EP0419375B1 - High strength magnesium alloys and process for manufacturing by rapid solidification - Google Patents

High strength magnesium alloys and process for manufacturing by rapid solidification Download PDF

Info

Publication number
EP0419375B1
EP0419375B1 EP90420383A EP90420383A EP0419375B1 EP 0419375 B1 EP0419375 B1 EP 0419375B1 EP 90420383 A EP90420383 A EP 90420383A EP 90420383 A EP90420383 A EP 90420383A EP 0419375 B1 EP0419375 B1 EP 0419375B1
Authority
EP
European Patent Office
Prior art keywords
alloy
process according
magnesium
rapidly
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90420383A
Other languages
German (de)
French (fr)
Other versions
EP0419375A1 (en
Inventor
Gilles Regazzoni
Gilles Nussbaum
Haavard T. Gjestland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Norsk Hydro ASA
Original Assignee
Pechiney Electrometallurgie SAS
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8911357A external-priority patent/FR2651245B2/en
Application filed by Pechiney Electrometallurgie SAS, Norsk Hydro ASA filed Critical Pechiney Electrometallurgie SAS
Publication of EP0419375A1 publication Critical patent/EP0419375A1/en
Application granted granted Critical
Publication of EP0419375B1 publication Critical patent/EP0419375B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Description

La présente invention concerne des alliages de magnésium à haute résistance mécanique et leur procédé de fabrication et constitue un développement de l'invention décrite dans la demande française 88-02885 (FR-A-2627 780).The present invention relates to magnesium alloys with high mechanical strength and their manufacturing process and constitutes a development of the invention described in French application 88-02885 (FR-A-2627 780).

Ces alliages ont une charge à la rupture au moins égale à 290 MPa, mais plus particulièrement d'au moins 400 MPa et un allongement à la rupture généralement d'au moins 5% et ont, en combinaison, les caractéristiques suivantes:

  • une composition pondérale située dans les limites suivantes:
    Aluminium
    2-11 %, de préférence 3 à 9%
    Zinc
    0-12 %, de préférence 0 à 3%
    Manganèse
    0-1 %, de préférence 0,1 à 0,2%
    Calcium
    0,5-7%, de préférence 1 à 7%
    Terres Rares (TR)
    0,1-4%, de préférence 0,5 à 2,5%
    avec les teneurs suivantes en impuretés principales:
    Silicium
    < 0,6 %
    Cuivre
    < 0,2 %
    Fer
    < 0,1 %
    Nickel
    < 0,01 %
    le reste étant du magnésium.
  • une dimension moyenne de grains inférieure à 3 µm
  • ils sont constitués d'une matrice homogène renforcée par des particules de composés intermétalliques précipitées aux joints de grains Mg₁₇Al₁₂ éventuellement Al₂Ca, selon la concentration en Ca, Mg₃₂(Al,Zn)₄₉, si Zn est présent dans l'alliage, Mg-TR et/ou Al-TR, selon la teneur et/ou la nature de la terre-rare, ces particules étant d'une taille moyenne inférieure à 1µm et de préférence inférieure à 0,5µm cette structure demeurant inchangée après maintien de 24h à 300°C. Quand Mn est présent, c'est un élément au moins quaternaire et sa teneur pondérale minimum est de préférence de 0,1 %.
These alloys have a breaking load at least equal to 290 MPa, but more particularly at least 400 MPa and an elongation at break generally of at least 5% and have, in combination, the following characteristics:
  • a weight composition within the following limits:
    Aluminum
    2-11%, preferably 3 to 9%
    Zinc
    0-12%, preferably 0 to 3%
    Manganese
    0-1%, preferably 0.1 to 0.2%
    Calcium
    0.5-7%, preferably 1 to 7%
    Rare Earth (TR)
    0.1-4%, preferably 0.5-2.5%
    with the following contents of main impurities:
    Silicon
    <0.6%
    Copper
    <0.2%
    Iron
    <0.1%
    Nickel
    <0.01%
    the rest being magnesium.
  • an average grain size of less than 3 µm
  • they consist of a homogeneous matrix reinforced by particles of intermetallic compounds precipitated at the grain boundaries Mg₁₇Al₁₂ possibly Al₂Ca, depending on the concentration of Ca, Mg₃₂ (Al, Zn) ₄₉, if Zn is present in the alloy, Mg-TR and / or Al-TR, depending on the content and / or the nature of the rare earth, these particles being of an average size less than 1 μm and preferably less than 0.5 μm this structure remaining unchanged after 24 hours at 300 ° C. When Mn is present, it is an at least quaternary element and its minimum weight content is preferably 0.1%.

