EP0464085B1 - Auf segelstellung fahrender propeller mit handregulierbarer steigung - Google Patents

Auf segelstellung fahrender propeller mit handregulierbarer steigung Download PDF

Info

Publication number
EP0464085B1
EP0464085B1 EP90904926A EP90904926A EP0464085B1 EP 0464085 B1 EP0464085 B1 EP 0464085B1 EP 90904926 A EP90904926 A EP 90904926A EP 90904926 A EP90904926 A EP 90904926A EP 0464085 B1 EP0464085 B1 EP 0464085B1
Authority
EP
European Patent Office
Prior art keywords
casing
hub
propeller
pinion
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90904926A
Other languages
English (en)
French (fr)
Other versions
EP0464085A1 (de
Inventor
Rocco Berghella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
MARINE PROPELLER Srl
Original Assignee
MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
MARINE PROPELLER Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT8983614A external-priority patent/IT1235687B/it
Priority claimed from IT8983630A external-priority patent/IT1235831B/it
Application filed by MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE, MARINE PROPELLER Srl filed Critical MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
Publication of EP0464085A1 publication Critical patent/EP0464085A1/de
Application granted granted Critical
Publication of EP0464085B1 publication Critical patent/EP0464085B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/008Propeller-blade pitch changing characterised by self-adjusting pitch, e.g. by means of springs, centrifugal forces, hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/12Propeller-blade pitch changing the pitch being adjustable only when propeller is stationary

