fluorescent tubes 4 arranged next to the plate illuminate the surface of the plate with light of a short Wavelength. The light penetrates the plate and is absorbed by the dye; a lot of the absorbed Energy is used as fluorescent light for a longer period Wavelength as the absorbed again emitted.
  • the spectrum of the fluorescent light is typical a band approximately 100 nanometers wide, depending on the dye the wavelength center of gravity is currently available Panels in a range from blue to that far red. Due to total reflection within the The fluorescent light mainly occurs on the plate Narrow sides or edges of the plate. About the loss of light to keep small, the edges of the plate that not required as entry or exit edges for the light are mirrored. For good efficiency the fluorescent lamps and the fluorescent plate are in to coordinate their spectra. Fluorescent lamps with an emission in the blue spectral range are suitable for green to red emitting fluorescent plates, while for blue emitting plates one in the ultraviolet Lamp area is preferable.
  • the fluorescent plate 3 serves simultaneously as a light guide for the second lighting device 5.
  • the fluorescent plate 3 for an effective light coupling this directly above the leading edge 7 of the plate, optionally arranged via optical coupling media.
  • the light of the light emitting diodes used here for example penetrates the plate and is due to total reflection on the base and top surface to the trailing edge guided.
  • the wavelength of the diodes is to avoid of losses to choose so that they are not in an absorption band the fluorescent plate falls.
  • the light from both spectral sources leaves the plate the trailing edge 9 and causes according to the Geometry of the exit surface the homogeneous illumination a strip-shaped surface with high luminance.
  • the one that is remitted or let through from the banknote Light can be detected by several detectors 13, 14, 15 will.
  • Line detectors are preferred for this purpose used such as a CCD array.
  • the signals the detectors can be used alone or combined accordingly be evaluated.
  • the two lighting sources 4 and 5 in time-multiplexing operated, that is, they are alternating switched light and dark. Reading the Detectors are in phase with the alternating cycle; the The resulting measurement signal is therefore given alternately follow the two color separations that are saved separately and / or have it processed.
  • FIG. 2 shows an embodiment of the invention Facility used to achieve homogeneous illumination the measuring surface two symmetrically arranged Has fluorescent plates 20, 21.
  • the two plates 20, 21 around the Lighting device 4 arranged arched.
  • the light emitting diodes 24, 25 are on the narrow sides 22, 23 of the plate arranged; the phosphor source 4 illuminates the surfaces of the fluorescent plates 20, 21.
  • the inside of the support structures 38 and 39 are mirrored; this means that it is broadcast in all directions in space Light from the fluorescent source 4 onto the fluorescent plates thrown back.
  • the embodiment shown can preferably be a U-shaped fluorescent lamp be used, the observation through the gap the lamp is possible.
  • a suitable lamp for this is for example the so-called Dulux-S lamp from Osram.
  • the two trailing edges are for coupling out the light of the fluorescent plates 20, 21 beveled and possibly mirrored.
  • the slopes couple the rays of light from the plates at a certain angle and lead them to the desired area of the banknote 1.
  • the angles of the slopes can be chosen that the two exit lobes 32 and 33 of the fluorescent plates more or less strong on the banknote overlap.
  • the detector 13 is in a shaft 68 between the arranged in both lighting parts and so against stray light well protected. With one arranged in the shaft Imaging system 12 can be the desired illuminated one Area of banknote 1 mapped onto detector 13 will. To protect against dirt and damage is between the transport path of the banknotes and the Sensor arrangement a cover 40 with a window 42 assembled. To separate the color components, as in Fig. 1 already described, the spectral sources and Detector controlled in time-division multiplex mode.
  • the arrangement shown can also be used for measurement can be used in three or four spectral ranges. For example, if you swap one of the two rows of LEDs 24 or 25 against one in another Wavelength-emitting type, so stand at the measuring point three spectral colors are available. A fourth Color can be emitted by using different emitters Fluorescence molecules in the two plates 20 and Add 21.
  • FIG. 3 shows an alternative arrangement for generation of three or more spectral colors at the measuring point.
  • there are two with different fluorescent substances provided fluorescent plates 45 and 46 over their Narrow sides or edges 49 connected to one another.
  • the Surfaces of the edges and their connection are like this procure that the light can pass freely.
  • the two plates 45 and 46 are from the two fluorescent lamps 50 and 52 illuminated.
  • the two lamps with suitably shaped Surround reflectors 53.
  • the fluorescent materials of the plates and the respective excitation light are chosen so that the emission light of a plate which is directed towards the Banknotes following plate happens with as little loss as possible.
  • the plates 45, 46 also serve as Light guide for a further lighting device 48.
  • the sensor can thus be optimally metrological Adjust requirements.
  • the Brightness drops monotonically with the distance of the measuring surface.
  • a maximum brightness at a predetermined distance from Sensor can, however, by overlaying several exit lobes or by optically imaging the exit surface can be achieved. 2 already has a first example shown for the overlay principle where the zone highest brightness at some distance from the trailing edges of the fluorescent plates. In the overlay area have changes in distance between the measurement object and lighting source have less impact on changes in brightness.
  • the trailing edge of the fluorescent plate 3 is in this case over its entire length in Middle part has been provided with a mirror 56. This measure shifts the intensity maximum away from the exit surface. The diminution the absolute brightness in the measuring surface 62 due to the partial mirroring can be achieved by taking measures at the Catch the leading edge. By mirroring 57 the Leading edge has the light reflected back so Another possibility to one of the two exit windows 59 or 60 to arrive.
  • the permeability for the Light from a light source 5 are respected, for example through a wavelength selective mirroring for the fluorescent light or through a corresponding window 61 can be taken into account.
  • FIG. 5 shows a further embodiment for the Overlay principle. It is in a predetermined Distance creates an area 62 of optimal brightness and scattered light in the detector is largely avoided at the same time.
  • the two fluorescent plates 64 and 65 are in this Case arranged at 45 ° to the measuring surface, the exit surfaces 55 on both plates thus point to one common area.
  • the detector shaft 68 Between the two plates is the detector shaft 68, in which in the known imaging optical system 12 and a linear detector 13 are arranged.
  • a partial mirroring 66 of the trailing edges in connection with the symmetrical The arrangement moves zone 62 of maximum brightness away from the sensor into an area that is different from document 1 is happening.
  • the lighting devices here in the Detail, not shown, can, for example shown in Fig. 2 can be selected.
  • FIG. 6 shows a section through a symmetrical structure Sensor module, the light of the fluorescent plates 3 with imaging deflecting optics on the measuring surface is projected.
  • the color components of the light are generated in the manner already described and to the Leaving edges of the fluorescent plates 3 passed.
  • the light hits the image Deflection optics 71.
  • the deflection and imaging takes place by reflecting the light rays on the two mirrored Surfaces 73 and 74.
  • the ray path for the marginal rays the exit lobe is dotted Lines shown.
  • the light first penetrates the Glass body 71 and is on the mirrored surface 73rd reflected; surface 73 is a section of a Parabolic surface that is shaped so that the light as Parallel beam to surface 74 is reflected.
  • the Surface 74 which is also the shape of a parabolic surface has, the light focuses on the measuring surface 63.
  • Zum Protection of the vitreous against damage and dirt is a protective layer 76 with a window in the beam path inserted.
  • the focus point is due to the position of the Parabolic surfaces laterally shifted with respect to the vitreous and lies exactly under the detector shaft 68.
  • Symmetrical to the detector shaft is a mirror image second deflecting optics 72 arranged, it ensures in the measuring surface for a homogeneous and largely distance-independent Illumination. Scanning the passing Banknote 1 in the measurement area is made using a Imaging optics 12 and a line detector 13.
  • the walls 79 of the detector shaft are opaque and protect the sensor from stray light.
  • the entire optical structure of the sensor module can be extremely compact design, advantageous for assembly is the uncritical positioning of the optical components.
  • the components are - because adjustment devices are not necessary - practically during the lifetime the spectral sources are completely adjustment-free; what a good reproducibility of the measurement results guaranteed.
  • the spectral sources also have to ensure constant measuring conditions for long periods, this means, among other things, that in their Brightness should be stabilized over time.
  • the spectral sources alternate must be switched on and off so that you can go through Time-division multiplexing, for example, separate color separations who can receive banknotes.
  • special switching regulators for controlling the spectral sources suggested. These switching regulators control the Performance practically only by briefly switching on and off the power supply. But since there is one Have switch-off operations carried out practically without loss, these switching regulators set the electrical power optimally in light output. Capacitive and inductive Components in the circuit of the spectral sources ensure a largely continuous power and light flow during the switch-on phase.
  • Fig. 7 shows an embodiment of a switching regulator for the brightness-controlled operation of a Fluorescent lamp.
  • the lamp 80 is in series with one Inductance 81 on the secondary side of a transformer 82.
  • a capacitor 84 is connected in series with the directly heated electrodes.
  • the two components 81 and 84 form a series resonance circuit.
  • the Gas discharge from the lamp runs parallel to the capacity.
  • Another resonant circuit is through the primary winding of the transformer 82 with the capacitance 85 is formed.
  • a control circuit 87 controls the current flow on the Primary side via a switching transistor 89 with a such frequency and pulse shape that with minimal power consumption a given brightness is kept constant becomes.
  • the current brightness is from a photoelectric Detector 88 detects and the controller 87 as Control signal passed on.
  • control pulse SP By varying the frequency the control pulse SP can control the brightness of the fluorescent lamp be managed. With the help of another one signal I / O acting on the controller becomes the control pulse sequences and thus also the lamp on or off. It has been shown that the circuit too then still works properly when the control pulses supplied in synchronism with the I / O signal in so-called "bursts" become, which ultimately only the multiplex operation with other radiation sources is possible.
  • the I / O signal determines the on and off phases of the fluorescent lamp. In each case with a positive I / O signal there will be a consequence generated by switching pulses SP.
  • the frequency of the switching pulses becomes a brightness sensor regulated in such a way that, for example, at a Decrease the brightness by increasing the frequency Power supply to the lamp is increased.
  • the inductive and capacitive components of the circuit smooth the power flow to the lamp and ensure the duty cycle a largely constant brightness.
  • the frequency of the I / O signal is in the Size of about 10 kilohertz.
  • the frequency of the control pulses preferably chosen to be a factor of 10 higher.
  • the light emitting diodes must also be in phase opposition to the fluorescent lamp be switched on and off periodically, brightness control is also necessary.
  • a block diagram for a switching regulator that is based on the The characteristic curve of the light-emitting diodes is matched in FIG. 9 reproduced.
  • the light emitting diodes 90 are connected in series and are therefore operated with a power supply will. Because the light emission from light emitting diodes it increases approximately linearly with the through current regulated by pulse width modulation of the current will. For this is in series with the LEDs Switching transistor 95 is provided, which is from a pulse width modulator 99 is controlled.
  • a sensor 96 that the brightness of the diodes takes up, its signal leads to the Pulse width modulator too. Depending on the signal level of this sensor becomes the pulse width of the switching pulses in the way changed that its constant brightness ensures is.
  • the Inductor 91 connected in series with the LEDs. This limits the current rise when switched on of switching transistor 95.
  • the one stored in the coil Energy becomes available after the switching transistor is switched off fed to the diodes 90 via the freewheeling diode 93, whereby the current flow even during the switch-off breaks Transistor is held upright.
  • the same purpose also has the capacity parallel to the LEDs 98. To maintain a control range is here too the switching frequency is necessary Increase the machine cycle by at least a factor of 10.
  • Circuits have the further advantage that the supply voltage can fluctuate within wide limits without the Reproducibility of the measurement signals is impaired.

