EP0465376A1 - High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification - Google Patents

High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification Download PDF

Info

Publication number
EP0465376A1
EP0465376A1 EP91420177A EP91420177A EP0465376A1 EP 0465376 A1 EP0465376 A1 EP 0465376A1 EP 91420177 A EP91420177 A EP 91420177A EP 91420177 A EP91420177 A EP 91420177A EP 0465376 A1 EP0465376 A1 EP 0465376A1
Authority
EP
European Patent Office
Prior art keywords
alloy
spinning
less
magnesium
compacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91420177A
Other languages
German (de)
French (fr)
Other versions
EP0465376B1 (en
Inventor
Gilles Nussbaum
Damien Deweirder
Haavard T. Gjestland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Norsk Hydro ASA
Original Assignee
Pechiney Electrometallurgie SAS
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Electrometallurgie SAS, Norsk Hydro ASA filed Critical Pechiney Electrometallurgie SAS
Publication of EP0465376A1 publication Critical patent/EP0465376A1/en
Application granted granted Critical
Publication of EP0465376B1 publication Critical patent/EP0465376B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the present invention relates to magnesium alloys with high mechanical strength containing strontium and their manufacturing process. It relates in particular to the commercial magnesium alloys listed under the names AZ 31, AZ 61, AZ 80 (wrought alloys) and AZ 91, AZ 92 (casting alloys), according to the ASTM standard (or alternatively G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1, G-A9Z2 according to French standard NFA 02-004) to which strontium has been added. These alloys can contain manganese and / or calcium as addition elements.
  • the rare earths must be refined to contain very little Fe, Ni or Cu, which significantly increases their price. They are also difficult to introduce into the liquid magnesium bath because of their high reactivity with oxygen. Due to their high density, it is more difficult to obtain good homogeneity of the bath during their introduction.
  • This alloy may also contain, as an addition, at least one of the elements Zn and / or Ca in the following proportions:
  • the matrix consists of fine magnesium grains with an average size of less than 3 ⁇ m or more advantageously not exceeding approximately 1 ⁇ m; it is reinforced by precipitates of intermetallic compounds dispersed homogeneously, preferably at the grain boundaries, of variable size and nature depending on the chemical composition of the alloy.
  • Al4Sr, Mg2Sr, Mg17Sr2 and / or Mg17Al12 are preferably found in the grains for sizes less than 0.1 ⁇ m and at grain boundaries for larger sizes between 0.1 and 1 ⁇ m; this is the case for the Mg17Al12 compounds.
  • Sr can also be found in solid solution in Mg and Mg17Al12.
  • Ca is present in sufficient quantity in the alloy, it is found in solid solution in Mg17Al12 and in the form of fine metastable globules rich in Al and Ca of size less than 0.1 ⁇ m, dispersed in the matrix of Mg and possibly transform into Al2Ca by heat treatment.
  • the alloy according to the invention is usually obtained by the rapid solidification processes and the various modes of implementation, described in application EP 89-903172, which form an integral part of the description.
  • the alloy in the liquid state is subjected to rapid solidification, at a speed at least equal to 104K sec ⁇ 1, generally less than 107K sec ⁇ 1, so as to obtain a solidified product, of which at least one dimensions is less than 150 ⁇ m, said product then being consolidated directly by precompaction and compacting or by direct compacting, the compacting taking place at a temperature between 200 and 350 ° C.
  • the solidified product undergoes no other operation conditioning such as grinding before being consolidated by direct precompaction and / or compacting, this operation may be such as to alter the mechanical characteristics of the consolidated alloy obtained.
  • the first two modes of application make it possible to obtain a solid in the form of ribbons, scales or platelets, while the latter gives powder. These processes are described in detail in application EP 89-903 172.
  • the rapidly solidified product can be degassed under vacuum at a temperature less than or equal to 350 ° C. before consolidation.
  • Consolidation is carried out, according to the invention, directly on the products which solidify rapidly, in particular directly on the scales or plates.
  • Consolidation is important to avoid long exposures to high temperatures. We therefore chose to operate a warm spinning which minimizes the time spent at high temperature.
  • the spinning temperature is between 200 and 350 ° C; the spinning ratio is generally between 10 and 40, preferably between 10 and 20, and simultaneously the speed of advance of the pestle is preferably between 0.5 and 3 mm / sec, but it can be higher (for example 5 mm / sec).
  • the solid product before consolidation can be: either introduced directly into the container of a press and then spun, either cold or warm pre-compacted (temperature below 350 ° C.
  • a press for example in the form of a billet whose density is close to 99% of the theoretical density of the alloy, this billet being subsequently spun, either introduced by cold pre-compacting them up to 70% of the theoretical density in a sheath made of magnesium or magnesium alloy or aluminum or aluminum alloy, itself introduced into the container of the spinning press; we can then, after spinning, remove the sheath by machining.
  • the sheath can be thin-walled (less than 1 mm) or thick (up to 4 mm). In all cases, it is preferable that the alloy constituting the sheath has a flow limit not exceeding the order of magnitude of that of the product to be spun, at the spinning temperature.
  • the process according to the invention makes it possible to unexpectedly obtain a consolidated magnesium alloy which has, as already described, a structure of fine grains (less than 3 ⁇ m) stabilized by intermetallic compounds, and / or by metastable dispersoids and high mechanical characteristics.
  • the structure and mechanical properties of said alloy remain unchanged after prolonged maintenance of 24 h and more at a temperature reaching 250 ° C., or even 300 ° C. in certain cases, for example when the alloy contains calcium.
  • the matrix consists essentially of magnesium containing approximately 1% (atomic) of Al in solid solution; the grain size is very fine, and usually between 0.3 and 1 ⁇ m; it depends on the consolidation conditions.
  • the intermetallic phases observed depend on the composition of the alloy and can be Mg17Al12 optionally containing Sr and / or Zn, Mg32 (Al, Zn) 49, Mg17Sr2, Mg2Sr, Al4Sr, and when the alloy contains Ca Al2Ca. Rapid cooling allows the formation of metastable phases.
  • the breaking loads obtained with the alloys according to the invention are high; they generally exceed 400 MPa and are at least of the same level as those obtained for example with the alloys described in the aforementioned applications; moreover, there is an improvement in ductility and hardness.
  • strontium makes it possible to significantly improve the breaking strength, sometimes at the expense of ductility.
  • the corrosion resistance is also very good, because, in addition to a low weight loss in a saline aqueous medium, there is the absence of pitting; the alloys according to the invention retain a very shiny appearance; only a few shallow localized corrosions are observed, having the appearance of antlers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Mg-based alloy which has a breaking load of at least 290 MPa and an elongation at break of at least 5%, obtained by rapid solidification and consolidation and which has the following composition (weight %): Al   2 - 11% Mn   0 - 1% Sr   0.1 - 6% the remainder being magnesium.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne des alliages de magnésium à haute résistance mécanique contenant du strontium et leur procédé de fabrication. Elle concerne en particulier les alliages commerciaux de magnésium répertoriés sous les dénominations AZ 31, AZ 61, AZ 80 (alliages de corroyage) et AZ 91, AZ 92 (alliages de moulage), selon la norme ASTM (ou encore respectivement G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1, G-A9Z2 selon la norme française NFA 02-004) auxquels on a ajouté du strontium. Ces alliages peuvent contenir du manganèse et/ou du calcium comme éléments d'addition.The present invention relates to magnesium alloys with high mechanical strength containing strontium and their manufacturing process. It relates in particular to the commercial magnesium alloys listed under the names AZ 31, AZ 61, AZ 80 (wrought alloys) and AZ 91, AZ 92 (casting alloys), according to the ASTM standard (or alternatively G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1, G-A9Z2 according to French standard NFA 02-004) to which strontium has been added. These alloys can contain manganese and / or calcium as addition elements.