Definitions

  • the present invention relates to a feathering propeller the pitch of which can be manually adjusted and which is particularly suited for sailing-boats.
  • the propeller in order to achieve the maximum efficiency in motor-driven motion, the propeller should be designed in function of the mechanical characteristics of the engine used (torque and power characteristics in function of the r.p.m. and of the engine's efficiency) as well as of the hydrodynamic characteristics of the boat's hull.
  • variable pitch propellers i.e. propellers wherein the orientation of the blades when the propeller is driven by the engine may be adjusted, obviously within certain limits, to particular characteristics and/or conditions of use.
  • variable pitch, feathering propellers which fit in particular the needs of auxiliary engine propulsion systems for sailing-boats.
  • propellers commonly comprise a pinion-hub keyed by means of a conical key joint on a rotary drive shaft, said pinion-hub having a coaxial conical gear, at least two and more preferably three propeller blades, each having a conical planet pinion at the base thereof meshing with said conical gear of the pinion-hub, are journalled through a hub's casing free to rotate about the hub through a limited arc of circumference.
  • Each blade is free to rotate about the axis of their conical pinion base in a planet-wise manner around said conical gear of the pinion-hub for two opposite angles (starting from a neutral position of the blade whereat the faces of the blade are substantially parallel to the axis of the propeller shaft) presettable by stop means, under the hydraulic forces caused, respectively, by the rotation in a forward drive sense and in a reverse drive sense of the drive shaft. These stops determine the pitch of the propeller in the two senses of rotation.
  • the casing is formed by sectors joined together by means of tangential stud screws and houses the pinion-hub and the planet pinions of the blades, which are journalled through holes of the casing formed along the coupling faces of the sectors which form the casing.
  • the latter may rotate about said pinion-hub through either of said two opposite angles, from said neutral position of the blades, together with a planet-wise rotation of the blades around said pinion-hub and about their own axis.
  • the two opposite angles of rotation are preset by stop means which may be formed by a radially extending tooth or sector solidly connected to said casing cooperating with a radially extending tooth or sector solidly connected to the body of said pinion-hub so as to determine by abutment of one tooth with the other stops for both senses of relative rotation.
  • the propeller disclosed in this prior application made use of a thimble meshing with an extremity of the body of said pinion-hub and held engaged therewith by a spring abutting against a closing flange of the casing of the propeller through which flange was mounted an ogive-shaped terminal having a central hole through which a stem solidly connected to said thimble could pass through and emerge from the apex of the ogive terminal.
  • this stem could be pulled out in order to disengage said thimble from said pinion-hub and re-engage the thimble on the pinion-hub after having varied their relative angular position, thus changing the pitch of the propeller.
  • this propeller though having advantages in respect to the previously known propellers, has the drawback of being necessarily disassembled in order to be mounted and dismantled from the drive shaft of the boat and moreover it is necessary to use a key for adjusting the pitch.
  • the propeller generates a relatively high level of vibrations which fact is imputable in a large measure to the way the blades are journally mounted through the casing, whereby the flexural forces are borne by the tangential stud screws used for joining together the sectors which form the casing, moreover at start-up and reversal of the sense of rotation of the propeller, the casing dragging teeth, by ramming one against the other over said stop surfaces, generate a strong banging noise and a rapid wear of the abutment surfaces of said stops.
  • a main objective of the invention is to provide a feathering propeller, the pitch of which can be adjusted without requiring disassembly of the propeller and wherein the propeller may be mounted and dismantled from the drive shaft of the boat without the need for disassembling the propeller and wherein the blades are journally mounted through the wall of the hub's casing of the propeller in a way that prevents or substantially reduces the generation of vibrations.
  • a further objective of the invention is to provide a propeller wherein the ramming of one abutment stop surface against another is resiliently dampened.
  • the device for manually changing the pitch of the propeller without requiring tools is implemented by "segmenting" the hub's casing along the axis thereof, into a first portion rotatable in respect to the pinion-hub of the propeller and provided with holes through which rotatably pass the stems of the planet pinions of the blades of the propeller, and a second portion which is internally provided with stops for limiting the relative angular travel of an engagement tooth or sector solidly connected to the pinion-hub in order to provide angularly spaced stops to a relative free rotation of the pinion-hub in respect to the hub's casing and viceversa.