Description

Die Erfindung bezieht sich auf eine Einrichtung bzw. ein Verfahren zur Prüfung von Dokumenten mit einer Ansteuereinheit und einer Abtastvorrichtung zur Aufnahme des vom Dokument remittierten und/oder des durch das Dokument transmittierten Lichts.
An zentralen Stellen wie Geschäfts- und Staatsbanken erfolgt das Zählen, Prüfen und Sortieren von Banknoten fast nur noch mit vollautomatischen Sortier- und Prüfautomaten. Diese Automaten erkennen bzw. prüfen die Banknoten anhand verschiedener Kriterien. Bevorzugte Prüfkriterien sind die Größe, die Dicke und das Druckbild der Noten. Die Messungen am Druckbild erfolgen in den meisten Fällen mittels elektrooptischer Verfahren, hierbei wird die Banknote ganzflächig oder in vorbestimmten Flächenbereichen mit elektrooptischen Sensoren abgetastet. Die so erhaltenen Meßsignale werden entweder direkt oder nach einer Signalaufbereitung mit vorgegebenen Akzeptanzbereichen verglichen. Das Vergleichsergebnis wird meist zusammen mit den Ergebnissen weiterer Messungen zur Beurteilung der Banknote verwendet.
Die Fertigungstoleranzen, Verschmutzung, Abnutzung der Banknoten und weitere Effekte führen selbst bei durchweg gültigen Noten zu einer breiten Streuung der Meßwerte und folglich zu breiten Akzeptanzbereichen. Breite Akzeptanzbereiche jedoch erhöhen die Wahrscheinlichkeit von Fehlbeurteilungen. Andererseits aber haben die Sortier- und Prüfautomaten gerade auf dem Wertpapiersektor einen hohen Zuverlässigkeitsgrad aufzuweisen, insbesondere was das Erkennen von Denominationen und das Aussortieren ungültiger und unbrauchbarer Banknoten anbetrifft. Aus diesem Grund kommen in den Automaten immer ausgefeiltere Meßverfahren zum Einsatz.
Die CH-PS 476 356 beschreibt eine Vorrichtung, die im Rahmen der optischen Prüfung Banknoten auch auf ihre charakteristischen Farbnuancen prüft. Zur Prüfung wird die Banknote in einem begrenzten Flächenbereich mit Licht einer breitbandigen Lichtquelle beleuchtet. Das zurückgestrahlte Licht wird hierbei in einem optischen Zerlegungssystem, wie beispielsweise einem Glasprisma, in verschiedene Wellenlängenbereiche aufgetrennt. Die in den jeweiligen Wellenlängenbereichen vorliegende Farbhelligkeit wird mit mehreren, zugeordneten fotoelektrischen Detektoren aufgezeichnet. Die Meßsignale werden in Schwellwertstufen so ausgewertet, daß bei Ubereinstimmung der Meßwerte mit den Toleranzbereichen ein Richtigsignal abgegeben wird.
Die vorgeschlagene Anordnung ist jedoch für Banknotensortier- und Prüfautomaten nur mit großen, derzeit nicht mehr tolerierbaren Einschränkungen verwendbar. Moderne Sortier- und Prüfautomaten zeichnen sich durch eine hohe Verarbeitungskapazität aus und transportieren die Banknoten mit Geschwindigkeiten von mehreren Metern pro Sekunde. Hieraus ergeben sich kurze Verweilzeiten der Banknoten im Sensorbereich; die Lichtausbeute, die in dieser Zeit erreichbar ist, liegt ohne Farbprüfung meist in der Nähe des unteren Toleranzbereichs. Durch die spektrale Aufspaltung des Lichts in mehrere Wellenlängenbereiche steht am einzelnen Sensor nurmehr sehr wenig Lichtintensität zur Verfügung, das resultierende hohe Signalrauschen setzt die erreichbare Zuverlässigkeitsrate mitunter soweit herab, daß die Vorteile einer Prüfung auf Farbnuancen vollkommen aufgehoben werden.
Die DE-OS 38 15 375 beschreibt eine Vorrichtung zur Prüfung der Echtheit von Dokumenten anhand der Farbe. Die Vorrichtung ist aus mehreren gleichartigen Modulen zusammensetzt. Jedes Modul besteht aus einem Beleuchtungssystem aus Lichtleitern und einem Fotosensor. Spezielle optische Komponenten wie Farbfilter sorgen dafür, daß jedes Modul nur in einem ausgewählten Spektralbereich empfindlich ist. Zur Farbprüfung wird das Dokument an den Modulen vorbeigeführt; dabei tasten die Fotosensoren der Module zeilenweise das Dokument in verschiedenen vorbestimmten Spektralbereichen ab und leiten die Meßwerte zur Auswertevorrichtung weiter.
Da für jeden spektralen Bereich ein eigenes Modul vorgesehen ist, sind die Module mit allen notwendigen Bauelementen mehrfach bereitzustellen, was neben dem großen Bauvolumen zu einer spürbaren Verteuerung der Automaten führt, insbesondere dann, wenn - wie in der DE-OS vorgeschlagen - teure Faserbündel als Lichtleiter eingesetzt werden. Der Einsatz von Filtern zur spektralen Trennung der Lichtanteile erhöht nicht nur die Kosten der Prüfvorrichtung, sondern verschlechtert auch den Wirkungsgrad zwischen der an der Meßfläche zur Verfügung stehenden Lichtleistung zur eingestrahlten Lichtleistung.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein entsprechendes Verfahren zur optischen Prüfung von Dokumenten in mindestens zwei spektralen Bereichen vorzuschlagen, wobei die obengenannten Nachteile vermieden werden.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 11 gelöst.
Ein wesentliches Merkmal der erfindungsgemäßen Lösung besteht darin, daß zur Beleuchtung des Dokuments mit Licht unterschiedlicher spektraler Bereiche ein mit Fluoreszenzstoff versehener Lichtleiter eingesetzt wird, der gleichzeitig als Lichtleiter für weitere Strahlungsquellen genutzt wird. Mit Fluoreszenzstoff versehene Lichtleiter, beispielsweise sogenannte Fluoreszenzplatten, sind seit längerem bekannt. Sie bestehen aus einem transparenten Kunststoff, in dem fluoreszierende Farbstoffmoleküle eingelagert sind. Auf die Platte einwirkendes Licht wird von den Molekülen absorbiert und im allgemeinen als längerwelliges Licht wieder emittiert. Das in der Platte in alle Raumrichtungen emittierte Licht wird zu einem großen Teil in der Platte über Totalreflektionen gesammelt und tritt an den Plattenkanten als Fluoreszenzlicht mit hoher Intensität aus. Mit Hilfe der Fluoreszenzplatten kann ein Dokument auf sehr einfache Weise mit Licht eines ersten Spektralbereichs mit großer Intensität und sehr homogener Verteilung ausgeleuchtet werden. Für das Licht eines weiteren Spektralbereichs dient die Fluoreszenzplatte erfindungsgemäß lediglich als Lichtleiter. Das Licht dieser zweiten Spektralquelle wird über eine der Kanten oder Schmalseiten der Platte eingekoppelt und tritt über Totalreflektionen in der Platte an einer anderen Kante aus. Für dieses Licht eines bestimmten Spektralbereichs werden vorzugsweise Leuchtdioden eingesetzt. Leuchtdioden strahlen bauartbedingt ihr Licht in einem begrenzten Raumwinkelbereich ab, wodurch sich eine effektive Lichteinkopplung in Lichtleiter erreichen läßt. Das Licht der zweiten Spektralquelle kann aber auch von einer zweiten Fluoreszenzplatte erzeugt werden, die an die das erste Licht erzeugende Platte optisch gekoppelt wird.