ETAT DE LA TECHNIQUESTATE OF THE ART

La demanderesse a déjà proposé dans la demande EP 89-903 172 des alliages de magnésium obtenus par solidification rapide disposant de caractéristiques mécaniques améliorées; ces alliages peuvent contenir du calcium. Dans la demande FR 89-11357, elle a également proposé des alliages de magnésium de caractéristiques mécaniques améliorées contenant du Ca et des terres rares avec lesquels on note en plus une meilleure tenue à la corrosion.The Applicant has already proposed in Application EP 89-903,172 magnesium alloys obtained by rapid solidification having improved mechanical characteristics; these alloys may contain calcium. In application FR 89-11357, it also proposed magnesium alloys with improved mechanical characteristics containing Ca and rare earths with which there is in addition a better resistance to corrosion.

Au vu de ces bons résultats elle a cependant cherché à s'affranchir de l'emploi d'éléments comme les terres rares qui sont des produits coûteux et nécessitent des précautions d'emploi. En particulier les terres rares doivent être affinées pour ne contenir que très peu de Fe, Ni ou Cu, ce qui accroît significativement leur prix.
Elles sont par ailleurs délicates à introduire dans le bain de magnésium liquide du fait de leur grande réactivité avec l'oxygène. Du fait de leur forte densité il est de plus difficile d'obtenir une bonne homogénéité du bain lors de leur introduction.
In view of these good results, however, it has sought to overcome the use of elements such as rare earths which are expensive products and require precautions for use. In particular, the rare earths must be refined to contain very little Fe, Ni or Cu, which significantly increases their price.
They are also difficult to introduce into the liquid magnesium bath because of their high reactivity with oxygen. Due to their high density, it is more difficult to obtain good homogeneity of the bath during their introduction.

La demanderesse a donc cherché à éviter l'emploi de ces éléments tout en cherchant à obtenir des caractéristiques mécaniques au moins équivalentes, voire améliorées (la résistance à la rupture et surtout la ductilité) et une tenue à la corrosion également améliorée.The plaintiff therefore sought to avoid the use of these elements while seeking to obtain mechanical characteristics that are at least equivalent, or even improved (breaking strength and above all ductility) and also improved corrosion resistance.

DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION

L'invention est un alliage à base de magnésium ayant une charge à la rupture au moins égale à 290 MPa, un allongement à la rupture d'au moins 5%, caractérisé en ce qu'il a la composition suivante (en poids) :

Figure imgb0001

avec les teneurs en impuretés principales (en poids) :

Silicium
< 0,6 %
Cuivre
< 0,2 %
Fer
< 0,1 %
le reste étant du magnésiumThe invention is a magnesium-based alloy having a breaking load at least equal to 290 MPa, an elongation at break of at least 5%, characterized in that it has the following composition (by weight):
Figure imgb0001

with the main impurity contents (by weight):
Silicon
<0.6%
Copper
<0.2%
Iron
<0.1%
the rest being magnesium

Cet alliage peut également contenir, comme addition, au moins l'un des éléments Zn et/ou Ca dans les proportions suivantes :

Figure imgb0002
This alloy may also contain, as an addition, at least one of the elements Zn and / or Ca in the following proportions:
Figure imgb0002

La microstructure habituelle des alliages obtenus peut être caractérisée de la façon suivante : la matrice est constituée de grains fins de magnésium de dimension moyenne inférieure à 3 µm ou plus avantageusement ne dépassant pas approximativement 1 µm ; elle est renforcée par des précipités de composés intermétalliques dispersés de façon homogène, de préférence aux joints de grains, de taille et nature variables selon la composition chimique de l'alliage.The usual microstructure of the alloys obtained can be characterized as follows: the matrix consists of fine magnesium grains with an average size of less than 3 μm or more advantageously not exceeding approximately 1 μm; it is reinforced by precipitates of intermetallic compounds dispersed homogeneously, preferably at the grain boundaries, of variable size and nature depending on the chemical composition of the alloy.