  • the second portion of the casing may be telescopically pulled away from the first portion of casing, e.g. against the resistance of a push-back spring by a distance sufficient to disengage said second portion from said first portion of casing or from said pinion-hub which mesh together through an adjustable relative angular position coupling and the second portion of the casing, after having rotated it relatively to the first portion of the casing is re-engaged with the latter, having so changed the angles set by said stops.
  • the design position of the second portion of the casing in respect to the first portion containing the planet gear assembly of the feathering blades is reversible.
  • the essentially tubular second segment of the casing, telescopically meshing with the first portion of the casing and provided with the engagement stops cooperating with the engagement tooth or sector solidly connected to the pinion-hub of the propeller may be formed on the side facing the drive shaft or toward an ogive-shaped terminal of the casing itself.
  • an abutting surface for a push-back spring may be provided by a tubular flange mechanically mounted on the end of the pinion-hub body toward the drive shaft.
  • the ogive-shaped terminal itself which can be connected to the rear end of the pinion-hub body of the propeller, houses a push-back spring which keeps the two other portions of the casing meshed together.
  • a pitch adjustment thimble meshing with the pinion-hub may be tubularly extended and solidly connected to the ogive-shaped terminal of the propeller which may be manually pulled back by a distance sufficient to disengage the thimble from the pinion-hub in order to rotate it and reengage it in a varied relative angular position for changing the pitch.
  • the ogive-shaped terminal is further provided with a removable cap in order to gain access and unscrew a locking nut from a threaded end of the drive shaft, thus permitting to dismantle (and mount) the propeller from the drive shaft without disassembling it.
  • the wear of the abutment surfaces of the stops and of the engagement tooth may be susbtantially eliminated by resiliently mounting said stops on the internal wall of one of the sectors forming the hub's casing in order to dampen the ramming together of the abutment surfaces.
  • the blades which terminate with a conical gear, planetarily engaging with the pinion-hub's conical gear are no longer journally held into cylindrical sockets formed by joining together two adjacent sectors of the casing, but on the contrary each blade is solidly connected to the cylindrical stem of the respective conical pinion passing through a hole of the wall of the respective sector of the casing.
  • each blade is solidly connected to the cylindrical stem of the respective conical pinion passing through a hole of the wall of the respective sector of the casing.
  • the propeller comprises a pinion-hub 1.
  • the pinion-hub 1 has a conical seat with a key (the latter is not shown in the figures) for receiving the conical end 20 of a drive shaft 2 having a threaded end 21 on which a locking ring nut 22, provided with a socket, e.g. an hexagonal socket 23, for receiving a tightening key, is tightened.
  • the pinion-hub 1 has a conical gear 3, preferably with straight teeth, with which the conical pinions 5, 5', ... at the base of as many blades 4, 4', ... of the propeller planetarily mesh.
  • the propeller has three blades, meshing at an interval of 120° on the circumference of the conical gear 3 of the pinion-hub 1.
  • the blades are journally mounted through holes 6a, 6a', ... of as many sectors or portions 6, 6', ..., of casing which are joined together by means of tangential stud bolts 19 to form a hollow casing housing the planet gear.
  • each blade is pre-assembled on its respective sector of casing.
  • each blade is provided with a cylindrical seat 4a formed at the base of the blade casting and a threaded blind hole 4b, coaxial with said cylindrical seat 4a and extending inside the body of the blade beyond the bottom of the seat 4a.
  • the respective planet pinion 5 of the blade is provided with a bored cylindrical stem 5a which fits through the hole 6a of the respective sector of the casing and inside the seat 4a formed in the base portion of the blade 4.
  • a stud screw 5c passes through the pinion 5, the stem 5a and tightens in the threaded hole 4b extending inside the body of the blade 4.
  • Suitable setscrews 5d may be used for preventing loosening of the assembly.
  • Rotation is transmitted by the pinion-hub 1 to the casing supporting the blades which is formed by the union of the sectors 6, 6', ... by means of at least a tooth or circular sector 8 projecting from the external cylindrical wall of a thimble 11, which has an external broaching 13 meshing with an internal broaching 12 present on the end portion of the pinion-hub 1.
  • the dragging tooth 8 cooperates with a circular sector or tooth 7' extending for a certain arc length and projecting from the internal wall of one (6') of the sectors of the casing.
  • this cooperating sector 7' is in the form of a separate insert piece having the shape of a sector of a circular ring with a rectangular or trapezoidal cross section and which is housed in a rectangular or trapezoidal cross section seat or groove 7a formed on the internal wall of one (6') of the sectors forming the casing.
  • Both ends of the ring sector 7' have the inner portion, protruding out of the seat formed in the casing, extended circumferentially so as to create two spaces or seats underneath, respectively 7c and 7d, into which resilient inserts 7e and 7f of rubber (or calibrated springs) fit.