Mit der erfindungsgemäßen Lösung ist es mit vergleichsweise geringem konstruktiven Aufwand, d. h. vor allem ohne den Einsatz von Filterelementen, möglich, Licht unterschiedlicher Spektralbereiche mit großer Intensität und homogener Verteilung auf eine gemeinsame Meßstelle des Dokuments zu führen und mit nur einem Detektor auszuwerten. Aufgrund der Verwendung eines Lichtleiters kann die Beleuchtungsgeometrie auf vielfältige Weise variiert werden. Bei Verwendung eines plattenförmigen Lichtleiters ist eine homogene spaltförmige Beleuchtung des Wertpapiers möglich. Das aus der Kante der Platte in Form einer Keule austretende Licht kann direkt zur Beleuchtung des Meßobjekts verwendet werden. Es ist aber auch möglich, durch entsprechende Formgebung der Austrittskante, durch Abbildung der Austrittskante auf das Meßobjekt oder durch die Überlagerung mehrerer Lichtkeulen mehrerer Austrittsflächen von einer oder von mehreren Fluoreszenzplatten die gewünschte Beleuchtungsgeometrie einzustellen.
Die Beleuchtung eines Flächenbereichs des Dokuments mit Licht unterschiedlicher Spektralbereiche erfordert, soweit auf Filteranordnungen verzichtet werden soll, eine andersgeartete Trennung der Lichtanteile, um eine selektive Analyse in den verwendeten Spektralbereichen zu ermöglichen.
Gemäß einer Weiterbildung der Erfindung wird daher vorgeschlagen, die unterschiedlichen Spektralquellen, deren Lichtanteile direkt oder indirekt über einen gemeinsamen Lichtleiter zur Meßstelle geführt werden, derart zu modulieren, daß der Meßbereich jeweils nur in einem Spektralbereich ausgeleuchtet wird. Die Spektralquellen werden daher im Zeitmultiplexverfahren zeitlich alternierend an- und abgeschaltet, wobei die Schaltfrequenz derart hoch gewählt wird, daß während des Durchlaufs eines Dokuments eine ausreichende Zahl von Meßwerten aufgenommen werden kann.
Grundvoraussetzung für eine schnelle Taktung sind entsprechend kurze Anstiegs- und Abklingzeiten der Strahlungsquellen selbst. Es werden daher einerseits Leuchtdioden eingesetzt, deren Licht direkt über den Lichtleiter auf die Meßstelle gelangt und andererseits Leuchtstofflampen, deren Licht zur Anregung der Fluoreszenzemission verwendet wird. Leuchtstofflampen weisen bei geringer Wärmeabgabe eine hohe Lichtausbeute auf und sind aus diesem Grund bevorzugt geeignet zur Erzeugung des Fluoreszenzlichts.
Sowohl für die lichtemittierenden Dioden als auch für die Leuchtstoffröhren sind gemäß der Erfindung spezielle Schaltregler vorgesehen, die neben einer schnellen Taktung der Strahlungsquellen eine verlustarme automatische Helligkeitsregelung ermöglichen.
Weitere Vorteile und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung der Ausführungsbeispiele anhand der Figuren.
Es zeigen
Fig. 1, 2
eine Prinzipdarstellung eines Sensors auf der Basis einer Fluoreszenzplatte,
Fig. 2
eine Anordnung mit zwei gekrümmten Fluoreszenzplatten,
Fig. 3
eine Anordnung zur Messung in drei Spektralbereichen,
Fig. 4, 5
spezielle Ausführungsformen der Austrittskante,
Fig. 6
Optik zur Fokussierung der Austrittskeule auf die Meßfläche,
Fig. 7
eine Schaltungsprinzip für den getakteten Betrieb von Leuchtstoffröhren,
Fig. 8
ein Ablaufschema der getakteten Ansteuerung der Leuchtstoffröhren,
Fig. 9
ein Prinzipschaltbild für den getakteten Betrieb von Leuchtdioden.
Die Fig. 1 zeigt in einem ersten Ausführungsbeispiel eine stark schematisierte Anordnung der erfindungsgemäßen Einrichtung zur Prüfung von Wertpapieren, beispielsweise Banknoten, mit Hilfe zweier Spektralquellen und einer Fluoreszenzplatte.
Mittels eines Transportsystems 6 wird eine Banknote 1 in Pfeilrichtung 2 an der Sensoranordnung vorbeigeführt. Der Beleuchtungsteil des Sensors besteht aus einer Fluoreszenzplatte 3, zwei Leuchtstoffröhren 4 und einer weiteren Beleuchtungseinrichtung 5, beispielsweise Leuchtdioden. Die Platte 3 besteht aus einem Kunststoff, in welchem ein fluoreszierender Farbstoff homogen verteilt ist. Solche Platten sind kommerziell erhältlich. Die unmittelbar neben der Platte angeordneten Leuchtstoffröhren 4 beleuchten die Oberfläche der Platte mit Licht einer kurzen Wellenlänge. Das Licht dringt in die Platte ein und wird vom Farbstoff absorbiert; ein großer Teil der absorbierten Energie wird als Fluoreszenzlicht bei einer längeren Wellenlänge als der absorbierten wieder emittiert. Das Spektrum des Fluoreszenzlichts ist typischerweise eine circa 100 Nanometer breite Bande, je nach Farbstoff liegt der Wellenlängenschwerpunkt bei den derzeit erhältlichen Platten in einem Bereich vom Blauen bis in das ferne Rot. Aufgrund von Totalreflexion innerhalb der Platte tritt das Fluoreszenzlicht hauptsächlich an den Schmalseiten bzw. Kanten der Platte aus. Um die Lichtverluste klein zu halten, werden die Kanten der Platte, die nicht als Ein- oder Austrittskanten für das Licht benötigt werden, verspiegelt. Für einen guten Wirkungsgrad sind die Leuchtstofflampen und die Fluoreszenzplatte in ihren Spektren aufeinander abzustimmen. Leuchtstofflampen mit einer Emmission im blauen Spektralbereich eignen sich für grün bis rot emittierende Fluoreszenzplatten, während für blau emittierende Platten eine im ultravioletten Bereich strahlende Lampe vorzuziehen ist.
Die Fluoreszenzplatte 3 dient erfindungsgemäß gleichzeitig als Lichtleiter für die zweite Beleuchtungseinrichtung 5. Für eine effektive Lichteinkopplung wird diese unmittelbar über der Eintrittskante 7 der Platte, gegebenenfalls über optische Kopplungsmedien, angeordnet. Das Licht der hier beispielsweise verwendeten Leuchtdioden dringt in die Platte ein und wird durch Totalreflektion an Grund- und Deckfläche zur Austrittskante geführt. Die Wellenlänge der Dioden ist zur Vermeidung von Verlusten so zu wählen, daß sie nicht in ein Absorptionsband der Fluoreszenzplatte fällt.
Das Licht beider Spektralquellen verläßt die Platte an der Austrittskante 9 und bewirkt entsprechend der Geometrie der Austrittsfläche die homogene Ausleuchtung einer streifenförmigen Fläche bei hoher Leuchtdichte.
Das von der Banknote remittierte oder durchgelassene Licht kann von mehreren Detektoren 13, 14, 15 erfaßt werden. Vorzugsweise werden hierfür Zeilendetektoren verwendet wie beispielsweise ein CCD-Array. Die Signale der Detektoren können allein oder entsprechend kombiniert ausgewertet werden. Bei der Anordnung der Bauteile ist generell darauf zu achten, daß an geeigneten Stellen Abschirmungen 11 anzubringen sind, um das Auftreffen von Streulicht oder Fremdlicht auf die Detektoren zu vermeiden. Sollten getrennte Farbauszüge bewertet werden, werden die beiden Beleuchtungsquellen 4 und 5 im Zeit-Multiplexverfahren betrieben, das heißt, sie werden im Wechseltakt hell und dunkel geschaltet. Das Auslesen der Detektoren erfolgt gleichphasig mit dem Wechseltakt; das resultierende Meßsignal erhält deshalb in abwechselnder Folge die beiden Farbauszüge, die sich so getrennt speichern und/oder verarbeiten lassen.