De tels alliages ont également une tenue à la corrosion améliorée; en effet contrairement aux alliages décrits dans les demandes françaises 88-02885 et 89-01913 (FR-A-2642 439), qui présentent des corrosions localisées (par exemple piqûres, corrosion selon les stries d'usinage...) pouvant provoquer à la longue des zones de faiblesse, ils présentent une corrosion au moins aussi faible mais aussi plus homogène. Les alliages selon l'invention contiennent donc, dans les proportions requises, à la fois du calcium et des terres rares, notamment Y (compris ici comme une TR), Nd, Ce, La, Pr ou misch métal (MM). Ces additions permettent d'améliorer les caractéristiques mécaniques des alliages à base de magnésium obtenus après trempe rapide et consolidation par filage, y compris pour des températures de filage pouvant, tout en conservant un niveau de caractéristiques intéressant, atteindre voire dépasser 350°C. Une telle propriété permet en particulier d'augmenter les rapports et les vitesses de filage, l'alliage supportant l'échauffement en résultant sans perdre ses caractéristiques, et ainsi permet d'améliorer les productivités. Les propriétés mécaniques obtenues sont ainsi supérieures à celles des alliages de magnésium-aluminium-zinc contenant des terres rares mais pas de calcium, tels que ceux décrits dans EP-A-219 628.Such alloys also have improved corrosion resistance; in fact, unlike the alloys described in French applications 88-02885 and 89-01913 (FR-A-2642 439), which exhibit localized corrosions (for example pitting, corrosion according to the machining streaks, etc.) which can cause along the weak zones, they exhibit corrosion that is at least as weak but also more homogeneous. The alloys according to the invention therefore contain, in the required proportions, both calcium and rare earths, in particular Y (understood here as a TR), Nd, Ce, La, Pr or misch metal (MM). These additions make it possible to improve the mechanical properties of the magnesium-based alloys obtained after rapid quenching and consolidation by spinning, including for spinning temperatures which can, while retaining an attractive level of characteristics, reach or even exceed 350 ° C. Such a property makes it possible in particular to increase the spinning ratios and speeds, the alloy supporting the resulting heating without losing its characteristics, and thus makes it possible to improve the productivity. The mechanical properties obtained are thus superior to those of magnesium-aluminum-zinc alloys containing rare earths but no calcium, such as those described in EP-A-219 628.

Dans l'alliage final, le calcium peut se trouver sous la forme de dispersoïdes d'Al₂Ca précipités aux joints de grains et/ou en solution solide. Les particules du composé intermétallique Al₂Ca apparaissent quand la concentration en Ca est suffisante; elles sont d'une taille inférieure à 1 µm et de préférence inférieure à 0,5 µm. Il en est de même pour les TR, les dispersoïdes apparaissant à partir de certaines concentrations propres à chacune des TR. La présence de Mn n'est pas nécessaire.In the final alloy, the calcium may be in the form of Al₂Ca dispersoids precipitated at the grain boundaries and / or in solid solution. The particles of the intermetallic compound Al₂Ca appear when the Ca concentration is sufficient; they are less than 1 µm in size and preferably less than 0.5 µm in size. The same is true for the TRs, the dispersoids appearing from certain concentrations specific to each of the TRs. The presence of Mn is not necessary.

D'autres particules intermétalliques, par exemple à base d'Al et Mn, de très petite taille (de l'ordre de 40 à 50 nanomètres) peuvent également être dispersées dans les grains de magnésium.Other intermetallic particles, for example based on Al and Mn, of very small size (of the order of 40 to 50 nanometers) can also be dispersed in the magnesium grains.