  • the ring sectors 7' and the resilient inserts 7e and 7f are set into the seat 7a and are laterally held in place by the coupling surface of the adjacent sectors of casing (6 and 6''). If a rectangular cross section ring sector 7' is used, a retaining screw may be used, the stem and head of which may fit through a ledged slotted hole purposely made through the thickness of the ring sector 7' for preventing it from falling out of the seat 7a.
  • the circular sector or tooth 8 solidly connected to the pinion-hub 1, when the latter rotates, eventually abuts against the stop surface of the relative end of the ring sector 7' protruding out of the seat 7a and which is solidly connected to the hub's casing formed by the sectors 6, 6' and 6''
  • the tooth 8 thus drags in rotation the casing and the blades 4, 4' and 4'', which, by being individually engaged through the conical planet gear with the conical gear 3 of the pinion-hub 1, will have meanwhile reached a certain limit orientation by having rotated about the axis of their pinion and planetarily about the hub's axis, thus determining the pitch.
  • the orientation of the blades in respect to the propeller's axis under forward and reverse gear is determined by the relative angular position of the two circular sectors or teeth 7' and 8 for a certain relative assembly angle of meshing of the blade's pinions on the pinion-hub conical gear 3.
  • the blades 4, 4' and 4'' under the effect of the hydraulic pressures caused by the dragging of the blades through the water, are free to rotate about their own axis, by "rolling" with their planet pinion around the conical gear 3 of the pinion-hub 1. Therefore the blades yield under the pressure by orienting themselves so as to reduce the drag resistance.
  • the propeller blades assume a "flattened" position, i.e. with their major surfaces substantially parallel to the axis of the propeller, corresponding to a mid position in respect to the two limit orientations assumed by the blades, i.e. under forward and reverse driving of the propeller's shaft.
  • These limit orientations of the blades are determined by the relative angular position of the two circular sectors 7' and 8, as seen before.
  • the pinion-hub 1 Upon the starting of engine propulsion of the boat and upon each reversal of rotation, the pinion-hub 1 rotates the thimble 11 and the blades 4, 4', ..., about the axis of their respective planet pinion 5, 5', ..., until the relative end of the circular sector 8 abuts against the relative end of the circular sector 7' inserted in the seat 7a' thus dragging into rotation the casing and the blades so oriented.
  • the ramming together of the two ends of the circular sectors 8 and 7' is dampened by either one or the other of the two resilient inserts 7e and 7f. In this manner the intensity of the rammings is reduced and the abutment surfaces are less subject to deformation and the propeller becomes less noisy.
  • the thimble 11 is essentially tubular and has an internal diameter sufficiently large for allowing the passage through the thimble of the locking nut 22 of the pinion-hub 1 on the conical end 20 of the drive shaft 2.
  • the locking nut 22 tightens on the threaded end 21 of the shaft.
  • the tubular thimble 11 is threaded at one end 11a and passes through the central hole of a flange 9a which is fixed by stud screws 9b to the end faces of the sectors 6, 6', ..., of the hub's casing of the propeller.
  • a first tubular, truncated, ogive piece 9c is screwed and locked by means of setscrews 9d.
  • An ogive shaped cap 9e is screwed into the threaded hole of the truncated ogive piece 9c, thus completing the ogive terminal of the propeller.
  • a spring 17 is inserted over the tubular thimble 11 and abuts compressively against the internal surface of the flange 9a and keeps the thimble 11 engaged through the broached joint 12-13 with the pinion-hub 1.
  • the propeller may be dismantled and mounted on the drive shaft without disassembling it. To do this it is sufficient to unscrew the cap 9e and to insert a key to engage the socket-head seat 23 on the locking nut 22 and to unscrew the latter completely thus freeing the propeller from the drive shaft.
  • the pitch may be varied without disassembling the propeller and without any tool.
  • the minimum increment of variation will be unitarily determined by the pitch of said external and internal broachings 12 and 13, telescopically meshing together.
  • the external surface of the ogive terminal may be conveniently provided with grasps indentations or tangential grooves for facilitating the pulling action.
  • the pitch adjustment operation is extremely simple and rapid and may be performed by a short immersion.
  • Pitch adjustment may be facilitated by means of a scale or reference marks engraved along the adjacent external rims of the flange 9a and of the truncated ogive piece 9c.
  • the construction material will be marine bronze with the exception of the ogive cap 9e, which will be preferably made of zinc or of another metal more electropositive than bronze in order to sacrificially protect the bronze from corrosion.
  • the interior of the hub's casing may be susbtantially sealed for more effectively retaining a water resistant lubricating grease by employing suitable sealing rings (O-ring) and gaskets of "Viton" between coupling surfaces of the various components which form the propeller and which enclose the described mechanisms.
  • suitable sealing rings O-ring
  • gaskets of "Viton" between coupling surfaces of the various components which form the propeller and which enclose the described mechanisms.
  • the propeller comprises a hub 1, keyed by means of the key 2' on the drive shaft 2.