Die Fig. 2 zeigt eine Ausführungsform der erfindungsgemäßen Einrichtung, die zur Erzielung einer homogenen Ausleuchtung der Meßfläche zwei symmetrisch angeordnete Fluoreszenzplatten 20, 21 aufweist. Um einen kompakten Sensor zu erhalten, sind die beiden Platten 20, 21 um die Beleuchtungseinrichtung 4 gewölbt angeordnet. So lange der Biegeradius deutlich größer als die Plattendicke ist, sind die Lichtverluste durch Lichtaustritt an den Oberflächen der Platte vernachlässigbar. Das Licht der Beleuchtungseinrichtungen wird analog zu Fig. 1 eingekoppelt. Die Leuchdioden 24, 25 sind an den Schmalseiten 22, 23 der Platte angeordnet; die Leuchstoffquelle 4 beleuchtet die Oberflächen der Fluoreszenzplatten 20, 21. Die Innenseiten der Stütz strukturen 38 und 39 sind verspiegelt; dadurch wird das in alle Raumrichtungen ausgestrahlte Licht der Leuchtstoffquelle 4 auf die Fluoreszenzplatten zurückgeworfen. Bei der gezeigten Ausführungsform kann bevorzugt eine U-förmige Leuchtstofflampe eingesetzt werden, wobei die Beobachtung durch den Spalt der Lampe möglich ist. Eine geeignete Lampe hierfür ist beispielsweise die sogenannte Dulux-S-Lampe von Osram.
Zur Auskopplung des Lichts sind die beiden Austrittskanten der Fluoreszenzplatten 20, 21 abgeschrägt und eventuell verspiegelt. Die Schrägen koppeln die Lichtstrahlen unter einem bestimmten Winkel aus den Platten aus und führen sie auf den gewünschten Bereich der Banknote 1. Die Winkel der Schrägen können so gewählt werden, daß sich die beiden Austrittskeulen 32 und 33 der Fluoreszenzplatten auf der Banknote mehr oder weniger stark überlappen.
Der Detektor 13 ist in einem Schacht 68 zwischen den beiden Beleuchtungsteilen angeordnet und so vor Streulicht gut geschützt. Mit einem im Schacht angeordneten Abbildungssystem 12 kann der gewünschte beleuchtete Bereich der Banknote 1 auf den Detektor 13 abgebildet werden. Zum Schutz vor Verschmutzung und Beschädigung wird zwischen dem Transportpfad der Banknoten und der Sensoranordnung eine Abdeckung 40 mit einem Fenster 42 montiert. Zur Trennung der Farbanteile werden, wie in Fig. 1 bereits beschrieben, die Spektralquellen und der Detektor im Zeitmultiplexbetrieb angesteuert.
Im Prinzip kann die dargestellte Anordnung auch zur Messung in drei oder vier Spektralbereichen verwendet werden. Tauscht man beispielsweise eine der beiden Leuchtdiodenreihen 24 oder 25 gegen eine in einer anderen Wellenlänge emittierenden Typ aus, so stehen an der Meßstelle drei Spektralfarben zur Verfügung. Eine vierte Farbe läßt sich durch Verwendung unterschiedlich emittierender Fluoreszenzmoleküle in den beiden Platten 20 und 21 hinzufügen.
Die Fig. 3 zeigt eine alternative Anordnung zur Erzeugung von drei oder mehr Spektralfarben an der Meßstelle. In diesem Fall sind zwei mit verschiedenen Fluoreszenzstoffen versehene Fluoreszenzplatten 45 und 46 über ihre Schmalseiten oder Kanten 49 miteinander verbunden. Die Oberflächen der Kanten und deren Verbindung sind so beschaffen, daß das Licht ungehindert passieren kann. Die beiden Platten 45 und 46 werden von den beiden Leuchtstofflampen 50 und 52 beleuchtet. Zur Erhöhung des Wirkungsgrades sind die beiden Lampen mit geeignet geformten Reflektoren 53 umgeben. Die Fluoreszenzstoffe der Platten und das jeweilige Anregungslicht werden so gewählt, daß das Emissionslicht einer Platte die in Richtung auf die Banknoten nachfolgende Platte möglichst verlustarm passiert. Wie schon in früheren Ausführungsbeispielen beschrieben, dienen die Platten 45, 46 zusätzlich als Lichtleiter für eine weitere Beleuchtungseinrichtung 48.
Wie die bisherigen Ausführungsbeispiele zeigen, besteht ein weiterer Vorteil der Erfindung in der Vielfalt der Möglichkeiten, die einzelnen Komponenten zu kombinieren und die Spektralbereiche und Beleuchtungsgeometrien zu variieren. Der Sensor läßt sich damit optimal den meßtechnischen Anforderungen anpassen. Für Transmissionsmessungen ist es meist ausreichend, die Austrittskante der Fluoreszenzplatte, wie in Fig. 1 gezeigt, direkt als Lichtquelle zu verwenden. Zu beachten ist dabei, daß die Helligkeit monoton mit dem Abstand der Meßfläche abfällt. Ein Helligkeitsmaximum in einem vorbestimmten Abstand vom Sensor kann jedoch durch überlagerung mehrerer Austrittskeulen oder durch optische Abbildung der Austrittsfläche erreicht werden. Die Fig. 2 hat bereits ein erstes Beispiel für das überlagerungsprinzip gezeigt, wo die Zone höchster Helligkeit in einiger Entfernung von den Austrittskanten der Fluoreszenzplatten liegt. Im Überlagerungsbereich haben Abstandsänderungen zwischen Meßobjekt und Beleuchtungsquelle einen geringeren Einfluß auf Änderungen in der Helligkeit.
Die Fig. 4 zeigt ein weiteres Ausführungsbeispiel für das Überlagerungsprinzip. Die Austrittskante der Fluoreszenzplatte 3 ist in diesem Fall über ihre gesamte Länge im Mittelteil mit einer Verspiegelung 56 versehen worden. Durch diese Maßnahme verschiebt sich das Intensitätsmaximum von der Austrittsfläche weg. Die Verminderung der absoluten Helligkeit in der Meßfläche 62 infolge der teilweisen Verspiegelung läßt sich durch Maßnahmen an der Eintrittskante abfangen. Durch eine Verspiegelung 57 der Eintrittskante hat das so zurückgeworfene Licht die erneute Möglichkeit zu einem der beiden Austrittsfenster 59 oder 60 zu gelangen. Beim Verspiegeln der Eintrittskante muß allerdings auf die Durchlässigkeit für das Licht einer Lichtquelle 5 geachtet werden, was beispielsweise durch eine wellenlängenselektive Verspiegelung für das Fluoreszenzlicht oder durch ein entsprechendes Fenster 61 berücksichtigt werden kann.
Die Fig. 5 zeigt ein weiteres Ausführungsbeispiel für das Überlagerungsprinzip. Dabei wird in einem vorbestimmten Abstand ein Bereich 62 optimaler Helligkeit erzeugt und zugleich Streulicht in dem Detektor weitgehend vermieden. Die beiden Fluoreszenzplatten 64 und 65 sind in diesem Fall unter 45° zur Meßfläche angeordnet, die Austrittsflächen 55 bei beiden Platten zeigen somit auf einen gemeinsamen Flächenbereich. Zwischen den beiden Platten befindet sich der Detektorschacht 68, in dem in der bekannten Weise eine Abbildungsoptik 12 und ein Lineardetektor 13 angeordnet sind. Eine teilweise Verspiegelung 66 der Austrittskanten in Verbindung mit der symmetrischen Anordnung verlegt die Zone 62 maximaler Helligkeit vom Sensor weg in einen Bereich, der vom Dokument 1 passiert wird. Die Beleuchtungseinrichtungen, die hier im Detail nicht dargestellt sind, können, wie es beispielsweise in Fig. 2 gezeigt ist, gewählt werden.
Qualitativ hochwertige Helligkeitskonzentrationen erhält man mit Hilfe optischer Abbildungen der Austrittskante. Hierzu ist zunächst zu bemerken, daß prinzipiell mit Hilfe jeder sphärischen oder zylindrischen Abbildungsoptik ein Bild der Austrittskante in der Meßfläche erzeugt werden kann. Wegen der beengten Raumverhältnisse in einem Sensormodul und der besonderen Beleuchtungs- und Beobachtungsanforderungen werden insbesondere kompakte Optiken bevorzugt, die zugleich mehrere optische Funktionen erfüllen, wie beispielsweise die gleichzeitige Umlenkung und Fokussierung von Lichtstrahlen.