Ainsi on trouve généralement Al₄Sr, Mg₂Sr, Mg₁₇Sr₂ et/ou Mg₁₇Al₁₂ selon les teneurs respectives en Al et Sr ; ces dispersoïdes se trouvent de préférence dans les grains pour des tailles inférieures à 0,1 µm et aux joints de grains pour des tailles plus élevées comprise entre 0,1 et 1 µm ; ceci est le cas pour les composés Mg₁₇Al₁₂. Sr peut également se trouver en solution solide dans Mg et Mg₁₇Al₁₂. Quand Ca est présent en quantité suffisante dans l'alliage, on le trouve en solution solide dans Mg₁₇Al₁₂ et sous forme de fins globules métastables riches en Al et Ca de taille inférieure à 0,1 µm, dispersés dans la matrice de Mg et pouvant se transformer en Al₂Ca par traitement thermique.Thus one generally finds Al₄Sr, Mg₂Sr, Mg₁₇Sr₂ and / or Mg₁₇Al₁₂ according to the respective contents in Al and Sr; these dispersoids are preferably found in the grains for sizes less than 0.1 μm and at grain boundaries for larger sizes between 0.1 and 1 µm; this is the case for the Mg₁₇Al₁₂ compounds. Sr can also be found in solid solution in Mg and Mg₁₇Al₁₂. When Ca is present in sufficient quantity in the alloy, it is found in solid solution in Mg₁₇Al₁₂ and in the form of fine metastable globules rich in Al and Ca of size less than 0.1 μm, dispersed in the matrix of Mg and possibly transform into Al₂Ca by heat treatment.

Cette structure demeure inchangée après maintien de 24 h à 250° C.This structure remains unchanged after 24 hours at 250 ° C.

L'alliage selon l'invention est habituellement obtenu par les procédés de solidification rapide et les différents modes de mise en oeuvre, décrits dans la demande EP 89-903172, qui font partie intégrante de la description. En résumé, l'alliage à l'état liquide est soumis à une solidification rapide, à une vitesse au moins égale à 10⁴K sec⁻¹, généralement inférieure à 10⁷K sec⁻¹, de façon à obtenir un produit solidifié, dont au moins une des dimensions est inférieure à 150 µm, ledit produit étant ensuite consolidé directement par précompactage et compactage ou par compactage direct, le compactage ayant lieu à une température comprise entre 200 et 350° C. Il est préférable que le produit solidifié ne subisse aucune autre opération de conditionnement telle que le broyage avant d'être consolidé par précompactage et/ou compactage direct, cette opération pouvant être de nature à altérer les caractéristiques mécaniques de l'alliage consolidé obtenu.The alloy according to the invention is usually obtained by the rapid solidification processes and the various modes of implementation, described in application EP 89-903172, which form an integral part of the description. In summary, the alloy in the liquid state is subjected to rapid solidification, at a speed at least equal to 10⁴K sec⁻¹, generally less than 10⁷K sec⁻¹, so as to obtain a solidified product, of which at least one dimensions is less than 150 μm, said product then being consolidated directly by precompaction and compacting or by direct compacting, the compacting taking place at a temperature between 200 and 350 ° C. It is preferable that the solidified product undergoes no other operation conditioning such as grinding before being consolidated by direct precompaction and / or compacting, this operation may be such as to alter the mechanical characteristics of the consolidated alloy obtained.

Le refroidissement rapide pour solidification peut être obtenu :

  • soit par coulée sous forme de ruban sur un appareil dit "d'hypertrempe sur rouleau" (procédés connus sous le nom de "free jet melt spinning" ou "planar flow casting"), constitué habituellement d'un tambour refroidi énergiquement sur lequel on coule le métal sous forme d'un ruban d'épaisseur inférieure à 150 µm, de préférence de l'ordre de 30 à 50 µm;
  • soit par fusion d'une électrode ou par jet de métal liquide; le métal liquide est alors mécaniquement divisé ou atomisé et projeté sur une surface énergiquement refroidie et maintenue dégagée,
  • soit par atomisation de l'alliage liquide dans un jet de gaz inerte.
Rapid cooling for solidification can be obtained:
  • either by casting in the form of a ribbon on an apparatus known as "hyper-quenching on a roll" (processes known as "free jet melt spinning" or "planar flow casting"), usually consisting of an energetically cooled drum on which flows the metal in the form of a ribbon with a thickness of less than 150 μm, preferably of the order of 30 to 50 μm;
  • either by fusion of an electrode or by jet of liquid metal; the liquid metal is then mechanically divided or atomized and projected onto an energetically cooled surface and kept clear,
  • either by atomization of the liquid alloy in a jet of inert gas.

Les deux premiers modes d'application permettent d'obtenir un solide sous forme de rubans, écailles ou plaquettes, tandis que le dernier donne de la poudre. Ces procédés sont décrits en détail dans la demande EP 89-903 172. Le produit solidifié rapidement peut être dégazé sous vide à une température inférieure ou égale à 350° C avant consolidation.The first two modes of application make it possible to obtain a solid in the form of ribbons, scales or platelets, while the latter gives powder. These processes are described in detail in application EP 89-903 172. The rapidly solidified product can be degassed under vacuum at a temperature less than or equal to 350 ° C. before consolidation.

La consolidation, également décrite dans ladite demande, est effectuée, selon l'invention, directement sur les produits solidifiés rapidement, en particulier directement sur les écailles ou plaquettes. Pour préserver la structure fine et originale obtenue par solidification rapide, il est important d'éviter les longues expositions à des températures élevées. On a donc choisi d'opérer un filage à tiède qui permet de minimiser la durée de passage à température élevée.Consolidation, also described in said application, is carried out, according to the invention, directly on the products which solidify rapidly, in particular directly on the scales or plates. To preserve the fine and original structure obtained by rapid solidification, it is important to avoid long exposures to high temperatures. We therefore chose to operate a warm spinning which minimizes the time spent at high temperature.