  • the coupling is locked by the locking nut 22 screwed on a threaded end 21 of the drive shaft and tightened on an elastic washer 22a.
  • the locking nut is conveniently provided with a socket 23 for a tightening key.
  • the hub 1 has a tubular extension 1a, the outer surface of which is broached (i.e. has longitudinal parallel teeth 1b cut thereon). Over this externally broached surface of the hub extension a first conical gear 3 may be heat-set or locked by means of suitable setscrews. On this conical gear 3 mesh the planet pinions 5 of the blades 4 of the propeller.
  • the planet pinion 5 of each blade has an internally bored stem 5a which fits in a housing formed at the base of the blade and the assembly is mechanically connected by means of a stud screw 5c passing through the central bore of the stem 5a of the planet pinion and screwing inside a threaded hole formed inside the body of the blade 4.
  • Each stem 5a rotatably passes trough a hole formed through the wall of a respective sector of the hub's casing 6 which is formed by joining together a number of sectors by means of tangential stud bolts 19.
  • the end facing the ogive terminal of the propeller of this first portion of casing 6 has a reduced-diameter tubular extension 6c, the external cylindrical surface of which has an external broaching 12.
  • This first portion 6 of the casing is essentially rotatable in respect to the hub 1 keyed on the drive shaft 2.
  • the hub's casing comprises an essentially tubular second portion 7, which telescopically meshes by means of an internal broaching with said reduced-diameter externally broached extension 6c of the first portion of the casing.
  • This second portion 7 of the casing has the internal wall provided with a seat circularly extending for a certain arc of circumference (or equivalently with two angularly spaced stops) in order to provide two circumferentially spaced stop surfaces for a dragging tooth or sector 8 which is essentially connected to the tubular extension 1a of the hub 1.
  • each blade of the propeller rotates about the axis of its planet pinion 5 meshing with the conical gear 3 of the hub 1, until the rotation of the hub brings one end of the sector 8 to abut against one or the other of said stop surfaces present on the internal wall of the tubular portion 7 of the casing.
  • the casing formed by the two portions 6 and 7 telescopically meshing together by means of the joint 12-13, is dragged into rotation and with it are the blades of the propeller in the limit orientation which they have assumed and which determines the pitch of the propeller.
  • the telescopic meshing between the two portions of casing 6 and 7 is maintained by a push-back spring 17 which is compressed between a terminal face of the tubular portion 7 of the casing and a stop ring 9a held by means of a Seeger ring 10 on the external surface of the end of the extension 1a of the hub.
  • the spring 17 is housed inside a cavity defined by an ogive terminal 9 which may be screwed on or otherwise fixed to the end of the hub extension 1a. As shown in Fig. 3, the terminal part 14 or base of the ogive terminal 9 may be conveniently machined in order to telescopically fit over the end of the tubular portion 7 of the casing.
  • the tubular portion 7 of the casing may be pulled manually toward the ogive terminal of the casing in opposition to the force exerted by the spring 17 for a distance sufficient to disengage the external broaching 13 from the internal broaching 12 on the end of the portion 6 of the casing and rotated relatively to the latter thus modifying the relative angular position of the stop surfaces present on the internal surface of the tubular portion 7 of the casing in respect to the sector 8 and to the whole planet-gear assembly, thus altering the pitch of the propeller.
  • FIG. 4 A further embodiment is depicted in Fig. 4.
  • the propeller's hub 1 has not the cylindrical extension toward the ogive terminal of the propeller as in the previously described embodiments and the dragging tooth or sector 8 is formed directly on the external surface of the hub 1 by machining.
  • the conical gear 3 of the hub may be obtained by machining the end portion of the hub 1.
  • the ogive terminal 9 is in this case directly screwed on a threaded end of the first portion 6 of the hub's casing.
  • the second tubular portion 7 of the casing telescopically meshes by means of an internal broaching 13 with an external broaching 12 formed over the external surface of a reduced-diameter end of the first portion 6 of the casing facing toward the drive shaft 2 and the second portion 7 is held engaged thereon by the push-back spring 17.
  • the push-back spring 17 abuts against the surface of a flange body 15 which may be screwed on a threaded end of the hub 1 toward the drive shaft 2.
  • the flange body 15 is provided with a tubular extension 16 which telescopically fits over a purposely reduced-diameter end 18 of the second portion 7 of the casing.
  • tubular portion 7 may be pulled out of engagement through the joint 12-13 with the portion 6 of the casing and rotated relatively to the latter and to the hub 1 by manually grasping the outer surface thereof and pulling it in opposition to the spring 17 in order to modify the pitch of the propeller.
  • resilient inserts will be preferentially used on abutment surfaces of the dragging tooth or sector 8 and/or on abutment stop surfaces of the seat within which the sector 8 travels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Details Of Gearings (AREA)
  • Soil Working Implements (AREA)
  • Retarders (AREA)
  • Paper (AREA)
  • Ropes Or Cables (AREA)