Die Fig. 6 zeigt einen Schnitt durch ein symmetrisch aufgebautes Sensormodul, wobei das Licht der Fluoreszenzplatten 3 mit einer abbildenden Umlenkoptik auf die Meßfläche projiziert wird. Die Farbanteile des Lichts werden in der bereits beschriebenen Weise erzeugt und zu den Austrittskanten der Fluoreszenzplatten 3 geleitet. Nach dem Verlassen der Platte trifft das Licht auf die abbildende Umlenkoptik 71. Das Umlenken und Abbilden erfolgt durch Reflexion der Lichtstrahlen an den beiden verspiegelten Flächen 73 und 74. Der Strahlengang für die Randstrahlen der Austrittskeule ist anhand strichlierter Linien dargestellt. Das Licht dringt zunächst in den Glaskörper 71 ein und wird an der verspiegelten Fläche 73 reflektiert; die Fläche 73 ist ein Ausschnitt aus einer Parabelfläche, die so geformt ist, daß das Licht als Parallelstrahlbündel zur Fläche 74 reflektiert wird. Die Fläche 74, die ebenfalls die Form einer Parabelfläche hat, fokussiert das Licht auf die Meßfläche 63. Zum Schutz des Glaskörpers vor Beschädigung und Verschmutzung ist in den Strahlengang eine Schutzschicht 76 mit Fenster eingefügt. Der Fokuspunkt ist aufgrund der Stellung der Parabelflächen bezüglich des Glaskörpers seitlich verschoben und liegt genau unter dem Detektorschacht 68. Symetrisch zum Detektorschacht ist spiegelbildlich eine zweite Umlenkoptik 72 angeordnet, sie sorgt in der Meßfläche für eine homogene und weitgehend abstandsunabhängige Ausleuchtung. Das Abtasten der vorbeilaufenden Banknote 1 in der Meßfläche erfolgt mit Hilfe einer Abbildungsoptik 12 und einem Zeilendetektor 13. Die Wände 79 des Detektorschachts sind lichtundurchlässig und schützen den Sensor vor Streulicht.
Der gesamte optische Aufbau des Sensormoduls läßt sich äußerst kompakt gestalten, vorteilhaft beim Zusammenbau ist die unkritische Positionierung der optischen Komponenten. Als positive Eigenschaft des Sensoraufbaus kommt hinzu, daß die Komponenten - da Justiervorrichtungen nicht notwendig sind - praktisch während der Lebensdauer der Spektralquellen völlig justierfrei sind; was eine gute Reproduzierbarkeit der Meßergebnisse gewährleistet.
Ebenso wie die Optik haben auch die Spektralquellen über lange Zeiträume gleichbleibende Meßbedingungen zu gewährleisten, das bedeutet unter anderem, daß sie in ihrer Helligkeit zeitlich zu stabilisieren sind. Als weitere Forderung kommt hinzu, daß die Spektralquellen im Wechseltakt an- und abschaltbar sein müssen, damit man durch Zeitmultiplexbetrieb beispielsweise getrennte Farbauszüge der Banknoten erhalten kann. Um diese Forderungen zu erfüllen, werden gemäß einer Weiterbildung der Erfindung spezielle Schaltregeler zur Ansteuerung der Spektralquellen vorgeschlagen. Diese Schaltregler steuern die Leistung praktisch nur durch kurzzeitiges Ein- und Ausschalten der Spannungsversorgung. Da sich aber Ein- und Ausschaltvorgänge praktisch verlustfrei durchführen lassen, setzen diese Schaltregler die elektrische Leistung optimal in Lichtleistung um. Kapazitive und induktive Bauteile im Stromkreis der Spektralquellen sorgen für einen weitgehend kontinuierlich Leistungs- und Lichtfluß während der Einschaltphase.
Die Fig. 7 zeigt ein Ausführungsbeispiel eines Schaltreglers für den helligkeitsgeregelten Betrieb einer Leuchtstofflampe. Die Lampe 80 liegt in Serie mit einer Induktivität 81 auf der Sekundärseite eines Transformators 82. In Serie mit den direkt heizbaren Elektroden ist ein Kondensator 84 geschaltet. Die beiden Bauelemente 81 und 84 bilden eine Serienresonanzkreis. Die Gasentladung der Lampe verläuft parallel zur Kapazität. Ein weiterer Resonanzkreis wird durch die Primärwicklung des Transformators 82 mit der Kapazität 85 gebildet. Eine Regelschaltung 87 steuert den Stromfluß auf der Primärseite über einen Schalttransistor 89 mit einer solchen Frequenz und Pulsform, daß bei minimalem Leistungsverbrauch eine vorgebene Helligkeit konstant gehalten wird. Die momentane Helligkeit wird von einem photoelektrischen Detektor 88 erfaßt und an den Regler 87 als Regelsignal weitergegeben. Durch die Variation der Frequenz der Steuerpulse SP kann die Helligkeit der Leuchtstofflampe geregelt werden. Mit Hilfe eines weiteren auf den Regler einwirkenden Signals E/A werden die Steuerpulssequenzen und damit auch die Lampe ein- bzw. ausgeschaltet. Es hat sich gezeigt, daß die Schaltung auch dann noch einwandfrei arbeitet, wenn die Steuerimpulse synchron mit dem E/A-Signal in sogenannten "Bursts" zugeführt werden, wodurch letztlich erst der Multiplexbetrieb mit anderen Strahlungsquellen möglich wird.
Die Fig. 8 zeigt das zeitliche Zusammenwirken des E/A-Signals mit den Steuerimpulsen SP der Regelschaltung und der Intensität I der Leuchtstofflampe. Das E/A-Signal bestimmt die Ein- bzw. Ausschaltphasen der Leuchtstofflampe. Jeweils bei positivem E/A-Signal wird eine Folge von Schaltpulsen SP erzeugt. Abhängig von dem Signal eines Helligkeitssensors wird die Frequenz der Schaltpulse in der Weise geregelt, daß beispielsweise bei einem Absinken der Helligkeit durch Erhöhung der Frequenz die Leistungszufuhr zur Lampe gesteigert wird. Die induktiven und kapazitiven Bauteile der Schaltung glätten den Leistungsfluß zur Lampe und gewährleisten über die Einschaltdauer eine weitgehend gleichbleibende Helligkeit. Bei Banknotenautomaten, die die Banknoten mit Geschwindigkeiten mit mehreren Metern pro Sekunde transportieren, liegt die Frequenz des E/A-Signals in der Größe von etwa 10 Kilohertz. Um eine Regelbarkeit der Helligkeit zu erreichen, wird die Frequenz der Steuerpulse vorzugsweise um einen Faktor 10 höher gewählt.
Auch die Leuchtdioden müssen in Gegenphase zur Leuchtstofflampe periodisch ein- und ausgeschaltet werden, wobei ebenfalls eine Helligkeitsregelung notwendig ist.
Ein Prinzipschaltbild für einen Schaltregler, der auf die Kennlinie der Leuchtdioden abgestimmt ist, ist in Fig. 9 wiedergegeben. Die Leuchtdioden 90 sind in Serie geschaltet und werden somit mit einer Spannungsversorgung betrieben werden. Da die Lichtabstrahlung von Leuchtdioden etwa linear mit dem Durchgangsstrom zunimmt, kann sie über eine Pulsbreitenmodulation des Stromes geregelt werden. Hierzu ist in Serie mit den Leuchtdioden ein Schalttransistor 95 vorgesehen, welcher von einem Pulsbreitenmodulator 99 angesteuert wird. Ein Sensor 96, der die Helligkeit der Dioden aufnimmt, führt sein Signal dem Pulsbreitenmodulator zu. Je nach Signalhöhe dieses Sensors wird die Pulsbreite der Schaltimpulse in der Weise verändert, daß seine gleichbleibende Helligkeit gewährleistet ist. Um die Strom- und Spannungspitzen während der Einschaltperiode der Steuerpulse zu glätten, ist die Induktivität 91 in Serie mit den Leuchtdioden geschaltet. Diese begrenzt beim Einschalten den Stromanstieg des Schalttransistors 95. Die in der Spule gespeicherte Energie wird nach dem Ausschalten des Schalttransistors über die Freilaufdiode 93 den Dioden 90 zugeführt, wodurch der Stromfluß auch in den Ausschaltpausen des Transistors aufrecht gehalten wird. Den gleichen Zweck hat auch die zu den Leuchtdioden parallel liegende Kapazität 98. Um einen Regelbereich aufrecht zu erhalten, ist es auch hier notwendig die Schaltfrequenz gegenüber dem Maschinentakt um mindestens um einen Faktor 10 zu erhöhen.
Neben der verlustlosen Helligkeitsregelung der Spektralquellen haben die in den Fig. 7 und 9 dargestellten Schaltungen den weiteren Vorteil, daß die Versorgungsspannung in weiten Grenzen schwanken kann, ohne daß die Reproduzierbarkeit der Meßsignale beeinträchtigt wird.