La température de filage est comprise entre 200 et 350° C; le rapport de filage est généralement compris entre 10 et 40, de préférence entre 10 et 20, et simultanément la vitesse d'avance du pilon est de préférence située entre 0,5 et 3 mm/sec, mais elle peut être supérieure (par exemple 5 mm/sec ).
Comme cela est décrit dans ladite demande, le produit solide avant consolidation peut être :
soit introduit directement dans le conteneur d'une presse puis filé,
soit précompacté à froid ou à tiède (température inférieure par exemple à 350° C), à l'aide d'une presse, sous forme par exemple de billette dont la densité est voisine de 99 % de la densité théorique de l'alliage, cette billette étant par la suite filée,
soit introduit en les précompactant à froid jusqu'à 70 % de la densité théorique dans une gaine en magnésium ou alliage de magnésium ou en aluminium ou alliage d'aluminium, elle-même introduite dans le conteneur de la presse à filer; on peut ensuite, après filage, éliminer la gaine par usinage.
The spinning temperature is between 200 and 350 ° C; the spinning ratio is generally between 10 and 40, preferably between 10 and 20, and simultaneously the speed of advance of the pestle is preferably between 0.5 and 3 mm / sec, but it can be higher (for example 5 mm / sec).
As described in said application, the solid product before consolidation can be:
either introduced directly into the container of a press and then spun,
either cold or warm pre-compacted (temperature below 350 ° C. for example), using a press, for example in the form of a billet whose density is close to 99% of the theoretical density of the alloy, this billet being subsequently spun,
either introduced by cold pre-compacting them up to 70% of the theoretical density in a sheath made of magnesium or magnesium alloy or aluminum or aluminum alloy, itself introduced into the container of the spinning press; we can then, after spinning, remove the sheath by machining.

La gaine peut être à paroi fine (inférieure à 1 mm) ou épaisse (jusqu'à 4 mm). Dans tous les cas, il est préférable que l'alliage constituant la gaine ait une limite d'écoulement ne dépassant pas l'ordre de grandeur de celle du produit à filer, à la température de filage.The sheath can be thin-walled (less than 1 mm) or thick (up to 4 mm). In all cases, it is preferable that the alloy constituting the sheath has a flow limit not exceeding the order of magnitude of that of the product to be spun, at the spinning temperature.

En variante, on peut mettre en oeuvre d'autres procédés de compactage ne produisant pas une élévation de température du produit au-delà de 350° C : parmi ces procédés optionnels, on peut citer le filage hydrostatique, le forgeage, le laminage et le formage superplastique, la compression isostatique à chaud (HIP).As a variant, it is possible to implement other compacting methods which do not produce a rise in temperature of the product beyond 350 ° C.: among these optional methods, mention may be made of hydrostatic spinning, forging, rolling and superplastic forming, hot isostatic compression (HIP).

Ainsi le procédé selon l'invention permet d'obtenir de façon inattendue un alliage de magnésium consolidé qui a, comme déjà décrit, une structure de grains fins (inférieurs à 3 µm) stabiliséé par des composés intermétalliques, et/ou par des dispersoïdes métastables et des caractéristiques mécaniques élevées. La structure et les propriétés mécaniques dudit alliage restent inchangées après maintien prolongé de 24 h et plus à une température atteignant 250° C, voire 300° C dans certains cas, par exemple quand l'alliage contient du calcium.Thus the process according to the invention makes it possible to unexpectedly obtain a consolidated magnesium alloy which has, as already described, a structure of fine grains (less than 3 μm) stabilized by intermetallic compounds, and / or by metastable dispersoids and high mechanical characteristics. The structure and mechanical properties of said alloy remain unchanged after prolonged maintenance of 24 h and more at a temperature reaching 250 ° C., or even 300 ° C. in certain cases, for example when the alloy contains calcium.

Cette structure fine a été observée en utilisant la microscopie optique, la diffraction des rayons X et la microscopie électronique en transmission. La matrice est constituée essentiellement de magnésium contenant approximativement 1 % (atomique) d'Al en solution solide; la taille de grains est très fine, et comprise habituellement entre 0,3 et 1 µm; elle dépend des conditions de consolidation.This fine structure was observed using optical microscopy, X-ray diffraction and transmission electron microscopy. The matrix consists essentially of magnesium containing approximately 1% (atomic) of Al in solid solution; the grain size is very fine, and usually between 0.3 and 1 μm; it depends on the consolidation conditions.

Les phases intermétalliques observées dépendent de la composition de l'alliage et peuvent être Mg₁₇Al₁₂ contenant éventuellement Sr et/ou Zn, Mg₃₂(Al,Zn)₄₉, Mg₁₇Sr₂, Mg₂Sr, Al₄Sr, et lorsque l'alliage contient Ca Al₂Ca. Le refroidissement rapide permet la formation de phases métastables.The intermetallic phases observed depend on the composition of the alloy and can be Mg₁₇Al₁₂ optionally containing Sr and / or Zn, Mg₃₂ (Al, Zn) ₄₉, Mg₁₇Sr₂, Mg₂Sr, Al₄Sr, and when the alloy contains Ca Al₂Ca. Rapid cooling allows the formation of metastable phases.

La dimension des composés intermétalliques est inférieure à 1 µm et la distribution de leur taille est généralement bimodale :

  • un premier mode est généralement compris entre 0,1 et 1 µm et les particules correspondantes se trouvent aux joints de grains ; c'est souvent le cas de Mg₁₇Al₁₂.
  • un deuxième mode est inférieur à 0,1 µm et est constitué de globules dispersés de façon homogène dans tout l'alliage (dans les grains et aussi aux joints de grains) ; c'est le cas par exemple pour Al₄Sr, Mg₁₇Sr₂, Al₂Ca...
The size of intermetallic compounds is less than 1 µm and the distribution of their size is generally bimodal:
  • a first mode is generally between 0.1 and 1 μm and the corresponding particles are found at the grain boundaries; this is often the case with Mg₁₇Al₁₂.
  • a second mode is less than 0.1 μm and consists of globules dispersed homogeneously throughout the alloy (in the grains and also at the grain boundaries); this is the case for example for Al₄Sr, Mg₁₇Sr₂, Al₂Ca ...

Toutes ces phases contribuent au durcissement des alliages. Celles dont le point de fusion est le plus élevé (par exemple Al₄Sr) garantissent la stabilité thermique de caractéristiques de l'alliage obtenu.All these phases contribute to the hardening of the alloys. Those with the highest melting point (for example Al₄Sr) guarantee the thermal stability of the characteristics of the alloy obtained.