Les alliages sont, selon l'invention obtenus par les procédés de coulée, de refroidissement rapide et de consolidation et leurs différents modes de mise en oeuvre décrits dans la demande française 88-02885 déjà citée qui font partie intégrante de la description. On note, en résumé, que l'alliage à l'état liquide, est soumis à une solidification rapide, à une vitesse au moins égale à 10⁴K sec ⁻¹, généralement inférieure à 10⁶K sec⁻¹, de façon à obtenir un produit solidifié, dont au moins une des dimensions est inférieure à 150 µm, ledit produit étant ensuite consolidé directement par précompactage et compactage ou par compactage direct, le compactage ayant lieu à une température comprise entre 200 et 350°C. Il est préférable que le produit solidifié ne subisse aucune autre opération de conditionnement telle que le broyage avant d'être consolidé par précompactage et/ou compactage, cette opération pouvant être de nature à altérer les caractéristiques mécaniques de l'alliage consolidé obtenu.According to the invention, the alloys are obtained by the casting, rapid cooling and consolidation processes and their various modes of implementation described in the French application 88-02885 already cited which form an integral part of the description. We note, in summary, that the alloy in the liquid state is subjected to rapid solidification, at a speed at least equal to 10⁴K sec ⁻¹, generally less than 10⁶K sec⁻¹, so as to obtain a solidified product, of which at least one of the dimensions is less than 150 μm, said product then being consolidated directly by precompaction and compacting or by direct compacting, the compacting taking place at a temperature between 200 and 350 ° C. It is preferable that the solidified product does not undergo any other conditioning operation such as grinding before being consolidated by precompaction and / or compacting, this operation possibly being of a nature to alter the mechanical characteristics of the consolidated alloy obtained.

Le refroidissement rapide pour solidification peut être obtenu:

  • soit par coulée sous forme de ruban sur un appareil dit "d'hypertrempe sur rouleau", constitué habituellement d'un tambour refroidi énergiquement sur lequel on coule le métal.
  • soit par fusion d'une électrode ou par jet de métal liquide; le métal liquide est alors mécaniquement divisé ou atomisé et projeté sur une surface énergiquement refroidie et maintenue dégagée,
  • soit par atomisation de l'alliage liquide dans un jet de gaz inerte.
Rapid cooling for solidification can be obtained:
  • either by casting in the form of a ribbon on an apparatus known as "hyper-quenching on a roller", usually consisting of an energetically cooled drum onto which the metal is poured.
  • either by fusion of an electrode or by jet of liquid metal; the liquid metal is then mechanically divided or atomized and projected onto an energetically cooled surface and kept clear,
  • or by atomization of the liquid alloy in a jet of inert gas.

Les deux premiers modes d'application permettent d'obtenir un solide sous forme de rubans, écailles ou plaquettes, tandis que le dernier donne de la poudre. Ces procédés sont décrits en détail dans la demande française 88-02885 et ne font pas partie de l'invention en tant que tels.
Le produit solidifié rapidement peut être dégazé sous vide à une température inférieure ou égale à 350°C avant consolidation.
The first two modes of application make it possible to obtain a solid in the form of ribbons, scales or platelets, while the latter gives powder. These methods are described in detail in French application 88-02885 and do not form part of the invention as such.
The rapidly solidified product can be degassed under vacuum at a temperature less than or equal to 350 ° C. before consolidation.

La consolidation, également décrite dans la demande française 88-02885, est effectuée, selon l'invention, directement sur les produits solidifiés, en particulier directement sur les écailles ou plaquettes. Pour préserver la structure fine et originale obtenue par solidification rapide, il faut absolument éviter les longues expositions à des températures élevées. On a choisi d'opérer un filage à tiède qui permet de minimiser la durée de passage à température élevée.Consolidation, also described in French application 88-02885, is carried out, according to the invention, directly on the solidified products, in particular directly on the scales or plates. To preserve the fine and original structure obtained by rapid solidification, it is essential to avoid long exposures to high temperatures. We chose to operate a warm spinning which minimizes the duration of passage at high temperature.

La température de filage est comprise entre 200 et 350°C; le rapport de filage est généralement compris entre 10 et 40, de préférence entre 10 et 20, et simultanément la vitesse d'avance du pilon est de préférence située entre 0,5 et 3 mm/sec, mais elle peut être supérieure.The spinning temperature is between 200 and 350 ° C; the spinning ratio is generally between 10 and 40, preferably between 10 and 20, and simultaneously the speed of advance of the pestle is preferably between 0.5 and 3 mm / sec, but it can be higher.

Comme cela est décrit dans la demande principale le produit solide avant consolidation peut être introduit directement dans le conteneur de la presse, ou après un précompactage à une température d'au plus 350°C avec introduction dans une gaine de Mg ou ses alliages, ou d'Al ou ses alliages, elle-même introduite dans ledit conteneur.As described in the main application, the solid product before consolidation can be introduced directly into the press container, or after precompaction at a temperature of at most 350 ° C with introduction into a sheath of Mg or its alloys, or Al or its alloys, itself introduced into said container.