Claims (16)

  1. Vorrichtung zur Prüfung von Dokumenten mit einer optischen Einrichtung (4, 5, 24, 25) zur Beleuchtung des Dokuments (1) in wenigstens einem Spektralbereich und mit einer Einrichtung (13, 14, 15) zur Aufnahme des vom Dokument remittierten und/oder des durch das Dokument transmittierten Lichts, dadurch gekennzeichnet, daß die Beleuchtungseinrichtung aus wenigstens einem mit Fluoreszenzstoff versehenen Lichtleiter (3, 20, 21, 45, 46, 64, 65) besteht, über den wenigstens zwei Lichtanteile unterschiedlicher Wellenlänge auf einen gemeinsamen Bereich (62, 63) des Dokuments (1) geführt werden.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Lichtleiter (3, 20, 21, 45, 46, 64, 65) ein Kunststoffkörper ist mit mehreren ebenen oder gekrümmten Flächen (73, 74) und mehreren Schmalseiten oder Kanten (7, 9, 22, 23, 47, 48, 59, 60, 61, 55) und daß der erste Lichtanteil das Fluoreszenzlicht ist, welches durch Anregung einer auf wenigstens eine der Flächen gerichteten Strahlung einer Lichtquelle (4) entsteht und an einer dem Dokument (1) zugewandten Kante austritt.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der zweite Lichtanteil von einer Lichtquelle (5) stammt, deren Licht über eine der Kanten ein- und über die dem Dokument (1) zugewandte Kante austritt.
  4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der zweite Lichtanteil das Fluoreszenzlicht eines weiteren Lichtleiters (3) ist, der an den ersten Lichtleiter optisch gekoppelt ist.
  5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Lichtleiter eine Platte (3) ist, daß die erste Lichtquelle aus einer oder mehreren Leuchtstofflampen (4) besteht, deren Licht über eine Fläche der Platte (3) eingekoppelt wird und daß die zweite Lichtquelle aus einer oder mehreren lichtemittierenden Dioden (5, 24, 25) besteht, deren Licht über eine Schmalseite (7, 22, 23) in die Platte eingekoppelt wird.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwei Lichtleiter (64, 65) vorgesehen sind, die in einem Winkel von etwa 45° bezogen auf die Normale des Dokuments (1) zueinander ausgerichtet und derart zum Dokument positioniert sind, daß das Dokument im Überlagerungsbereich (62) der Emissionskeulen liegt.
  7. Vorrichtung nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß die Austrittskante des Lichtleiters mit optisch spiegelnden Teilflächen (56, 66) versehen wird zur Beeinflussung der Form der Lichtaustrittskeule.
  8. Vorrichtung nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß zwischen der Austrittskante des Lichtleiters (3) und dem Dokument (1) eine optische Einheit (71) vorgesehen ist, die die Austrittskante des Lichtleiters auf das Dokument (1) abbildet.
  9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Lichtquellen (80, 90) mit Schaltreglern (81 - 89, 91 - 99) verbunden sind, die sowohl die Ein-/Ausschaltphasen als auch die Helligkeit der Lichtquellen regeln.
  10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Beleuchtungseinrichtung aus zwei mit Fluoreszenzstoff versehenen Lichtleitern (3) besteht und daß ein optisches Element (71) vorgesehen ist, über das die Lichtanteile der Lichtleiter umgelenkt und auf eine gemeinsame Fläche (63) des Dokuments (1) fokussiert werden.
  11. Verfahren zur Prüfung von Dokumenten (1), die mit Licht unterschiedlicher Spektralbereiche beleuchtet und zur Aufnahme des vom Dokument (1) remittierten und/oder transmittierten Lichts abgetastet werden, dadurch gekennzeichnet, daß die Lichtanteile unterschiedlicher Wellenlänge über je einen mit Fluoreszenzstoff versehenen Lichtleiter (3, 20, 21, 45, 46, 64, 65) auf einen gemeinsamen Bereich des Dokuments (1) geführt werden, wobei die Lichtanteile unterschiedlicher Wellenlänge im Zeitmultiplexverfahren ein- und ausgeschaltet werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß zur Erzeugung des Lichtanteils einer ersten Wellenlänge die Fläche des Lichtleiters mit dem Anregungslicht des Fluoreszenzstoffs bestrahlt wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur Erzeugung des Anregungslichts Leuchtstofflampen verwendet werden, wobei die Lampen mit einem Schaltregler (81 - 89, 91 - 99) verbunden sind, der synchron zum Ein-/ Ausschaltvorgang der Lampe von deren Helligkeit abhängige Steuerimpulssequenzen (Bursts) erzeugt.
  14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Licht einer zweiten Wellenlänge in Lichtleitertechnik über den mit Fluoreszenzstoff versehenen Lichtleiter (3, 20, 21, 45, 46, 64, 65) auf das Dokument (1) geführt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß zur Erzeugung des Lichts Leuchtdioden (5, 24, 25, 90) verwendet werden, die mit einem Schaltregler (91 - 99) verbunden sind, der synchron zum Ein- und Ausschaltvorgang der Leuchtdioden in der Impulsbreite modulierte Steuersignale erzeugt.
  16. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß wenigstens zwei Lichtanteile unterschiedlicher Wellenlänge über wenigstens einen mit Fluoreszenzstoff versehenen Lichtleiter (3, 20, 21, 45, 46, 64, 65) auf den gemeinsamen Bereich des Dokuments (1) geführt werden, wobei die Lichtanteile im Zeitmultiplexverfahren ein- und ausgeschaltet werden.
EP91111438A 1990-07-11 1991-07-09 Vorrichtung und Verfahren zur Prüfung von Dokumenten Expired - Lifetime EP0466119B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022020 1990-07-11
DE4022020A DE4022020A1 (de) 1990-07-11 1990-07-11 Vorrichtung und verfahren zur pruefung von dokumenten

