EP0464085B1 - Helice a pas variable reglable manuellement - Google Patents

Helice a pas variable reglable manuellement Download PDF

Info

Publication number
EP0464085B1
EP0464085B1 EP90904926A EP90904926A EP0464085B1 EP 0464085 B1 EP0464085 B1 EP 0464085B1 EP 90904926 A EP90904926 A EP 90904926A EP 90904926 A EP90904926 A EP 90904926A EP 0464085 B1 EP0464085 B1 EP 0464085B1
Authority
EP
European Patent Office
Prior art keywords
casing
hub
propeller
pinion
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90904926A
Other languages
German (de)
English (en)
Other versions
EP0464085A1 (fr
Inventor
Rocco Berghella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
MARINE PROPELLER Srl
Original Assignee
MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
MARINE PROPELLER Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT8983614A external-priority patent/IT1235687B/it
Priority claimed from IT8983630A external-priority patent/IT1235831B/it
Application filed by MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE, MARINE PROPELLER Srl filed Critical MARINE PROPELLER Srl COSTRUZIONI ELICHE A PASSO VARIABILE
Publication of EP0464085A1 publication Critical patent/EP0464085A1/fr
Application granted granted Critical
Publication of EP0464085B1 publication Critical patent/EP0464085B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/008Propeller-blade pitch changing characterised by self-adjusting pitch, e.g. by means of springs, centrifugal forces, hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/12Propeller-blade pitch changing the pitch being adjustable only when propeller is stationary

Definitions

  • the present invention relates to a feathering propeller the pitch of which can be manually adjusted and which is particularly suited for sailing-boats.
  • the propeller in order to achieve the maximum efficiency in motor-driven motion, the propeller should be designed in function of the mechanical characteristics of the engine used (torque and power characteristics in function of the r.p.m. and of the engine's efficiency) as well as of the hydrodynamic characteristics of the boat's hull.
  • variable pitch propellers i.e. propellers wherein the orientation of the blades when the propeller is driven by the engine may be adjusted, obviously within certain limits, to particular characteristics and/or conditions of use.
  • variable pitch, feathering propellers which fit in particular the needs of auxiliary engine propulsion systems for sailing-boats.
  • propellers commonly comprise a pinion-hub keyed by means of a conical key joint on a rotary drive shaft, said pinion-hub having a coaxial conical gear, at least two and more preferably three propeller blades, each having a conical planet pinion at the base thereof meshing with said conical gear of the pinion-hub, are journalled through a hub's casing free to rotate about the hub through a limited arc of circumference.
  • Each blade is free to rotate about the axis of their conical pinion base in a planet-wise manner around said conical gear of the pinion-hub for two opposite angles (starting from a neutral position of the blade whereat the faces of the blade are substantially parallel to the axis of the propeller shaft) presettable by stop means, under the hydraulic forces caused, respectively, by the rotation in a forward drive sense and in a reverse drive sense of the drive shaft. These stops determine the pitch of the propeller in the two senses of rotation.
  • the casing is formed by sectors joined together by means of tangential stud screws and houses the pinion-hub and the planet pinions of the blades, which are journalled through holes of the casing formed along the coupling faces of the sectors which form the casing.
  • the latter may rotate about said pinion-hub through either of said two opposite angles, from said neutral position of the blades, together with a planet-wise rotation of the blades around said pinion-hub and about their own axis.
  • the two opposite angles of rotation are preset by stop means which may be formed by a radially extending tooth or sector solidly connected to said casing cooperating with a radially extending tooth or sector solidly connected to the body of said pinion-hub so as to determine by abutment of one tooth with the other stops for both senses of relative rotation.
  • the propeller disclosed in this prior application made use of a thimble meshing with an extremity of the body of said pinion-hub and held engaged therewith by a spring abutting against a closing flange of the casing of the propeller through which flange was mounted an ogive-shaped terminal having a central hole through which a stem solidly connected to said thimble could pass through and emerge from the apex of the ogive terminal.
  • this stem could be pulled out in order to disengage said thimble from said pinion-hub and re-engage the thimble on the pinion-hub after having varied their relative angular position, thus changing the pitch of the propeller.