En variante, on peut mettre en oeuvre d'autres procédés de compactage ne produisant pas une élévation de température du produit au-delà de 350°C: parmi ces procédés optionnels, on peut citer le filage hydrostatique, le forgeage, le laminage et le formage superplastique.As a variant, it is possible to implement other compaction methods which do not produce a rise in temperature of the product beyond 350 ° C.: among these optional methods, mention may be made of hydrostatic spinning, forging, rolling and superplastic forming.

Ainsi le procédé selon l'invention permet d'obtenir de façon inattendue un alliage de magnésium consolidé qui a, comme déjà décrit, une structure fine (grains inférieurs à 3 µm) renforcée par des composés intermétalliques, et des caractéristiques mécaniques élevées restant inchangées, de même que la structure dudit alliage, après maintien prolongé à une température atteignant, voire dépassant, 350°C.Thus the process according to the invention makes it possible to unexpectedly obtain a consolidated magnesium alloy which has, as already described, a fine structure (grains less than 3 μm) reinforced by intermetallic compounds, and high mechanical characteristics remaining unchanged, as well as the structure of said alloy, after prolonged maintenance at a temperature reaching, or even exceeding, 350 ° C.

La résistance à la corrosion est par ailleurs améliorée en uniformité et en perte de poids (qui est diminuée).Corrosion resistance is also improved in uniformity and in weight loss (which is reduced).

EXEMPLEEXAMPLE

Plusieurs alliages ont été réalisés dans des conditions de solidification rapide, identiques à celles utilisées dans les exemples de la demande principale: coulée sur roue, vitesse périphérique de la roue 10 à 40 m/s, vitesse de refroidissement comprise entre 10⁵ et 10⁶K s⁻¹. Les rubans obtenus ont été ensuite directement introduits dans le conteneur d'une presse à filer pour obtenir un alliage consolidé sur lequel ont été faits les essais de caractérisation: examen microscopique, mesure des caractéristiques mécaniques, tenue à la corrosion (mesurée par trempage dans une solution à 5% de Na Cl pendant 3 jours).Several alloys were produced under rapid solidification conditions, identical to those used in the examples of the main application: casting on a wheel, peripheral speed of the wheel 10 to 40 m / s, cooling speed of between 10⁵ and 10⁶K s⁻ ¹. The ribbons obtained were then directly introduced into the container of a spinning press to obtain a consolidated alloy on which the characterization tests were carried out: microscopic examination, measurement of mechanical characteristics, resistance to corrosion (measured by soaking in a 5% NaCl solution for 3 days).

Dans le tableau 1, on donne les conditions opératoires du filage, et les caractéristiques des alliages obtenus:
Hv = dureté Vickers exprimée en kg/mm2
TYS = limite élastique mesurée à 0,2% d'allongement, exprimé en MPa
UTS = charge de rupture exprimé en MPa
e = allongement à la rupture exprimé en %
corrosion = perte de poids exprimée en mg/cm²/jour (m.c.d.) aspect de la corrosion

Figure imgb0001
In Table 1, the operating conditions for spinning are given, and the characteristics of the alloys obtained:
Hv = Vickers hardness expressed in kg / mm2
TYS = elastic limit measured at 0.2% elongation, expressed in MPa
UTS = breaking load expressed in MPa
e = elongation at break expressed in%
corrosion = weight loss expressed in mg / cm² / day (mcd) aspect of corrosion
Figure imgb0001

Dans ce tableau figurent les essais 20-21-22 qui illustrent la présente invention, tandis que les essais 4-23-7-9-11-12 illustrent l'art antérieur et sont tirés en partie de la demande FR 89-01913, déjà citée.In this table appear tests 20-21-22 which illustrate the present invention, while tests 4-23-7-9-11-12 illustrate the prior art and are drawn in part from application FR 89-01913, already cited.