Publications (3)

Publication Number Publication Date
EP0466119A2 EP0466119A2 (de) 1992-01-15
EP0466119A3 EP0466119A3 (en) 1997-04-16
EP0466119B1 true EP0466119B1 (de) 1999-09-29

Family

ID=6410046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91111438A Expired - Lifetime EP0466119B1 (de) 1990-07-11 1991-07-09 Vorrichtung und Verfahren zur Prüfung von Dokumenten

Country Status (5)

Country Link
US (1) US5280333A (de)
EP (1) EP0466119B1 (de)
JP (1) JP3051207B2 (de)
AT (1) ATE185212T1 (de)
DE (2) DE4022020A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1587030A1 (de) * 2003-01-23 2005-10-19 Aruze Corp. Identifikationssensor
CN104215613A (zh) * 2013-06-03 2014-12-17 日立欧姆龙金融系统有限公司 纸张类识别装置以及光学传感器装置

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272331A (en) * 1992-04-27 1993-12-21 Unisys Corporation Document imaging camera with lamp bent into symmetrical lamp segments
AT403967B (de) * 1992-11-18 1998-07-27 Oesterr Nationalbank Dokument und folienaufbau zur herstellung eines dokumentes
JP3678748B2 (ja) * 1994-01-04 2005-08-03 マース,インコーポレーテッド 偽造紙幣等の偽造物の検出
US5918960A (en) * 1994-01-04 1999-07-06 Mars Incorporated Detection of counterfeit objects, for instance counterfeit banknotes
JP3307787B2 (ja) * 1994-02-15 2002-07-24 ローレルバンクマシン株式会社 紙幣処理機の紙幣判別装置
AT402861B (de) * 1994-03-28 1997-09-25 Oesterr Forsch Seibersdorf Verfahren und anordnung zum erkennen bzw. zur kontrolle von flächenstrukturen bzw. der oberflächenbeschaffenheit
US5719948A (en) * 1994-06-24 1998-02-17 Angstrom Technologies, Inc. Apparatus and methods for fluorescent imaging and optical character reading
US5825911A (en) * 1994-12-09 1998-10-20 Fuji Xerox Co., Ltd. Device for ascertaining the authenticity of an article and image forming apparatus used for preventing bank bills, securities and the like from being, forged
JP3345239B2 (ja) * 1995-01-11 2002-11-18 ローレルバンクマシン株式会社 紙幣判別装置
US5668377A (en) * 1996-03-27 1997-09-16 Erickson; Win Point of sale counterfeit detection apparatus
US7513417B2 (en) * 1996-11-15 2009-04-07 Diebold, Incorporated Automated banking machine
US7584883B2 (en) * 1996-11-15 2009-09-08 Diebold, Incorporated Check cashing automated banking machine
US5923413A (en) 1996-11-15 1999-07-13 Interbold Universal bank note denominator and validator
US6573983B1 (en) 1996-11-15 2003-06-03 Diebold, Incorporated Apparatus and method for processing bank notes and other documents in an automated banking machine
US7559460B2 (en) * 1996-11-15 2009-07-14 Diebold Incorporated Automated banking machine
EP0935223A1 (de) * 1998-02-05 1999-08-11 Ascom Autelca Ag Vorrichtung zum Prüfen von Wertpapieren
DE19820057A1 (de) * 1998-05-05 1999-11-11 Computer Ges Konstanz Verfahren und Einrichtung zur Erkennung von Dokumenten im Durchlichtbetrieb
US6304660B1 (en) 1998-05-29 2001-10-16 Welch Allyn Data Collection, Inc. Apparatuses for processing security documents
DE19901702A1 (de) 1999-01-18 2000-07-20 Giesecke & Devrient Gmbh Verfahren zur Überprüfung des Zustandes einer Vorrichtung zur Prüfung von Blattgut
GB2366371A (en) * 2000-09-04 2002-03-06 Mars Inc Sensing documents such as currency items
GB0028263D0 (en) * 2000-11-20 2001-01-03 Rue De Int Ltd Document handling apparatus
JP3518518B2 (ja) * 2001-03-05 2004-04-12 松下電器産業株式会社 紙幣識別装置
DE10113268B4 (de) * 2001-03-16 2021-06-24 Bundesdruckerei Gmbh Sensor für die Echtheitserkennung von Sicherheitsmerkmalen auf Wert und/oder Sicherheitsdokumenten
DE10160578A1 (de) * 2001-12-10 2004-02-12 Giesecke & Devrient Gmbh Verfahren und Vorrichtung für die Überprüfung der Echtheit von Blattgut
DE60229304D1 (de) * 2002-09-17 2008-11-20 Riparazioni Macchine Grafiche Prüfvorrichtung für sicherheitspapiere
EP1429297A1 (de) * 2002-12-13 2004-06-16 Mars, Inc. Vorrichtung zur Klassifizierung von Banknoten
EP1429296A1 (de) * 2002-12-13 2004-06-16 Mars, Inc. Vorrichtung zur Klassifizierung von Banknoten
DE10259293A1 (de) * 2002-12-18 2004-07-22 Giesecke & Devrient Gmbh Vorrichtung für die Überprüfung der Echtheit von Banknoten
JP4334911B2 (ja) * 2003-05-28 2009-09-30 ローレル精機株式会社 紙幣画像検出装置
JP4334910B2 (ja) * 2003-05-28 2009-09-30 ローレル精機株式会社 紙幣画像検出装置
DE10326369A1 (de) * 2003-06-06 2005-01-05 Biostep Labor- Und Systemtechnik Gmbh Transilluminator
GB0319884D0 (en) * 2003-08-23 2003-09-24 Ncr Int Inc An optical sensor and method of operation thereof
DE102004059951A1 (de) * 2004-08-17 2006-02-23 Giesecke & Devrient Gmbh Vorrichtung zur Untersuchung von Dokumenten
KR100616613B1 (ko) * 2004-08-27 2006-08-28 삼성전기주식회사 U자형 램프용 백라이트 인버터
WO2006065808A2 (en) * 2004-12-14 2006-06-22 Mars Incorporated Document processor with optical sensor arrangement
JP2006252398A (ja) * 2005-03-14 2006-09-21 It-Fk Inc コイン機器およびそれに用いるセンサ
DE102005042991A1 (de) * 2005-09-09 2007-03-22 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Testen von Wertdokumenten
JP4645536B2 (ja) * 2006-06-20 2011-03-09 富士電機リテイルシステムズ株式会社 紙葉類鑑別装置
DE102007016394A1 (de) * 2007-04-03 2008-10-09 Giesecke & Devrient Gmbh Sicherheitselement
GB0801479D0 (en) 2008-01-26 2008-03-05 Smartwater Res Ltd Improvements to methods of in field analysis
NL1035110C2 (nl) * 2008-02-29 2009-09-01 Nl Bank Nv Inrichting voor het bepalen van een vervuiling van een waardedocument.
JP4902785B2 (ja) 2008-03-25 2012-03-21 三菱重工プラスチックテクノロジー株式会社 二材成形用射出成形機及びその制御方法
US20100072023A1 (en) * 2008-09-19 2010-03-25 John Pai Bill-Receiving Apparatus
JP5367509B2 (ja) * 2009-08-27 2013-12-11 株式会社東芝 光検出装置、及びこの光検出装置を備える紙葉類処理装置
DE102009058244A1 (de) 2009-12-14 2011-06-16 Giesecke & Devrient Gmbh Vorrichtung für die Untersuchung eines Gegenstands, vorzugsweise eines Wertdokuments, unter Verwendung optischer Strahlung
DE102010055428A1 (de) 2010-12-21 2012-06-21 Giesecke & Devrient Gmbh Verschmutzungsprüfung des Fensters einer Messvorrichtung zur Prüfung von Blattgut
JP6528170B2 (ja) * 2015-03-12 2019-06-12 シーシーエス株式会社 ライン光照射装置
JP6802601B2 (ja) * 2016-06-24 2020-12-16 キヤノンファインテックニスカ株式会社 媒体識別装置、給紙装置、画像形成装置および画像形成システム
US10013604B1 (en) * 2016-06-24 2018-07-03 X Development Llc Flexible form factor overlay device
WO2018181134A1 (ja) * 2017-03-27 2018-10-04 グローリー株式会社 光センサ、光検出装置、紙葉類処理装置、光検出方法及び燐光検出装置
JP6863350B2 (ja) * 2018-09-07 2021-04-21 Jfeスチール株式会社 金属帯表面の検査方法および金属帯表面の検査装置
DE102019005029A1 (de) * 2019-07-18 2021-01-21 Giesecke+Devrient Currency Technology Gmbh Lichtquellen-treiberschaltung, optisches messgerät mit der lichtquellen-treiberschaltung, vorrichtung zum prüfen von wertdokumenten, und verfahren zum betreiben einer lichtquellen-last mittels der lichtquellen-treiberschaltung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB700829A (en) * 1950-10-04 1953-12-09 Forges Ateliers Const Electr Improvements in illuminating systems for signs or display panels
US3463927A (en) * 1966-08-02 1969-08-26 Robert W Allington Apparatus for measuring absorbance differences
US3822097A (en) * 1973-01-10 1974-07-02 Instrumentation Specialties Co Optical system
DE2631403A1 (de) * 1976-07-13 1978-01-19 Rudolf Hopt Vorrichtung zur pruefung eines datentraegers
DE2641130C3 (de) * 1976-09-13 1980-05-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Einrichtung zur Ermittlung der Dichte einer Druckvorlage
DE3027769A1 (de) * 1980-07-22 1982-02-25 Videoton Elektronikal Vallalat, Szekesfehervar Optoelektronisches belichtungs- und abfuehlgeraet
CH653162A5 (de) * 1981-10-27 1985-12-13 Landis & Gyr Ag Einrichtung zur echtheitspruefung von dokumenten.
JPS61119U (ja) * 1984-06-07 1986-01-06 株式会社 ワコム 透視装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1587030A1 (de) * 2003-01-23 2005-10-19 Aruze Corp. Identifikationssensor
EP1587030A4 (de) * 2003-01-23 2011-05-18 Aruze Corp Identifikationssensor
CN104215613A (zh) * 2013-06-03 2014-12-17 日立欧姆龙金融系统有限公司 纸张类识别装置以及光学传感器装置
CN104215613B (zh) * 2013-06-03 2017-12-15 日立欧姆龙金融系统有限公司 纸张类识别装置以及光学传感器装置