Les charges à la rupture obtenues avec les alliages selon l'invention sont élevées; elles dépassent en général 400 MPa et sont au moins du même niveau que celles obtenu par exemple avec les alliages décrits dans les demandes précitées; de plus on note une amélioration de la ductilité et de la dureté.The breaking loads obtained with the alloys according to the invention are high; they generally exceed 400 MPa and are at least of the same level as those obtained for example with the alloys described in the aforementioned applications; moreover, there is an improvement in ductility and hardness.

Avec certains alliages de magnésium, en particulier ceux contenant du calcium ou encore les alliages commerciaux du type AZ91, le strontium permet d'améliorer significativement la résistance à la rupture, parfois au détriment de la ductilité.With certain magnesium alloys, in particular those containing calcium or even commercial alloys of the AZ91 type, strontium makes it possible to significantly improve the breaking strength, sometimes at the expense of ductility.

La résistance à la corrosion est également très bonne, car, en plus d'une faible perte de poids en milieu aqueux salin, on note l'absence de piqûres; les alliages selon l'invention conservent un aspect très brillant; on n'observe seulement que quelques corrosions localisées peu profondes ayant l'aspect de ramures.The corrosion resistance is also very good, because, in addition to a low weight loss in a saline aqueous medium, there is the absence of pitting; the alloys according to the invention retain a very shiny appearance; only a few shallow localized corrosions are observed, having the appearance of antlers.

EXEMPLESEXAMPLES

Plusieurs alliages ont été produits par solidification rapide dans des conditions identiques à celles utilisées dans les exemples de la demande EP 89-903 172 précitée : coulée sur roue, vitesse périphérique de la roue 10 à 40 m/s, vitesse de refroidissement comprise entre 10⁵ et 10⁶K s⁻¹. Les rubans obtenus ont été ensuite directement introduits dans le conteneur d'une presse à filer pour obtenir un alliage consolidé sur lequel ont été faits les essais de caractérisation : examen microscopique, mesure des caractéristiques mécaniques, tenue à la corrosion.Several alloys were produced by rapid solidification under conditions identical to those used in the examples of the above-mentioned application EP 89-903 172: casting on wheel, peripheral speed of the wheel 10 to 40 m / s, cooling speed between 10⁵ and 10⁶K s⁻¹. The ribbons obtained were then directly introduced into the container of a spinning press to obtain a consolidated alloy on which were carried out the characterization tests: microscopic examination, measurement of mechanical characteristics, resistance to corrosion.

a) Propriétés mécaniques a) Mechanical properties

dans le tableau 1, on donne les conditions opératoires du filage, et les caractéristiques des alliages obtenus :

Hv
= dureté Vickers exprimée en Kg/mm2
TYS
= limite élastique mesurée à 0,2 % d'allongement résiduel, exprimée en MPa
UTS
= charge de rupture exprimé en MPa
e
= allongement de la rupture exprimé en %
Figure imgb0003
in Table 1, the operating conditions for spinning are given, and the characteristics of the alloys obtained:
H v
= Vickers hardness expressed in Kg / mm2
TYS
= elastic limit measured at 0.2% residual elongation, expressed in MPa
UTS
= breaking load expressed in MPa
e
= elongation at break expressed in%
Figure imgb0003

Dans ce tableau on voit que les alliages des essais 30, 31 et 32, avec comme éléments d'addition Al et Sr, offrent de très bonnes résistances à la rupture conjuguées à une ductilité très élevée.In this table we see that the alloys of tests 30, 31 and 32, with the addition elements Al and Sr, offer very good tensile strengths combined with a very high ductility.

Dans l'essai 33, on a introduit Ca comme élément d'addition supplémentaire ; cet essai permet également de comparer le remplacement, par Sr, d'une terre rare (Nd) dans l'alliage de l'art antérieur de l'essai 20. On observe un net gain de caractéristiques mécaniques, la résistance à la rupture atteignant la valeur record de 628 MPa, en conservant un niveau comparable de ductilité.In run 33, Ca was introduced as an additional addition; this test also makes it possible to compare the replacement, by Sr, of a rare earth (Nd) in the alloy of the prior art of test 20. A clear gain in mechanical characteristics is observed, the resistance to rupture reaching the record value of 628 MPa, while maintaining a comparable level of ductility.

De même si on ajoute Sr à un alliage AZ 91 (essais 34-35) et qu'on le compare à un alliage AZ 91 tel quel (essai 23), on voit qu'on améliore sa résistance à la rupture pour une même ductilité. Si on le compare à un alliage AZ 91 contenant Ca (essai 12), on voit que la ductilité est améliorée dans des proportions considérables : à teneurs égales, l'alliage au Sr est près de 80 % plus ductile que l'alliage au Ca.Similarly if we add Sr to an AZ 91 alloy (tests 34-35) and compare it to an AZ 91 alloy as it is (test 23), we see that we improve its tensile strength for the same ductility . If we compare it to an AZ 91 alloy containing Ca (test 12), we see that the ductility is improved in considerable proportions: at equal contents, the Sr alloy is almost 80% more ductile than the Ca alloy .

b) Résistance à la corrosion b) Corrosion resistance

La résistance à la corrosion de différents alliages a été évaluée par immersion dans une solution aqueuse à 0,05 % NaCl tamponnée à la magnésie à pH = 10,2. Dans le tableau 2 sont reportées les pertes de poids enregistrées, rapportées à la perte de poids de l'alliage conventionnel le plus résistant à la corrosion qui est un alliage AZ 91 de l'art antérieur (essai 23) élaboré dans les mêmes conditions.

Figure imgb0004
The corrosion resistance of various alloys was evaluated by immersion in an aqueous solution at 0.05% NaCl buffered with magnesia at pH = 10.2. In Table 2 are recorded the recorded weight losses, related to the weight loss of the conventional alloy most resistant to corrosion which is an AZ 91 alloy of the prior art (test 23) produced under the same conditions.
Figure imgb0004

On constate que les alliages contenant du Sr selon l'invention (essai 30-36) présentent une très bonne résistance à la corrosion dans ce milieu, meilleure que celle des alliages de l'art antérieur (essais 23-9).It is found that the alloys containing Sr according to the invention (test 30-36) have very good resistance to corrosion in this medium, better than that of the alloys of the prior art (tests 23-9).