  • this propeller though having advantages in respect to the previously known propellers, has the drawback of being necessarily disassembled in order to be mounted and dismantled from the drive shaft of the boat and moreover it is necessary to use a key for adjusting the pitch.
  • the propeller generates a relatively high level of vibrations which fact is imputable in a large measure to the way the blades are journally mounted through the casing, whereby the flexural forces are borne by the tangential stud screws used for joining together the sectors which form the casing, moreover at start-up and reversal of the sense of rotation of the propeller, the casing dragging teeth, by ramming one against the other over said stop surfaces, generate a strong banging noise and a rapid wear of the abutment surfaces of said stops.
  • a main objective of the invention is to provide a feathering propeller, the pitch of which can be adjusted without requiring disassembly of the propeller and wherein the propeller may be mounted and dismantled from the drive shaft of the boat without the need for disassembling the propeller and wherein the blades are journally mounted through the wall of the hub's casing of the propeller in a way that prevents or substantially reduces the generation of vibrations.
  • a further objective of the invention is to provide a propeller wherein the ramming of one abutment stop surface against another is resiliently dampened.
  • the device for manually changing the pitch of the propeller without requiring tools is implemented by "segmenting" the hub's casing along the axis thereof, into a first portion rotatable in respect to the pinion-hub of the propeller and provided with holes through which rotatably pass the stems of the planet pinions of the blades of the propeller, and a second portion which is internally provided with stops for limiting the relative angular travel of an engagement tooth or sector solidly connected to the pinion-hub in order to provide angularly spaced stops to a relative free rotation of the pinion-hub in respect to the hub's casing and viceversa.
  • the second portion of the casing may be telescopically pulled away from the first portion of casing, e.g. against the resistance of a push-back spring by a distance sufficient to disengage said second portion from said first portion of casing or from said pinion-hub which mesh together through an adjustable relative angular position coupling and the second portion of the casing, after having rotated it relatively to the first portion of the casing is re-engaged with the latter, having so changed the angles set by said stops.
  • the design position of the second portion of the casing in respect to the first portion containing the planet gear assembly of the feathering blades is reversible.
  • the essentially tubular second segment of the casing, telescopically meshing with the first portion of the casing and provided with the engagement stops cooperating with the engagement tooth or sector solidly connected to the pinion-hub of the propeller may be formed on the side facing the drive shaft or toward an ogive-shaped terminal of the casing itself.
  • an abutting surface for a push-back spring may be provided by a tubular flange mechanically mounted on the end of the pinion-hub body toward the drive shaft.
  • the ogive-shaped terminal itself which can be connected to the rear end of the pinion-hub body of the propeller, houses a push-back spring which keeps the two other portions of the casing meshed together.
  • a pitch adjustment thimble meshing with the pinion-hub may be tubularly extended and solidly connected to the ogive-shaped terminal of the propeller which may be manually pulled back by a distance sufficient to disengage the thimble from the pinion-hub in order to rotate it and reengage it in a varied relative angular position for changing the pitch.
  • the ogive-shaped terminal is further provided with a removable cap in order to gain access and unscrew a locking nut from a threaded end of the drive shaft, thus permitting to dismantle (and mount) the propeller from the drive shaft without disassembling it.
  • the wear of the abutment surfaces of the stops and of the engagement tooth may be susbtantially eliminated by resiliently mounting said stops on the internal wall of one of the sectors forming the hub's casing in order to dampen the ramming together of the abutment surfaces.
  • the blades which terminate with a conical gear, planetarily engaging with the pinion-hub's conical gear are no longer journally held into cylindrical sockets formed by joining together two adjacent sectors of the casing, but on the contrary each blade is solidly connected to the cylindrical stem of the respective conical pinion passing through a hole of the wall of the respective sector of the casing.
  • each blade is solidly connected to the cylindrical stem of the respective conical pinion passing through a hole of the wall of the respective sector of the casing.
  • the propeller comprises a pinion-hub 1.
  • the pinion-hub 1 has a conical seat with a key (the latter is not shown in the figures) for receiving the conical end 20 of a drive shaft 2 having a threaded end 21 on which a locking ring nut 22, provided with a socket, e.g. an hexagonal socket 23, for receiving a tightening key, is tightened.