Also Published As

Publication number Publication date
US5280333A (en) 1994-01-18
EP0466119A3 (en) 1997-04-16
EP0466119A2 (de) 1992-01-15
DE4022020A1 (de) 1992-01-16
JP3051207B2 (ja) 2000-06-12
ATE185212T1 (de) 1999-10-15
JPH04288697A (ja) 1992-10-13
DE59109157D1 (de) 1999-11-04

Similar Documents

Publication Publication Date Title
EP0466119B1 (de) Vorrichtung und Verfahren zur Prüfung von Dokumenten
EP0824736B1 (de) Vorrichtung und verfahren zur prüfung von blattgut, wie z.b. banknoten oder wertpapiere
EP1245007B1 (de) Vorrichtung und verfahren zur echtheitsprüfung von banknoten
DE60314667T2 (de) Optische messvorrichtung zur bestimmung optischer merkmale von wertpapieren
EP0943087B1 (de) Vorrichtung und verfahren zur detektion von fluoreszentem und phosphoreszentem licht
DE19924750C2 (de) Leseanordnung für Informationsstreifen mit optisch kodierter Information
EP2513875B1 (de) Spektralsensor zur prüfung von wertdokumenten
DE60101210T2 (de) Gerät und verfahren zum überprüfen eines dokumentes
EP0762174B1 (de) Vorrichtung zur linienförmigen Beleuchtung von Blattgut, wie z.B. Banknoten oder Wertpapiere
DE102009058804A1 (de) Sensor zur Prüfung von Wertdokumenten
EP1160719B1 (de) Sensor für die Echtheitserkennung von Signets auf Dokumenten
EP1112555B1 (de) Verfahren und Vorrichtung zur Zustandsprüfung von Wertpapieren mittels einer Dunkelfeldmessung als auch einer Hellfeldmessung.
DE10000030A1 (de) Kamerasystem für die Bearbeitung von Dokumenten
DE3242447A1 (de) Photoelektrische textilbahnkontrollvorrichtung
EP2513874A1 (de) Sensor zur prüfung von wertdokumenten
EP1265198A2 (de) Vorrichtung und Verfahren zur Untersuchung von Dokumenten
EP1789933A1 (de) Verfahren und vorrichtung zum messen von blattgut
DE2713396A1 (de) Verfahren und vorrichtung zur kennzeichnung oder identifizierung eines leuchtmaterial enthaltenden oder tragenden koerpers
DE10137043A1 (de) Vorrichtung zur Untersuchung von Wertdokumenten
DE19811150A1 (de) Dünnschichtchromatographiegerät
DE102017008970B4 (de) Sensorvorrichtung und Verfahren zur Prüfung von Wertdokumenten, insbesondere Banknoten, sowie Wertdokumentbearbeitungssystem
CH617769A5 (en) Method and device for identifying bodies containing or carrying a luminous material
WO2011091963A2 (de) Beleuchtungseinrichtung und sensor zur prüfung von wertdokumenten
AT376505B (de) Verfahren zur pruefung des verschmutzungsgrades von banknoten
WO1992015841A1 (de) Einrichtung für das übertragen von licht auf einer drehenden welle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19970917

17Q First examination report despatched

Effective date: 19971120

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990929

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990929

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

REF Corresponds to:

Ref document number: 185212

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990929

REF Corresponds to:

Ref document number: 59109157

Country of ref document: DE

Date of ref document: 19991104

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000721

Year of fee payment: 10

Ref country code: CH

Payment date: 20000721

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

26N No opposition filed
BERE Be: lapsed

Owner name: G.- FUR AUTOMATION UND ORGANISATION M.B.H. GOA

Effective date: 20000731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010423

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010924

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020709