Les essais 4 et 23 concernent des alliages traités par solidification rapide et consolidation de composition identique à celle de l'AZ91 ; les essais 7-9-11-12 concernent des alliages contenant du Ca obtenus également par solidification rapide et consolidation. On remarque que tous ces alliages présentent des résultats de corrosion et/ou des caractéristiques mécaniques inférieurs à ceux des alliages selon l'invention. Les échantillons 23, 4 et 7 subissent une corrosion hétérogène avec des pertes de poids relativement élevées; les échantillons 4 et 7 présentent en outre des caractéristiques mécaniques très inférieures à celles des alliages selon l'invention. L'échantillon 11 présente une corrosion uniforme mais une perte de poids élevée, comparable à celle de l'alliage 20, et des caractéristiques mécaniques très inférieures à celles de ce dernier et également à celles des alliages 21 ou 22. Enfin, l'échantillon 12 possède une excellente résistance à la corrosion, par contre ses caractéristiques mécaniques sont largement inférieures à celles des alliages selon l'invention.Tests 4 and 23 relate to alloys treated by rapid solidification and consolidation of composition identical to that of AZ91; tests 7-9-11-12 relate to alloys containing Ca also obtained by rapid solidification and consolidation. It is noted that all of these alloys exhibit corrosion results and / or mechanical characteristics that are lower than those of the alloys according to the invention. Samples 23, 4 and 7 undergo heterogeneous corrosion with relatively high weight losses; samples 4 and 7 also have mechanical characteristics much lower than those of the alloys according to the invention. Sample 11 exhibits uniform corrosion but a high loss of weight, comparable to that of alloy 20, and of mechanical properties much lower than those of the latter and also those of alloys 21 or 22. Finally, the sample 12 has excellent resistance to corrosion, on the other hand its mechanical characteristics are much lower than those of the alloys according to the invention.

On voit, selon l'invention, que l'addition de terres rares permet un niveau plus élevé de caractéristiques mécaniques, améliore l'uniformité de la corrosion (essai 20-21-22) et diminue la perte de poids (essais 21-22). Il est à noter que les caractérisques mécaniques sont obtenues après filage de consolidation à 300°C, et que l'écart avec l'art antérieur augmenterait si dans les essais dudit art antérieur le filage avait été fait à une température aussi élevée.It is seen, according to the invention, that the addition of rare earths allows a higher level of mechanical characteristics, improves the uniformity of corrosion (test 20-21-22) and reduces the weight loss (tests 21-22 ). It should be noted that the mechanical characteristics are obtained after consolidation spinning at 300 ° C., and that the difference with the prior art would increase if in the tests of said prior art the spinning had been done at such a high temperature.

Ainsi l'invention permet d'obtenir des alliages ayant une résistance à la corrosion améliorée (corrosion uniforme, perte de poids généralement diminuée) tout en ayant des caractéristiques mécaniques augmentées pour une température de filage élevée. Ce dernier avantage est important puisque de telles températures permettent de filer des profilés de grandes dimensions et/ou d'augmenter les vitesses de filage tout en conservant de bonnes caractéristiques mécaniques.Thus, the invention makes it possible to obtain alloys having an improved corrosion resistance (uniform corrosion, generally reduced weight loss) while having increased mechanical characteristics for a high spinning temperature. This last advantage is important since such temperatures make it possible to spin profiles of large dimensions and / or increase the spinning speeds while retaining good mechanical characteristics.

Il est à noter également que cette température élevée de filage permet d'améliorer la tenue à la fatigue des alliages de l'invention.It should also be noted that this high spinning temperature makes it possible to improve the fatigue resistance of the alloys of the invention.

Claims (13)