  • the pinion-hub 1 has a conical gear 3, preferably with straight teeth, with which the conical pinions 5, 5', ... at the base of as many blades 4, 4', ... of the propeller planetarily mesh.
  • the propeller has three blades, meshing at an interval of 120° on the circumference of the conical gear 3 of the pinion-hub 1.
  • the blades are journally mounted through holes 6a, 6a', ... of as many sectors or portions 6, 6', ..., of casing which are joined together by means of tangential stud bolts 19 to form a hollow casing housing the planet gear.
  • each blade is pre-assembled on its respective sector of casing.
  • each blade is provided with a cylindrical seat 4a formed at the base of the blade casting and a threaded blind hole 4b, coaxial with said cylindrical seat 4a and extending inside the body of the blade beyond the bottom of the seat 4a.
  • the respective planet pinion 5 of the blade is provided with a bored cylindrical stem 5a which fits through the hole 6a of the respective sector of the casing and inside the seat 4a formed in the base portion of the blade 4.
  • a stud screw 5c passes through the pinion 5, the stem 5a and tightens in the threaded hole 4b extending inside the body of the blade 4.
  • Suitable setscrews 5d may be used for preventing loosening of the assembly.
  • Rotation is transmitted by the pinion-hub 1 to the casing supporting the blades which is formed by the union of the sectors 6, 6', ... by means of at least a tooth or circular sector 8 projecting from the external cylindrical wall of a thimble 11, which has an external broaching 13 meshing with an internal broaching 12 present on the end portion of the pinion-hub 1.
  • the dragging tooth 8 cooperates with a circular sector or tooth 7' extending for a certain arc length and projecting from the internal wall of one (6') of the sectors of the casing.
  • this cooperating sector 7' is in the form of a separate insert piece having the shape of a sector of a circular ring with a rectangular or trapezoidal cross section and which is housed in a rectangular or trapezoidal cross section seat or groove 7a formed on the internal wall of one (6') of the sectors forming the casing.
  • Both ends of the ring sector 7' have the inner portion, protruding out of the seat formed in the casing, extended circumferentially so as to create two spaces or seats underneath, respectively 7c and 7d, into which resilient inserts 7e and 7f of rubber (or calibrated springs) fit.
  • the ring sectors 7' and the resilient inserts 7e and 7f are set into the seat 7a and are laterally held in place by the coupling surface of the adjacent sectors of casing (6 and 6''). If a rectangular cross section ring sector 7' is used, a retaining screw may be used, the stem and head of which may fit through a ledged slotted hole purposely made through the thickness of the ring sector 7' for preventing it from falling out of the seat 7a.
  • the circular sector or tooth 8 solidly connected to the pinion-hub 1, when the latter rotates, eventually abuts against the stop surface of the relative end of the ring sector 7' protruding out of the seat 7a and which is solidly connected to the hub's casing formed by the sectors 6, 6' and 6''
  • the tooth 8 thus drags in rotation the casing and the blades 4, 4' and 4'', which, by being individually engaged through the conical planet gear with the conical gear 3 of the pinion-hub 1, will have meanwhile reached a certain limit orientation by having rotated about the axis of their pinion and planetarily about the hub's axis, thus determining the pitch.
  • the orientation of the blades in respect to the propeller's axis under forward and reverse gear is determined by the relative angular position of the two circular sectors or teeth 7' and 8 for a certain relative assembly angle of meshing of the blade's pinions on the pinion-hub conical gear 3.
  • the blades 4, 4' and 4'' under the effect of the hydraulic pressures caused by the dragging of the blades through the water, are free to rotate about their own axis, by "rolling" with their planet pinion around the conical gear 3 of the pinion-hub 1. Therefore the blades yield under the pressure by orienting themselves so as to reduce the drag resistance.
  • the propeller blades assume a "flattened" position, i.e. with their major surfaces substantially parallel to the axis of the propeller, corresponding to a mid position in respect to the two limit orientations assumed by the blades, i.e. under forward and reverse driving of the propeller's shaft.
  • These limit orientations of the blades are determined by the relative angular position of the two circular sectors 7' and 8, as seen before.