Claims (14)

Alliage à base de Mg, ayant une charge à la rupture au moins égale à 290 MPa, un allongement à la rupture d'au moins 5 % caractérisé en ce qu'il a la composition suivante (en poids) : Aluminium     2 - 11 % Manganèse     0 - 1 % Strontium   0,1 - 6 % avec les teneurs suivantes en impuretés principales (en poids) : Silicium   < 0,6 % Cuivre   < 0,2 % Fer   < 0,1 % Nickel   < 0,01 % le reste étant du magnésiumAlloy based on Mg, having a breaking load at least equal to 290 MPa, an elongation at break of at least 5% characterized in that it has the following composition (by weight): Aluminum 2 - 11% Manganese 0 - 1% Strontium 0.1 - 6% with the following contents of main impurities (by weight): Silicon <0.6% Copper <0.2% Iron <0.1% Nickel <0.01% the rest being magnesium Alliage selon la revendication 1 caractérisé en ce qu'il a la composition suivante (en poids) : Aluminium     2 - 11 % Manganèse   0,1 - 0,7 % Strontium     1 - 5 % Alloy according to claim 1 characterized in that it has the following composition (by weight): Aluminum 2 - 11% Manganese 0.1 - 0.7% Strontium 1 - 5% Alliage selon l'une quelconque des revendications 1 ou 2 caractérisé en ce qu'il contient comme addition au moins l'un des éléments Zn et/ou Ca dans les proportions suivantes : Zn   0 - 12 % Ca   0 - 7% Alloy according to either of Claims 1 and 2, characterized in that it contains as addition at least one of the elements Zn and / or Ca in the following proportions: Zn 0 - 12% Ca 0 - 7% Alliage selon l'une quelconque des revendications 1 à 3 caractérisé en ce que la matrice est constituée de grains fins de magnésium de dimension moyenne inférieure à 3 µm, de préférence ne dépassant pas approximativement 1 µm, contenant des précipités de composés intermétalliques dispersés de façon homogène et de dimension inférieure à 1 µm, cette structure demeurant inchangée après maintien de 24 h à 250° C.Alloy according to any one of Claims 1 to 3, characterized in that the matrix consists of fine magnesium grains of average size less than 3 µm, preferably not exceeding approximately 1 µm, containing precipitates of intermetallic compounds dispersed so homogeneous and of dimension less than 1 µm, this structure remaining unchanged after 24 h at 250 ° C. Procédé d'obtention d'un alliage selon les revendications 1 à 4, caractérisé en ce que ledit alliage, à l'état liquide, est soumis à un refroidissement rapide à une vitesse au moins égale à 10⁴K sec⁻¹ de façon à obtenir un produit solidifié dont au moins une des dimensions est inférieure à 150 µm puis directement compacté à une température comprise entre 200 et 350° C.Process for obtaining an alloy according to Claims 1 to 4, characterized in that the said alloy, in the liquid state, is subjected to rapid cooling at a speed at least equal to 10⁴K sec⁻¹ so as to obtain a solidified product of which at least one of the dimensions is less than 150 μm and then directly compacted at a temperature between 200 and 350 ° C. Procédé selon la revendication 5, caractérisé en ce que le refroidissement rapide est obtenu par coulée, sur une surface mobile fortement refroidie, sous forme d'un ruban continu d'une épaisseur inférieure à 150 µm.Method according to claim 5, characterized in that the rapid cooling is obtained by casting, on a highly cooled mobile surface, in the form of a continuous ribbon with a thickness of less than 150 µm. Procédé selon la revendication 5, caractérisé en ce que le refroidissement rapide est obtenu par pulvérisation de l'alliage liquide sur une surface fortement refroidie maintenue dégagée.Method according to claim 5, characterized in that the rapid cooling is obtained by spraying the liquid alloy on a strongly cooled surface kept clear. Procédé selon la revendication 5, caractérisé en ce que le refroidissement rapide est obtenu par atomisation de l'alliage liquide au moyen d'un jet de gaz inerte.Method according to claim 5, characterized in that the rapid cooling is obtained by atomization of the liquid alloy by means of a jet of inert gas. Procédé selon l'une quelconque des revendications 5 à 8, caractérisé en ce que le produit solidifié rapidement est compacté par un moyen choisi parmi le filage à la presse, le filage hydrostatique, le laminage, le forgeage et la déformation superplastique.Process according to any one of Claims 5 to 8, characterized in that the rapidly solidified product is compacted by a means chosen from press spinning, hydrostatic spinning, rolling, forging and superplastic deformation. Procédé selon la revendication 9, caractérisé en ce que le produit solidifié rapidement est compacté par filage à la presse à une température comprise entre 200 et 350° C, avec un rapport de filage compris entre 10 et 40 et de préférence compris entre 10 et 20, et avec une vitesse d'avance du pilon de la presse comprise entre 0,5 et 3 mm par seconde.Process according to Claim 9, characterized in that the rapidly solidified product is compacted by press spinning at a temperature between 200 and 350 ° C, with a spinning ratio between 10 and 40 and preferably between 10 and 20 , and with a feed speed of the press pestle of between 0.5 and 3 mm per second. Procédé selon la revendication 10, caractérisé en ce que le produit refroidi rapidement est introduit directement dans le conteneur de la presse à filer.Method according to claim 10, characterized in that the rapidly cooled product is introduced directly into the container of the spinning press. Procédé selon la revendication 10, caractérisé en ce que le produit refroidi rapidement est préalablement introduit dans une gaine métallique constituée d'aluminium, de magnésium ou d'un alliage à base de l'un ou l'autre de ces deux métaux.A method according to claim 10, characterized in that the rapidly cooled product is previously introduced into a metal sheath consisting of aluminum, magnesium or an alloy based on one or the other of these two metals. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le produit solidifié rapidement est d'abord pré-compacté sous forme d'une billette à une température au plus égale à 350° C.Process according to any one of Claims 10 to 12, characterized in that the rapidly solidified product is first pre-compacted in the form of a billet at a temperature at most equal to 350 ° C. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le produit refroidi rapidement est dégazé sous vide à une température inférieure ou égale à 350° C avant consolidation.Process according to any one of Claims 10 to 12, characterized in that the rapidly cooled product is degassed under vacuum at a temperature less than or equal to 350 ° C before consolidation.
EP91420177A 1990-06-01 1991-05-30 High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification Expired - Lifetime EP0465376B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9007299 1990-06-01
FR9007299A FR2662707B1 (en) 1990-06-01 1990-06-01 HIGH MECHANICAL STRENGTH-CONTAINING MAGNESIUM ALLOY AND PROCESS FOR OBTAINING BY RAPID SOLIDIFICATION.