  1. Magnesium-based alloy with a breaking load of at least 290 mPa and an elongation at break of generally at least 5 % and having the combination of the following elements:
    - the weight composition falls within the following limits:
    Aluminium   2-11 %
    Zinc   0-12%
    Manganese   0-1 %
    Calcium   0.5-7%
    Rare Earths (RE)   0.1-4%
    with the following contents of the main impurities:
    Silicon   < 0.6 %
    Copper   < 0.2 %
    Iron   < 0.1 %
    Nickel   < 0.01%
    the remainder being magnesium;
    - there is a mean grain size below 3 µm and it is constituted by a homogeneous matrix reinforced by particles of the intermetallic compounds Mg₁₇Al₁₂ and optionally Al₂Ca as a function of the concentration of Ca,Mg₃₂(Al,Zn)₄₉, if Zn is present in the alloy, Mg- RE and/or Al-RE, as a function of the content and/or nature of the rare earth, said particles having a mean size below 1 µm and preferably below 0.5 µm, which are precipitated at the grain boundaries, said structure remaining unchanged if kept at 300°C for 24h.
  2. Alloy according to claim 1, characterized in that its weight composition is within the following limits:
    Aluminium   3-9 %
    Zinc   0-3 %
    Manganese   0.1-0.2%
    Calcium   1 to 7%
    RE   0.5 to 2.5%
    with the following contents of the main impurities:
    Silicon   0.1-0.6 %
    Copper   < 0.2%
    Iron   < 0.1%
    Nickel   < 0.01%
    the remainder being magnesium.
  3. Alloy according to either of the claims 1 and 2, characterized in that the rare earths are constituted by Y, Nd, Ce, La, Pr or Misch Metal.
  4. Process for the production of an alloy according to claims 1 to 3, characterized in that said alloy, in the liquid state, undergoes rapid cooling at a speed of at least 10⁴ K sec⁻¹ , so as to obtain a solidified product, whereof at least one of the dimensions is below 150 µm and which is then directly compacted at a temperature between 200 and 350°C.
  5. Process according to claim 4, characterized in that the rapid cooling is obtained by casting or pouring onto a highly cooled moving surface in the form of a continuous strip with a thickness below 150 µm.
  6. Process according to claim 4, characterized in that the rapid cooling is obtained by spraying the liquid alloy into a highly cooled surface which is kept free.
  7. Process according to claim 4, characterized in that the fast cooling is obtained by atomizing the liquid alloy by means of an inert gas jet.
  8. Process according to one of the claims 4, 5, 6 and 7, characterized in that the rapidly solidified product is compacted by a means chosen from among press drawing, hydrostatic drawing, rolling, forging and superplastic deformation.
  9. Process according to claim 8, characterized in that the rapidly solidified product is compacted by press drawing at a temperature between 200 and 350°C, with a drawing ratio between 10 and 40 and preferably between 10 and 20 and with a press ram advance speed between 0.5 and 3 mm/second.
  10. Process according to claim 9, characterized in that the rapidly cooled product is introduced rapidly into the container of the drawing press.
  11. Process according to claim 9, characterized in that the rapidly cooled product is previously introduced into a metal sheath made from aluminium, magnesium or an alloy based on one or other of these two metals.
  12. Process according to any one of the claims 9 to 11, characterized in that the rapidly solidified product is firstly precompacted in the form of a billet at a temperature of at the most 350°C.
  13. Process according to any one of the claims 9 to 11, characterized in that the rapidly cooled product is degassed in vacuo at a temperature equal to or below 350°C prior to consolidation.
EP90420383A 1989-08-24 1990-08-21 High strength magnesium alloys and process for manufacturing by rapid solidification Expired - Lifetime EP0419375B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8911357 1989-08-24
FR8911357A FR2651245B2 (en) 1988-02-26 1989-08-24 MAGNESIUM ALLOYS WITH HIGH MECHANICAL STRENGTH AND PROCESS FOR OBTAINING BY RAPID SOLIDIFICATION.

Publications (2)

Publication Number Publication Date
EP0419375A1 EP0419375A1 (en) 1991-03-27
EP0419375B1 true EP0419375B1 (en) 1994-04-06

Family

ID=9384979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420383A Expired - Lifetime EP0419375B1 (en) 1989-08-24 1990-08-21 High strength magnesium alloys and process for manufacturing by rapid solidification

Country Status (5)

Country Link
US (1) US5078962A (en)
EP (1) EP0419375B1 (en)
JP (1) JPH0390530A (en)
CA (1) CA2023837C (en)
DE (1) DE69007920T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846451B2 (en) 2001-08-23 2005-01-25 The Japan Steel Works, Ltd. Magnesium alloy and magnesium alloy member superior in corrosion resistance