  • the pinion-hub 1 Upon the starting of engine propulsion of the boat and upon each reversal of rotation, the pinion-hub 1 rotates the thimble 11 and the blades 4, 4', ..., about the axis of their respective planet pinion 5, 5', ..., until the relative end of the circular sector 8 abuts against the relative end of the circular sector 7' inserted in the seat 7a' thus dragging into rotation the casing and the blades so oriented.
  • the ramming together of the two ends of the circular sectors 8 and 7' is dampened by either one or the other of the two resilient inserts 7e and 7f. In this manner the intensity of the rammings is reduced and the abutment surfaces are less subject to deformation and the propeller becomes less noisy.
  • the thimble 11 is essentially tubular and has an internal diameter sufficiently large for allowing the passage through the thimble of the locking nut 22 of the pinion-hub 1 on the conical end 20 of the drive shaft 2.
  • the locking nut 22 tightens on the threaded end 21 of the shaft.
  • the tubular thimble 11 is threaded at one end 11a and passes through the central hole of a flange 9a which is fixed by stud screws 9b to the end faces of the sectors 6, 6', ..., of the hub's casing of the propeller.
  • a first tubular, truncated, ogive piece 9c is screwed and locked by means of setscrews 9d.
  • An ogive shaped cap 9e is screwed into the threaded hole of the truncated ogive piece 9c, thus completing the ogive terminal of the propeller.
  • a spring 17 is inserted over the tubular thimble 11 and abuts compressively against the internal surface of the flange 9a and keeps the thimble 11 engaged through the broached joint 12-13 with the pinion-hub 1.
  • the propeller may be dismantled and mounted on the drive shaft without disassembling it. To do this it is sufficient to unscrew the cap 9e and to insert a key to engage the socket-head seat 23 on the locking nut 22 and to unscrew the latter completely thus freeing the propeller from the drive shaft.
  • the pitch may be varied without disassembling the propeller and without any tool.
  • the minimum increment of variation will be unitarily determined by the pitch of said external and internal broachings 12 and 13, telescopically meshing together.
  • the external surface of the ogive terminal may be conveniently provided with grasps indentations or tangential grooves for facilitating the pulling action.
  • the pitch adjustment operation is extremely simple and rapid and may be performed by a short immersion.
  • Pitch adjustment may be facilitated by means of a scale or reference marks engraved along the adjacent external rims of the flange 9a and of the truncated ogive piece 9c.
  • the construction material will be marine bronze with the exception of the ogive cap 9e, which will be preferably made of zinc or of another metal more electropositive than bronze in order to sacrificially protect the bronze from corrosion.
  • the interior of the hub's casing may be susbtantially sealed for more effectively retaining a water resistant lubricating grease by employing suitable sealing rings (O-ring) and gaskets of "Viton" between coupling surfaces of the various components which form the propeller and which enclose the described mechanisms.
  • suitable sealing rings O-ring
  • gaskets of "Viton" between coupling surfaces of the various components which form the propeller and which enclose the described mechanisms.
  • the propeller comprises a hub 1, keyed by means of the key 2' on the drive shaft 2.
  • the coupling is locked by the locking nut 22 screwed on a threaded end 21 of the drive shaft and tightened on an elastic washer 22a.
  • the locking nut is conveniently provided with a socket 23 for a tightening key.
  • the hub 1 has a tubular extension 1a, the outer surface of which is broached (i.e. has longitudinal parallel teeth 1b cut thereon). Over this externally broached surface of the hub extension a first conical gear 3 may be heat-set or locked by means of suitable setscrews. On this conical gear 3 mesh the planet pinions 5 of the blades 4 of the propeller.
  • the planet pinion 5 of each blade has an internally bored stem 5a which fits in a housing formed at the base of the blade and the assembly is mechanically connected by means of a stud screw 5c passing through the central bore of the stem 5a of the planet pinion and screwing inside a threaded hole formed inside the body of the blade 4.
  • Each stem 5a rotatably passes trough a hole formed through the wall of a respective sector of the hub's casing 6 which is formed by joining together a number of sectors by means of tangential stud bolts 19.
  • the end facing the ogive terminal of the propeller of this first portion of casing 6 has a reduced-diameter tubular extension 6c, the external cylindrical surface of which has an external broaching 12.