Publications (2)

Publication Number Publication Date
EP0465376A1 true EP0465376A1 (en) 1992-01-08
EP0465376B1 EP0465376B1 (en) 1994-10-26

Family

ID=9397519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91420177A Expired - Lifetime EP0465376B1 (en) 1990-06-01 1991-05-30 High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification

Country Status (6)

Country Link
US (1) US5147603A (en)
EP (1) EP0465376B1 (en)
JP (1) JPH04231435A (en)
CA (1) CA2043723A1 (en)
DE (1) DE69104784T2 (en)
FR (1) FR2662707B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549998A1 (en) * 1991-12-26 1993-07-07 Ykk Corporation High-strength magnesium-based alloy
EP1183402B1 (en) * 1999-04-03 2003-11-26 Volkswagen Aktiengesellschaft Method for producing a magnesium alloy by extrusion moulding and use of the extrusion moulded semifinished products and components

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937518B2 (en) * 1991-03-07 1999-08-23 健 増本 Materials for sacrificial electrodes for corrosion protection with excellent corrosion resistance
JPH0543957A (en) * 1991-08-08 1993-02-23 Mazda Motor Corp Manufacture of mg alloy member
NO922266D0 (en) * 1992-06-10 1992-06-10 Norsk Hydro As PROCEDURE FOR THE PREPARATION OF THIXTOTROP MAGNESIUM ALLOYS
US5551996A (en) * 1993-03-30 1996-09-03 Ube Industries, Ltd. Si-containing magnesium alloy for casting with melt thereof
IL125681A (en) * 1998-08-06 2001-06-14 Dead Sea Magnesium Ltd Magnesium alloy for high temperature applications
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
US6264763B1 (en) 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
US6808679B2 (en) * 1999-12-15 2004-10-26 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature performance, oxidation-resistant magnesium alloy melts, magnesium-based alloy castings prepared therefrom and methods for preparing same
US6322644B1 (en) * 1999-12-15 2001-11-27 Norands, Inc. Magnesium-based casting alloys having improved elevated temperature performance
CA2337630C (en) 2000-02-24 2005-02-01 Mitsubishi Aluminum Co., Ltd. Die casting magnesium alloy
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance
DE60106149T2 (en) * 2000-05-31 2005-02-24 Honda Giken Kogyo K.K. Hydrogen-absorbing alloy powder and method for producing the same and fuel tank for storing hydrogen
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
JP2002275569A (en) * 2001-03-14 2002-09-25 Ryobi Ltd CREEP RESISTANT Mg ALLOY
JP3592659B2 (en) * 2001-08-23 2004-11-24 株式会社日本製鋼所 Magnesium alloys and magnesium alloy members with excellent corrosion resistance
DE10163743B4 (en) * 2001-12-21 2006-07-06 AHC-Oberflächentechnik GmbH & Co. OHG Coated steel article, process for its preparation and its use
DE10221720A1 (en) * 2002-05-16 2003-11-27 Bayerische Motoren Werke Ag Magnesium-based alloy for die casting of cylinder crank housings of internal combustion engines contains alloying additions of aluminum, calcium and strontium
US7794520B2 (en) * 2002-06-13 2010-09-14 Touchstone Research Laboratory, Ltd. Metal matrix composites with intermetallic reinforcements
JP4526769B2 (en) * 2003-02-05 2010-08-18 デッド シー マグネシウム エルティーディー Magnesium alloy
CA2419010A1 (en) * 2003-02-17 2004-08-17 Noranda Inc. Strontium for melt oxidation reduction of magnesium and a method for adding strontium to magnesium
JP4202298B2 (en) * 2003-09-18 2008-12-24 トヨタ自動車株式会社 Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy
JP4589630B2 (en) * 2004-01-09 2010-12-01 健司 東 Magnesium alloy for die casting and magnesium die casting products
KR101127113B1 (en) * 2004-01-09 2012-03-26 켄지 히가시 Magnesium alloy for die cast and magnesium die cast products using the same
US20050194072A1 (en) * 2004-03-04 2005-09-08 Luo Aihua A. Magnesium wrought alloy having improved extrudability and formability
PL1574590T3 (en) * 2004-03-11 2007-09-28 Gkss Forschungszentrum Geesthacht Gmbh Method of manufacturing profiles from magnesium by extrusion
JP3884741B2 (en) * 2004-03-15 2007-02-21 勝義 近藤 Method for producing magnesium alloy granular powder raw material
JP5035893B2 (en) * 2006-09-01 2012-09-26 独立行政法人産業技術総合研究所 High strength and high ductility flame retardant magnesium alloy and method for producing the same
KR100955819B1 (en) * 2007-12-13 2010-05-06 한국기계연구원 High temperature Creep resistant magnesium alloy for casting
DE102007061561A1 (en) * 2007-12-18 2009-06-25 Magontec Gmbh Galvanic sacrificial anode useful in a storage device for aqueous media such as drinking water, comprises a magnesium based alloy consisting of aluminum, zinc, manganese, strontium and other impurities
JP5327515B2 (en) * 2008-11-14 2013-10-30 株式会社豊田自動織機 Magnesium alloys for casting and magnesium alloy castings
CN101871067B (en) * 2009-04-24 2012-05-23 中国科学院金属研究所 Strontium modified silicon-containing high-strength magnesium alloy and preparation method thereof
CN102418020A (en) * 2011-12-02 2012-04-18 重庆市科学技术研究院 Reinforced AZ series magnesium alloy and preparation method thereof
CN103103427B (en) * 2013-01-31 2014-12-10 中国科学院金属研究所 Biomedical absorbable Mg-Si-Sr-Ca multi-element magnesium alloy material as well as production method and application thereof
CN103343270B (en) * 2013-06-28 2015-12-23 重庆大学 A kind of high-strength magnesium-aluminium-manganese-strontium alloy and preparation method thereof
CN106811641A (en) * 2015-12-01 2017-06-09 镇江市润州金山金属粉末厂 A kind of high-strength magnesium al-sr alloy
DE112017001307T5 (en) 2016-07-15 2018-11-29 National University Corporation University Of Toyama magnesium alloy
CN106834771A (en) * 2017-02-14 2017-06-13 山东银光钰源轻金属精密成型有限公司 A kind of production technology of automotive magnesium alloy gear-box bracket
DE112018003219T5 (en) * 2017-06-22 2020-04-02 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
WO2019123537A1 (en) * 2017-12-19 2019-06-27 日立化成株式会社 Magnesium alloy powder and sintered component thereof
CN109161765B (en) * 2018-11-12 2021-02-19 东北大学 High-aluminum high-strontium-content wrought magnesium alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233266A (en) * 1939-12-26 1941-02-25 Dow Chemical Co Magnesium base alloy
DE2526024B1 (en) * 1975-06-11 1976-07-15 Mahle Gmbh Use of magnesium-aluminum die-cast alloys for the production of die-cast parts at risk of hot cracks
WO1989008154A1 (en) * 1988-02-26 1989-09-08 Pechiney Electrometallurgie Magnesium alloys with high-mecanical resistance and process for obtaining them by rapid solidification