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171333A (en) * 1991-12-20 1993-07-09 Toyota Motor Corp Magnesium alloy excellent in heat resistance, corrosion resistance and castability
JPH0533096A (en) * 1991-07-26 1993-02-09 Toyota Motor Corp Heat resistant magnesium alloy
JPH0543957A (en) * 1991-08-08 1993-02-23 Mazda Motor Corp Manufacture of mg alloy member
JP2741642B2 (en) * 1992-03-25 1998-04-22 三井金属鉱業株式会社 High strength magnesium alloy
JPH0748646A (en) * 1993-03-15 1995-02-21 Toyota Motor Corp High strength magnesium base alloy and production thereof
JP2730847B2 (en) * 1993-06-28 1998-03-25 宇部興産株式会社 Magnesium alloy for castings with excellent high temperature creep strength
JPH07278717A (en) * 1994-04-12 1995-10-24 Ube Ind Ltd Magnesium alloy member excellent in settling resistance in pressurized part
JPH08134581A (en) * 1994-11-14 1996-05-28 Mitsui Mining & Smelting Co Ltd Production of magnesium alloy
JP3229954B2 (en) * 1996-02-27 2001-11-19 本田技研工業株式会社 Heat resistant magnesium alloy
JP3415987B2 (en) * 1996-04-04 2003-06-09 マツダ株式会社 Molding method of heat-resistant magnesium alloy molded member
KR100252237B1 (en) * 1996-04-25 2000-04-15 정몽규 Mg alloy for high pressure casting
US5855697A (en) * 1997-05-21 1999-01-05 Imra America, Inc. Magnesium alloy having superior elevated-temperature properties and die castability
IL125681A (en) * 1998-08-06 2001-06-14 Dead Sea Magnesium Ltd Magnesium alloy for high temperature applications
DE19915277A1 (en) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesium alloy used e.g. in the manufacture of a wheel rim contains traces of cadmium, copper, iron, nickel and lanthanum and yttrium
US6264763B1 (en) 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
NO312106B1 (en) * 1999-07-02 2002-03-18 Norsk Hydro As Method of improving the corrosion resistance of magnesium-aluminum-silicon alloys and magnesium alloy with improved corrosion resistance
KR100331154B1 (en) * 1999-10-22 2002-04-01 황해웅 Non-combustible Mg-Alloy
JP4776751B2 (en) * 2000-04-14 2011-09-21 パナソニック株式会社 Magnesium alloy sheet manufacturing method
EP1174385B1 (en) * 2000-05-31 2004-10-06 Honda Giken Kogyo Kabushiki Kaisha Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
US6495267B1 (en) 2001-10-04 2002-12-17 Briggs & Stratton Corporation Anodized magnesium or magnesium alloy piston and method for manufacturing the same
JP2004027300A (en) * 2002-06-26 2004-01-29 Daido Steel Co Ltd Method of producing magnesium alloy bar wire rod
JP4575645B2 (en) * 2003-01-31 2010-11-04 株式会社豊田自動織機 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP4332889B2 (en) * 2003-05-30 2009-09-16 住友電気工業株式会社 Method for producing magnesium-based alloy compact
JP4782987B2 (en) * 2003-06-19 2011-09-28 住友電気工業株式会社 Magnesium-based alloy screw manufacturing method
JP5249367B2 (en) * 2003-06-19 2013-07-31 住友電気工業株式会社 Magnesium-based alloy screw
US7029626B2 (en) * 2003-11-25 2006-04-18 Daimlerchrysler Corporation Creep resistant magnesium alloy
JP3884741B2 (en) 2004-03-15 2007-02-21 勝義 近藤 Method for producing magnesium alloy granular powder raw material
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
JP2006002184A (en) * 2004-06-15 2006-01-05 Toudai Tlo Ltd High-toughness magnesium-base alloy, drive system part using the same, and method for manufacturing high-toughness magnesium-base alloy material
JP4862983B2 (en) * 2005-03-22 2012-01-25 住友電気工業株式会社 Magnesium welding wire manufacturing method
US20080000557A1 (en) * 2006-06-19 2008-01-03 Amit Ghosh Apparatus and method of producing a fine grained metal sheet for forming net-shape components
JP5035893B2 (en) * 2006-09-01 2012-09-26 独立行政法人産業技術総合研究所 High strength and high ductility flame retardant magnesium alloy and method for producing the same
JP2008106337A (en) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk Rolled material of magnesium alloy, and method for producing the same
CN102197152B (en) * 2008-10-22 2013-11-13 住友电气工业株式会社 Formed product of magnesium alloy and magnesium alloy sheet
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member
JP5548578B2 (en) 2010-10-15 2014-07-16 日本発條株式会社 High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
KR101080164B1 (en) * 2011-01-11 2011-11-07 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
JP5948124B2 (en) 2012-04-18 2016-07-06 日本発條株式会社 Magnesium alloy member and manufacturing method thereof
JP6048217B2 (en) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 Magnesium-based alloy powder and magnesium-based alloy compact
JP6048216B2 (en) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 Magnesium-based alloy powder and magnesium-based alloy compact
CN105385917B (en) * 2015-12-07 2017-06-20 赣州有色冶金研究所 High-strength high-plasticity magnesium alloy and preparation method thereof
JP6376209B2 (en) * 2016-11-21 2018-08-22 セイコーエプソン株式会社 Magnesium-based alloy powder and magnesium-based alloy compact
JP7194904B2 (en) * 2017-09-21 2022-12-23 株式会社戸畑製作所 magnesium alloy powder
CN109161760B (en) * 2018-10-17 2020-05-05 山东省科学院新材料研究所 Heat-resistant magnesium alloy and preparation method thereof
CN109136702A (en) * 2018-11-12 2019-01-04 东北大学 A kind of wrought magnesium alloy and preparation method thereof of high alumina high calcium content
JP6814446B2 (en) * 2019-03-12 2021-01-20 本田技研工業株式会社 Flame-retardant magnesium alloy and its manufacturing method
US20210062306A1 (en) * 2019-08-29 2021-03-04 Mag Specialties, Inc. High strength, combustion-resistant, tube-extrudable aircraft-grade magnesium alloy
CN114622109A (en) * 2022-03-14 2022-06-14 中南大学 Method for preparing medical corrosion-resistant magnesium-zinc-manganese alloy by rapid solidification and extrusion forming
CN115537619A (en) * 2022-09-22 2022-12-30 宁波尚镁新材料科技有限责任公司 Magnesium alloy for processing cookware, magnesium alloy cookware and processing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
SU395474A1 (en) * 1970-06-15 1973-08-28 В П Т Ьf '^ nup qj ^ nrssTn'iVUiiA Caiiit! -! Sufsj
US4765954A (en) * 1985-09-30 1988-08-23 Allied Corporation Rapidly solidified high strength, corrosion resistant magnesium base metal alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846451B2 (en) 2001-08-23 2005-01-25 The Japan Steel Works, Ltd. Magnesium alloy and magnesium alloy member superior in corrosion resistance
DE10236440B4 (en) * 2001-08-23 2005-01-27 The Japan Steel Works, Ltd. Magnesium alloy and Magnesium Alloy Moldings with improved corrosion resistance