  • This first portion 6 of the casing is essentially rotatable in respect to the hub 1 keyed on the drive shaft 2.
  • the hub's casing comprises an essentially tubular second portion 7, which telescopically meshes by means of an internal broaching with said reduced-diameter externally broached extension 6c of the first portion of the casing.
  • This second portion 7 of the casing has the internal wall provided with a seat circularly extending for a certain arc of circumference (or equivalently with two angularly spaced stops) in order to provide two circumferentially spaced stop surfaces for a dragging tooth or sector 8 which is essentially connected to the tubular extension 1a of the hub 1.
  • each blade of the propeller rotates about the axis of its planet pinion 5 meshing with the conical gear 3 of the hub 1, until the rotation of the hub brings one end of the sector 8 to abut against one or the other of said stop surfaces present on the internal wall of the tubular portion 7 of the casing.
  • the casing formed by the two portions 6 and 7 telescopically meshing together by means of the joint 12-13, is dragged into rotation and with it are the blades of the propeller in the limit orientation which they have assumed and which determines the pitch of the propeller.
  • the telescopic meshing between the two portions of casing 6 and 7 is maintained by a push-back spring 17 which is compressed between a terminal face of the tubular portion 7 of the casing and a stop ring 9a held by means of a Seeger ring 10 on the external surface of the end of the extension 1a of the hub.
  • the spring 17 is housed inside a cavity defined by an ogive terminal 9 which may be screwed on or otherwise fixed to the end of the hub extension 1a. As shown in Fig. 3, the terminal part 14 or base of the ogive terminal 9 may be conveniently machined in order to telescopically fit over the end of the tubular portion 7 of the casing.
  • the tubular portion 7 of the casing may be pulled manually toward the ogive terminal of the casing in opposition to the force exerted by the spring 17 for a distance sufficient to disengage the external broaching 13 from the internal broaching 12 on the end of the portion 6 of the casing and rotated relatively to the latter thus modifying the relative angular position of the stop surfaces present on the internal surface of the tubular portion 7 of the casing in respect to the sector 8 and to the whole planet-gear assembly, thus altering the pitch of the propeller.
  • FIG. 4 A further embodiment is depicted in Fig. 4.
  • the propeller's hub 1 has not the cylindrical extension toward the ogive terminal of the propeller as in the previously described embodiments and the dragging tooth or sector 8 is formed directly on the external surface of the hub 1 by machining.
  • the conical gear 3 of the hub may be obtained by machining the end portion of the hub 1.
  • the ogive terminal 9 is in this case directly screwed on a threaded end of the first portion 6 of the hub's casing.
  • the second tubular portion 7 of the casing telescopically meshes by means of an internal broaching 13 with an external broaching 12 formed over the external surface of a reduced-diameter end of the first portion 6 of the casing facing toward the drive shaft 2 and the second portion 7 is held engaged thereon by the push-back spring 17.
  • the push-back spring 17 abuts against the surface of a flange body 15 which may be screwed on a threaded end of the hub 1 toward the drive shaft 2.
  • the flange body 15 is provided with a tubular extension 16 which telescopically fits over a purposely reduced-diameter end 18 of the second portion 7 of the casing.
  • tubular portion 7 may be pulled out of engagement through the joint 12-13 with the portion 6 of the casing and rotated relatively to the latter and to the hub 1 by manually grasping the outer surface thereof and pulling it in opposition to the spring 17 in order to modify the pitch of the propeller.