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182390A (en) * 1959-05-01 1965-05-11 Dow Chemical Co Method of die-expressing a magnesiumbase alloy
DE2201460A1 (en) * 1972-01-13 1973-07-19 Erdmann Jesnitzer Friedrich Pr Magnesium alloy contg aluminium - with high creep resistance
US4765954A (en) * 1985-09-30 1988-08-23 Allied Corporation Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
JPS62287034A (en) * 1986-06-04 1987-12-12 Japan Metals & Chem Co Ltd Superplastic eutectic mg-al alloy
US4770850A (en) * 1987-10-01 1988-09-13 The United States Of America As Represented By The Secretary Of The Air Force Magnesium-calcium-nickel/copper alloys and articles
NZ230311A (en) * 1988-09-05 1990-09-26 Masumoto Tsuyoshi High strength magnesium based alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233266A (en) * 1939-12-26 1941-02-25 Dow Chemical Co Magnesium base alloy
DE2526024B1 (en) * 1975-06-11 1976-07-15 Mahle Gmbh Use of magnesium-aluminum die-cast alloys for the production of die-cast parts at risk of hot cracks
WO1989008154A1 (en) * 1988-02-26 1989-09-08 Pechiney Electrometallurgie Magnesium alloys with high-mecanical resistance and process for obtaining them by rapid solidification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549998A1 (en) * 1991-12-26 1993-07-07 Ykk Corporation High-strength magnesium-based alloy
US5340416A (en) * 1991-12-26 1994-08-23 Tsuyoshi Masumoto High-strength magnesium-based alloy
EP1183402B1 (en) * 1999-04-03 2003-11-26 Volkswagen Aktiengesellschaft Method for producing a magnesium alloy by extrusion moulding and use of the extrusion moulded semifinished products and components

Also Published As

Publication number Publication date
JPH04231435A (en) 1992-08-20
DE69104784D1 (en) 1994-12-01
US5147603A (en) 1992-09-15
CA2043723A1 (en) 1991-12-02
FR2662707B1 (en) 1992-07-31
FR2662707A1 (en) 1991-12-06
EP0465376B1 (en) 1994-10-26
DE69104784T2 (en) 1995-03-02

Similar Documents

Publication Publication Date Title
EP0465376B1 (en) High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification
EP0419375B1 (en) High strength magnesium alloys and process for manufacturing by rapid solidification
EP0357743B1 (en) Magnesium alloys with high-mecanical resistance and process for obtaining them by rapid solidification
EP0414620B1 (en) Method for making magnesium alloys by spray coating
EP0375571B1 (en) Process for the preparation by spray deposits of aluminium alloys of the 7000 series, and discontinuously reinforced composite materials having these high strength, highly ductile alloys as a matrix
EP0208631B1 (en) Aluminium alloys with a high lithium and silicon content, and process for their manufacture
EP0622476B1 (en) Metal substrates with laser-induced MMC coating
EP0391815B1 (en) Aluminium-based alloy with a high modulus and an increased mechanical strength and process for production
Vojtĕch Challenges for research and development of new aluminum alloys
EP3860788A1 (en) Process for manufacturing an aluminum alloy part
CA2360673A1 (en) Hypereutectic aluminium-silicon alloy product for semisolid forming
WO2020070451A1 (en) Process for manufacturing an aluminum alloy part
FR2805828A1 (en) Aluminum-based alloy contains specific amount of boron in isotropic form, and has capacity to absorb neutrons and retain good mechanical properties over long periods of time and at high temperatures
CA3085811A1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
US20110142710A1 (en) Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL, AND MANUFACTURING METHOD THEREOF
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP2022177040A (en) Aluminum alloy for die casting and die cast aluminum alloy material
FR2707191A1 (en) Metallic powder for producing parts by compression and sintering and process for obtaining this powder
FR2651245A2 (en) Magnesium alloys having high mechanical strength and method of obtaining them by rapid solidification
EP1877589A1 (en) Grain refinement agent comprising titanium nitride and method for making same
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
FR2627780A1 (en) Magnesium alloy with high rupture stress
FR2688233A1 (en) Magnesium alloys produced by rapid solidification, exhibiting a high mechanical strength when hot

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19920118

17Q First examination report despatched

Effective date: 19940311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941102

REF Corresponds to:

Ref document number: 69104784

Country of ref document: DE

Date of ref document: 19941201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960419

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970530

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050530