Claims (8)

  1. Vorrichtung zum Verstellen der Steigung eines Drehflügelpropellers unter Verwendung eines Planetengetriebes (5-3) zwischen den Flügeln (4, 4',...) des Propellers und seiner Nabe (1), um eine freie Drehung der Flügel (4, 4',...) um ihre jeweilige Achse um einen Winkel zu bestimmen, der durch eine Begrenzungseinrichtung einer relativen Drehung zwischen einem Nabengehäuse (6-7), das Löcher aufweist, durch die hindurch die Flügel (4, 4',...) drehbar angebracht sind, und der Nabe (1), die auf eine Antriebswelle (2) des Propellers gekeilt ist, vorgegeben ist, wobei die Begrenzungseinrichtung eine Endorientierung bestimmt, die von den Flügeln (4, 4',...) unter zwei entgegengesetzten Zuständen von auf sie aufgebrachten hydraulischen Kräften in einer Vorwärts- und einer Rückwärts-Drehrichtung der Antriebswelle (2) eingenommen wird, ohne den Propeller zu demontieren,
    dadurch gekennzeichnet,
       daß das Gehäuse (6-7) von mindestens zwei Abschnitten (6-7) gebildet ist, die in Teleskopeingriff miteinander sind;
       daß ein erster Abschnitt (6) des Gehäuses im wesentlichen um die Nabe (1) drehbar und mit Löchern versehen ist, durch die die Flügel (4, 4',...) drehbar in Planeteneingriff mit der Nabe (1) gehalten sind;
       daß ein zweiter Abschnitt (7) des Gehäuse an einer Innenfläche davon vorgesehen ist, wobei zwei Widerlagerflächen in bezug aufeinander umfangsmäßig beabstandet sind, um die Bewegung eines Hemmzahns oder Sektors (8) zu begrenzen, der zwischen sie eingesetzt und starr mit der Nabe (1) verbunden ist;
       daß der zweite Abschnitt (7) des Gehäuses fähig ist, teleskopartig von dem ersten Abschnitt (6) des Gehäuses um eine Strecke weggezogen zu werden, die ausreicht, um eine Teleskopeingriffsverbindung (12-13) außer Eingriff zu bringen, die von einem Außenprofil (12), das an einem Ende eines der beiden Abschnitte (6-7) des Gehäuses vorhanden ist, und von einem Innenprofil (13), das in einem Verbindungsende des anderen Abschnitts des Gehäuses vorhanden ist, gebildet ist, relativ zu dem ersten Abschnitt des Gehäuses gedreht zu werden und in einer anderen relativen Winkelposition erneut damit in Eingriff gebracht zu werden, um dadurch die relative Winkelposition der Widerlagerflächen in bezug auf den Zahn oder Sektor (8) zu ändern und dadurch die Propellersteigung um ein kleinstes unitäres Inkrement zu ändern, das durch die Steigung der in Teleskopeingriff befindlichen Außen- und Innenprofile (12-13) bestimmt ist.
  2. Vorrichtung nach Anspruch 1, wobei der zweite Abschnitt (7) des Gehäuses mit dem ersten Abschnitt (6) des Gehäuses von der Seite der Antriebswelle (2) benachbart dem Propeller in Teleskopverbindung bringbar ist und teleskopartig außer Eingriff mit dem ersten Abschnitt (6) des Gehäuses gezogen werden kann, indem er in Axialrichtung zu der Antriebswelle (2) hin gegen eine Rückschiebefeder (17) gezogen wird, die in einem rohrförmigen Flanschkörper (15) gehalten ist, der auf dem Ende der Nabe (1) angebracht ist, die auf das Ende der Antriebswelle gekeilt ist, wobei der Flanschkörper (15) einen rohrförmigen Ansatz (16) hat, der die Rückschiebefeder (17) enthält und ein durchmesserverringertes rohrförmiges Ende (18) des zweiten Abschnitts (7) des Gehäuses einschiebbar aufnimmt.
  3. Vorrichtung nach Anspruch 1, wobei der zweite Abschnitt (7) des Gehäuses mit dem ersten Abschnitt (6) des Gehäuses von der der Antriebswelle (2) entgegengesetzten Seite in Teleskopverbindung bringbar ist und außer Eingriff mit dem ersten Abschnitt (6) des Gehäuses gezogen werden kann, indem er in Axialrichtung gegen den Widerstand einer Rückschiebefeder (17) gezogen wird, die von einem spitzkegelförmigen äußersten Ende (9) des Gehäuses gehalten wird, das auf einer rohrförmigen, mit Gewinde versehenen Verlängerung (1a) der Nabe (1) angebracht ist.
  4. Vorrichtung nach Anspruch 2 oder 3, wobei Griffaussparungen an der Außenfläche des zweiten Abschnitts (7) des Gehäuses gebildet sind, um von Hand den Zugvorgang, gefolgt von dem Drehvorgang zur Änderung der Propellersteigung, auszuführen.
  5. Vorrichtung nach Anspruch 1, wobei Bezugsmarkierungen in die Außenflächen der beiden Abschnitte (6-7) des Gehäuses nahe dem Außenrand der Verbindungsflächen eingraviert sind, um die Steigungsjustierung zu erleichtern.
  6. Drehflügelpropeller mit verstellbarer Steigung für Segelboote, der folgendes aufweist: eine Ritzelnabe (1), die permanent auf ein Ende einer Antriebswelle (2) gekeilt und darauf mit einer Sicherungsmutter (22) gesichert ist, die auf ein Gewindeende (21) der Welle geschraubt ist, und die ein koaxiales Kegelrad (3) hat;