  • resilient inserts will be preferentially used on abutment surfaces of the dragging tooth or sector 8 and/or on abutment stop surfaces of the seat within which the sector 8 travels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Details Of Gearings (AREA)
  • Soil Working Implements (AREA)
  • Retarders (AREA)
  • Paper (AREA)
  • Ropes Or Cables (AREA)

Abstract

Le réglage du pas, dans une hélice à variation de pas utilisant une prise par engrenage planétaire entre un moyeu à pignon (1-3) claveté sur l'arbre d'entraînement (2) et des pignons planétaires (5) placés à la base des pales (4) de l'hélice, lesquelles sont montées rotatives dans des trous ménagés dans la paroi d'un carter (6) du moyeu, peut être facilement effectué manuellement grâce àl'enregistrement de la position angulaire relative d'une seconde partie (7) du carter par rapport à une première partie (6) du carter dans lequel est logé l'engrenage planétaire. On effectue l'enregistrement du pas en exerçant une force tendant à séparer la seconde partie (7) du carter de la première partie (6) contre la résistance exerçée par un ressort de retour de poussée (7), sur une distance suffisante pour désengager un couplage (12-13) entre la seconde partie (7) et la première partie (6) du carter ou le moyeu de pignon (1-3), entraînant ainsi en rotation la seconde partie (7) désengagée par rapport à la première partie (6) du carter, avant de libérer la poussée, entraînant ainsi l'engagement des deux parties dans une position angulaire relative modifiée. Ainsi, les butées placées sur la trajectoire d'une pièce cintrée traînante (8) reliée solidement au moyeu (1) de l'hélice, qui sont essentiellement formées sur la paroi interne de la seconde partie du carter, modifient leur position angulaire relative autour de la pièce cintrée (8), modifiant ainsi l'orientation limite adoptée par les pales (4) lors de la rotation de l'arbre d'entraînement (2). Des éléments résilients sont utilisés entre les surfaces d'aboutpour empêcher leur déformation.

Claims (8)

  1. Dispositif pour faire varier le pas d'une hélice à pas variable en utilisant un engrenage planétaire (5-3) entre les pales (4, 4',...) de l'hélice et un manchon (1) de celle-ci pour déterminer une rotation libre desdites pales (4, 4',...) autour de leurs axes respectifs sur un angle défini par des moyens d'arrêt de la rotation relative entre un carter (6-7) du manchon, comportant des trous par lesquels sont montées à tourillon lesdites pales (4, 4'...), et ledit manchon (1) claveté sur un arbre d'entraînement (2) de l'hélice, lesdits moyens d'arrêt déterminant une orientation limite prise par les pales (4, 4'...) dans les deux conditions opposées des forces hydrauliques qui agissent sur elles dans le sens avant et arrière de rotation de l'arbre d'entraînement (2), sans démontage de l'hélice, caractérisé par le fait que:
    - ledit carter (6-7) est formé par au moins deux parties (6-7) qui engrènent télescopiquement l'une avec l'autre,
    - une première partie (6) du carter peut essentiellement tourner autour dudit manchon (1) et est pourvue de trous à travers lesquels les pales (4, 4',...) sont maintenues de façon à pouvoir tourner dans un engagement planétaire avec ledit manchon (1),
    - une seconde partie (7) du carter est pourvue sur sa surface intérieure de deux surfaces d'arrêt espacées dans le sens de la circonférence qui limitent le trajet d'un secteur ou dent traînante (8) emboîté entre elles et rigidement relié audit manchon (1),
       ladite seconde partie (7) du carter pouvant être tirée télescopiquement pour s'éloigner de ladite première partie (6) du carter d'une distance suffisante pour dégager une liaison (12-13) s'engrenant télescopiquement, formée par un brochage extérieur (12) se trouvant sur une extrémité de l'une desdites deux parties (6-7) du carter et un brochage intérieur (13) présent sur une extrémité d'accouplement de ladite autre partie du carter, être tournée par rapport à ladite première partie du carter et se réengager avec elle dans une position angulaire relative différente, ce qui modifie la position angulaire relative desdites surfaces d'arrêt par rapport à ladite dent ou secteur (8) et modifie donc le pas de l'hélice d'un incrément unitaire minimum qui est déterminé par le pas desdits brochages (12-13) intérieur et extérieur s'engrenant ensemble télescopiquement.
  2. Dispositif selon la revendication 1, dans lequel ladite seconde partie (7) du carter s'accouple télescopiquement avec ladite première partie (6) du carter depuis le côté de l'arbre d'entraînement (2) adjacent à l'hélice et peut être tirée télescopiquement hors d'engagement avec ladite première partie (6) du carter en étant tirée axialement vers l'arbre d'entraînement (2), en opposition à un ressort de rappel (17) retenu par un corps tubulaire formant bride (15), monté sur l'extrémité dudit manchon (1) qui est claveté sur l'extrémité dudit arbre d'entraînement, ledit corps formant bride (15) ayant une extension tubulaire (16) qui loge ledit ressort de rappel (17) et accommode télescopiquement une extrémité tubulaire (18) de diamètre réduit de ladite seconde partie (7) du carter.