Also Published As

Publication number Publication date
CA2023837C (en) 1994-10-25
DE69007920D1 (en) 1994-05-11
CA2023837A1 (en) 1991-02-25
JPH0390530A (en) 1991-04-16
EP0419375A1 (en) 1991-03-27
US5078962A (en) 1992-01-07
DE69007920T2 (en) 1994-07-21

Similar Documents

Publication Publication Date Title
EP0419375B1 (en) High strength magnesium alloys and process for manufacturing by rapid solidification
EP0465376B1 (en) High strength magnesium alloy containing strontium and process for its manufacture by rapid solidification
EP0357743B1 (en) Magnesium alloys with high-mecanical resistance and process for obtaining them by rapid solidification
EP0375571B1 (en) Process for the preparation by spray deposits of aluminium alloys of the 7000 series, and discontinuously reinforced composite materials having these high strength, highly ductile alloys as a matrix
EP0414620B1 (en) Method for making magnesium alloys by spray coating
EP0208631B1 (en) Aluminium alloys with a high lithium and silicon content, and process for their manufacture
FR2838136A1 (en) ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
CA2013270A1 (en) High-modulus, high-mechanical strength al-based alloy and production process
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
EP0196984B1 (en) Aluminium-based amorphous alloys containing nickel and silicon as the major constituents, and process for their manufacture
CA2360673A1 (en) Hypereutectic aluminium-silicon alloy product for semisolid forming
EP4200455A1 (en) Steel with high-grade mechanical characteristics and method for manufacturing same
CA3184620A1 (en) Use of products made from aluminium copper magnesium alloy that perform well at high temperature
US20110142710A1 (en) Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL, AND MANUFACTURING METHOD THEREOF
FR2805828A1 (en) Aluminum-based alloy contains specific amount of boron in isotropic form, and has capacity to absorb neutrons and retain good mechanical properties over long periods of time and at high temperatures
FR2651245A2 (en) Magnesium alloys having high mechanical strength and method of obtaining them by rapid solidification
FR2627780A1 (en) Magnesium alloy with high rupture stress
FR2688233A1 (en) Magnesium alloys produced by rapid solidification, exhibiting a high mechanical strength when hot
EP0064468B1 (en) Process for manufacturing foils consisting of hypoeutectic aluminium-iron alloys
Haga et al. High Speed Twin-Roll Casting of Aluminum Alloys
JPH0931583A (en) High strength aluminum alloy excellent in corrosion resistance and its formed body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19910412

17Q First examination report despatched

Effective date: 19930602

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69007920

Country of ref document: DE

Date of ref document: 19940511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940418

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970821

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050821