       mindestens zwei Flügel (4, 4',...), die jeweils ein konisches Ritzelende (5, 5',...) haben, die mit dem Kegelrad (3) der Ritzelwelle (1) in Planeteneingriff sind, wobei jeder Flügel frei ist, um um die Achse seines Ritzelendes und um das Kegelrad (3) der Ritzelnabe (1) ausgehend von einer Neutralposition des Flügels mit seinen Hauptflächen im wesentlichen parallel zu der Wellenachse um zwei entgegengesetzte Winkel zu drehen, die durch eine Anschlageinrichtung vorgegeben sind, wenn die Flügel von hydraulischen Kräften beaufschlagt werden, die jeweils durch die Drehung der Antriebswelle in einer Vorwärts- und in einer Rückwärtsrichtung verursacht werden, was die Steigung des Propellers in den beiden Drehrichtungen bestimmt, und ausgehend von einer der beiden Endpositionen in Richtung zu der Neutralposition, wenn sie von hydraulischen Kräften beaufschlagt werden, die durch Widerstandskräfte verursacht werden, wenn der Propeller durch Wasser geschleppt wird;
       mindestens zwei Sektoren (6, 6',...), die miteinander verbunden sind, um ein Gehäuse zu bilden, das die Ritzelnabe (1) und die Planetenritzelenden (5, 5',...) der Flügel (4, 4',...) umschließt, wobei das Gehäuse frei ist, um sich um die Ritzelnabe innerhalb der beiden entgegengesetzten Winkel zu drehen, die von mindestens einem ersten Zahn oder Sektor (7'), der fest mit dem Gehäuse verbunden ist, und einem zweiten Zahn oder Sektor (8), der mit der Ritzelnabe (1) fest verbunden ist, vorgegeben sind, wobei die beiden Zähne oder Sektoren miteinander zusammenwirken, um die Anschlageinrichtung in den beiden Drehrichtungen der Flügel um ihre eigenen Achsen und planetenmäßig um die Ritzelnabe herum zu bestimmen und um das Gehäuse und die Flügel unter der Einwirkung der Antriebswelle in Drehung zu ziehen;
       wobei der Sektor (8) auf einer äußeren Zylinderfläche (10) einer Hülse (11) gebildet ist, die ein profiliertes rohrförmiges Ende (12) hat, das mit einem profilierten zylindrischen Ende (13) der Ritzelnabe (1) in einer relativen Winkelposition zwischen beiden, die eine bestimmte Steigung des Propellers bestimmt, kämmt,
    dadurch gekennzeichnet,
       daß jeder Sektor (6, 6',...) eine zylindrische Öffnung (6a, 6a',...) hat und jeder Flügel (4, 4',...) an einem jeweiligen Sektor (6, 6',...) vormontiert ist mittels eines jeweiligen Kegelritzels (5, 5',...), das einen eine Innenbohrung aufweisenden Schaft (5a, 5a',...) hat, der drehbar in der Öffnung (6a, 6a',...) gehalten und starr in einen Sitz (4a), der an der Basis des Flügels gebildet ist, mittels einer Stiftschraube (5c) eingebaut ist, die eine Mittelbohrung des Ritzels (5) durchsetzt und in ein Gewindeloch (4b) geschraubt ist, das von dem Sitz im Inneren des Flügelkörpers verläuft;
       daß die Hülse (11) rohrförmig ist und ein Ende (11a), das dem profilierten Ende entgegengesetzt ist, mit einem ersten kegelstumpfförmigen Bereich (9c) eines spitzkegeligen äußersten Endes des Gehäuses verbunden ist, indem es einen ringförmigen Flansch (9a), der mit der Endfläche des Gehäuses verbunden ist, durchsetzt, wobei eine Rückschiebefeder (17) auf die rohrförmige Hülse geschoben ist und unter Kompression an der Innenfläche des ringförmigen Flanschs (9a) anliegt, um die Hülse (11) in Eingriff mit der Ritzelnabe (1) zu halten;
       daß eine mit Gewinde versehene spitzkegelige Kappe (9e) in ein zentrales Gewindeloch des ersten kegelstumpfförmigen Spitzkegelbereichs (9c) geschraubt ist;
       daß die Steigung verstellbar ist, indem das spitzkegelige äußerste Ende, das durch den ersten kegelstumpfförmigen Bereich (9c) und die Kappe (9e) gebildet ist, gegen den Widerstand der Feder (17) gezogen wird, bis die Hülse (11) von der Ritzelnabe (1) getrennt ist, das herausgezogene spitzkegelige äußerste Ende um einen bestimmten Winkel gedreht und wieder losgelassen wird, um die Hülse (11) erneut auf der Ritzelnabe (1) in einer geänderten relativen Winkelposition in Eingriff zu bringen; und
       daß der Propeller von der Antriebswelle (2) demontierbar ist durch Lösen der Kappe (9e), Einführen eines Schlüssels in die Sicherungsmutter (22) und Herausdrehen derselben, um den Propeller von der Antriebswelle zu lösen.
  7. Propeller nach Anspruch 6, wobei der fest mit dem Gehäuse verbundene Sektor (7') von einem Ringsektoreinsatz gebildet ist, der Viereck- oder Trapezoidquerschnitt hat, in einem Umfangsbogensitz (7a), der an der Innenwand eines (6') der das Gehäuse bildenden Sektoren vorhanden ist, aufgenommen und darin durch elastische Endeinsatzstücke (7e, 7f) begrenzt ist, die durch die Verbindungsflächen von zwei daran angrenzenden Gehäusesektoren festgelegt sind, um Staudruck zu dämpfen.
  8. Propeller nach Anspruch 7, wobei die elastischen Einsatzstücke Gummiblöcke sind, die an den beiden Enden des Umfangsbogensitzes unter entsprechenden Ansätzen des Ringsektoreinsatzstücks in bezug auf die Fläche der Innenwand herausragend gehalten sind.
EP90904926A 1989-03-21 1990-03-19 Auf segelstellung fahrender propeller mit handregulierbarer steigung Expired - Lifetime EP0464085B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IT8361489 1989-03-21
IT8983614A IT1235687B (it) 1989-03-21 1989-03-21 Elica a pale abbattibili e passo regolabile.
IT8363089 1989-07-14
IT8983630A IT1235831B (it) 1989-07-14 1989-07-14 Dispositivo per variare il passo di un'elica con pale a bandiera.
PCT/IT1990/000030 WO1990011221A1 (en) 1989-03-21 1990-03-19 Feathering propeller with a manually adjustable pitch

Publications (2)

Publication Number Publication Date
EP0464085A1 EP0464085A1 (de) 1992-01-08
EP0464085B1 true EP0464085B1 (de) 1994-01-26

Family

ID=26330097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904926A Expired - Lifetime EP0464085B1 (de) 1989-03-21 1990-03-19 Auf segelstellung fahrender propeller mit handregulierbarer steigung

Country Status (6)

Country Link
EP (1) EP0464085B1 (de)
JP (1) JPH04503935A (de)
AU (1) AU629328B2 (de)
DE (1) DE69006357T2 (de)
ES (1) ES2049027T3 (de)
WO (1) WO1990011221A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927160B1 (en) 2007-12-21 2011-04-19 Brp Us Inc. Variable pitch propeller
US8465257B1 (en) 2008-10-31 2013-06-18 Brp Us Inc. Variable pitch propeller

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243015B (it) * 1990-09-19 1994-05-23 Santa Caterina Di Brena Ada & Elica a pale orientabili e abbattibili
ATE360570T1 (de) * 2003-12-30 2007-05-15 Marine Propeller S R L Stossdämpfer für verstellpropeller mit anstellwinkelverstellbaren flügeln, insbesondere für segler
ATE556925T1 (de) * 2006-12-19 2012-05-15 Max Prop S R L Verstellpropeller
FR2911930A1 (fr) * 2007-01-26 2008-08-01 Snecma Sa Turbopropulseur a helice a pas reglable
ITMI20081667A1 (it) * 2008-09-19 2010-03-20 Max Prop S R L Elica nautica a passo variabile
IT1393705B1 (it) * 2009-04-28 2012-05-08 Max Prop S R L Elica nautica a passo variabile
US20100260606A1 (en) 2009-04-08 2010-10-14 Max Prop S.R.L. Nautical variable-pitch propeller
WO2012160404A1 (en) 2011-05-26 2012-11-29 Max Prop S.R.L. Boat propeller with means for keeping an assembled position thereof
WO2018065032A1 (en) * 2016-10-04 2018-04-12 Wärtsilä Netherlands B.V. A propeller for a marine vessel and a method of installing the hub cap to the hub
CN114940251A (zh) * 2022-04-29 2022-08-26 广东逸动科技有限公司 螺旋桨、推进器及水上设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066718A (en) * 1964-08-11 1967-04-26 George William Kean Variable pitch propeller
US3275083A (en) * 1965-10-15 1966-09-27 Bradley A Kendis Variable pitch propeller
US3294176A (en) * 1966-04-11 1966-12-27 Reimers Fritz Changeable-pitch propeller
JPS5219511A (en) * 1975-08-05 1977-02-14 Tanashin Denki Co Auto-eject device for tape recorder
US4140434A (en) * 1975-12-29 1979-02-20 Massimiliano Bianchi Feathering propeller especially for sailing boats

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927160B1 (en) 2007-12-21 2011-04-19 Brp Us Inc. Variable pitch propeller
US8465257B1 (en) 2008-10-31 2013-06-18 Brp Us Inc. Variable pitch propeller

Also Published As

Publication number Publication date
WO1990011221A1 (en) 1990-10-04
AU5331190A (en) 1990-10-22
DE69006357D1 (de) 1994-03-10
ES2049027T3 (es) 1994-04-01
JPH04503935A (ja) 1992-07-16
EP0464085A1 (de) 1992-01-08
DE69006357T2 (de) 1994-05-11
AU629328B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
US5232345A (en) Feathering propeller with a manually adjustable pitch
EP0464085B1 (de) Auf segelstellung fahrender propeller mit handregulierbarer steigung
JP4456766B2 (ja) 脱着可能な羽根を備えた船用プロペラ
US5807151A (en) Propeller for marine propulsion drive
US3308889A (en) Variable pitch propeller with automatic adjustment
JP3963646B2 (ja) 舶用推進器
US5445497A (en) Variable pitch propellers
EP1585663B1 (de) Stossdämpfer für verstellpropeller mit anstellwinkelverstellbaren flügeln, insbesondere für segler
US3145780A (en) Variable pitch propeller
US3790304A (en) Detachable propeller blade
US5810561A (en) Variable pitch propeller apparatus
CA2039067C (en) Variable ratio steering helm
US5203675A (en) Variable-pitch propeller having feathering blades
EP2832633B1 (de) Mechanisch einstellbarer Propeller
EP2857307B1 (de) Propeller mit selbstjustierender Steigung
US9567049B2 (en) Self-adjustable pitch propeller
US5527154A (en) Variable pitch boat prop
EP2593359B1 (de) Selbstverstellbarer schiffspropeller mit blattdämpfung während vor- und rückwärtsfahrt und mit blattverstellung während rückwärtsfährt
US6585546B2 (en) Methods and apparatus for retaining a propshaft support bearing housing in a gear case
US6840828B1 (en) Expandable retaining ring assembly
WO2023275040A1 (en) A self-adjusting variable pitch propeller
JP3247562B2 (ja) 船用の可変プロペラ
CN116395116A (zh) 一种内置式游艇推进器及推进组合结构
FR2567096A1 (fr) Mecanisme pour commande d'orientation de pales d'helice de navire
IT9083610A1 (it) Elica con pale a bandiera e passo regolabile manualmente senza smontare l'elica

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB NL SE

17Q First examination report despatched

Effective date: 19921006

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69006357

Country of ref document: DE

Date of ref document: 19940310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049027

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90904926.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090331

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090422

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090410

Year of fee payment: 20

Ref country code: SE

Payment date: 20090323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090325

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100319

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100318

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100320

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100319