  3. Dispositif selon la revendication 1, dans lequel ladite seconde partie (7) du carter s'accouple télescopiquement avec ladite première partie (6) du carter depuis l'extrémité opposée de l'arbre d'entraînement (2) et peut être tirée hors d'engagement avec ladite première partie (6) du carter en étant tirée axialement à l'encontre de la résistance d'un ressort de rappel (17) qui est retenu par une pièce terminale (9) en forme d'ogive du carter montée sur une extension tubulaire filetée (1a) dudit manchon (1).
  4. Dispositif selon la revendication 2 ou 3, dans lequel des indentations de préhension sont formées sur la surface extérieure de ladite seconde partie (7) du carter afin d'exercer manuellement ladite action de traction suivie par ladite action de rotation pour modifier le pas de l'hélice.
  5. Dispositif selon la revendication 1, dans lequel des repères de référence sont gravés sur les surfaces extérieures desdites deux parties (6-7) du carter, près du bord extérieur de leurs faces d'accouplement pour faciliter le réglage du pas.
  6. Hélice à pas variable pour voiliers qui comprend un manchon denté (1), claveté de façon permanente sur une extrémité d'un arbre d'entraînement (2) et bloqué sur celui-ci grâce à un écrou de verrouillage (22) vissé sur une extrémité filetée (21) de l'arbre, et portant un pignon conique (3) coaxial,
       au moins deux pales (4, 4',...) ayant chacune une extrémité (5, 5',...) formant pignon conique engagée à la façon d'un satellite avec ledit pignon conique (3) dudit manchon denté (1), chacune desdites pales étant libre de tourner autour de l'axe de son pignon et autour dudit pignon conique (3) dudit manchon denté (1) en partant d'une position neutre de la pale dans laquelle ses surfaces principales sont sensiblement parallèles à l'axe de l'arbre, jusqu'à deux angles opposés définis par des moyens d'arrêt quand elles sont poussées par des forces hydrauliques respectivement causées par la rotation dans le sens avant et arrière dudit arbre d'entraînement qui détermine le pas de l'hélice dans les deux sens de rotation et depuis l'une ou l'autre des dites deux positions limites en direction de ladite position neutre quand elles sont poussées par les forces hydrauliques provoquées par les forces de traînée lorsque l'hélice est traînée dans l'eau,
       au moins deux secteurs (6, 6',...) réunis ensemble pour former un carter qui enferme ledit manchon denté (1) et les extrémités formant pignon satellite (5, 5',...) desdites pales (4, 4',...), ledit carter étant libre de tourner autour dudit manchon denté à l'intérieur desdits deux angles opposés qui sont définis au moyen d'au moins une première dent ou secteur (7') rigidement reliée audit carter et d'une seconde dent ou secteur (8) rigidement reliée audit manchon denté (1) qui coopérent l'une avec l'autre pour déterminer lesdits moyens d'arrêt dans les deux sens de rotation des pales autour de leur propre axe et planétairement autour dudit pigon denté et pour entraîner en rotation ledit carter et lesdites pales sous l'effet de l'action de l'arbre d'entraînement,
       ledit secteur (8) étant formé sur une surface cylindrique extérieure (10) d'une douille (11) comportant une extrémité tubulaire brochée (12) qui engrène avec une extrémité cylindrique brochée (13) dudit manchon denté (1) dans une position angulaire relative entre elles qui détermine un certain pas de l'hélice,
       caractérisée par le fait que:
    - chacun desdits secteurs (6, 6',...) comporte un trou cylindrique (6a, 6a',...) et chaque pale (4, 4',...) est préassemblée sur un secteur respectif (6, 6',...) au moyen d'un pignon conique respectif (5, 5',...) ayant une tige alésée (5a, 5a',...) maintenue en rotation dans ledit trou (6a, 6a',...) et rigidement emboîtée dans un appui (4a) formé à la base de la pale au moyen d'une vis sans tête (5c) qui traverse un trou central dudit pignon (5) et est vissée dans un trou fileté (4b) s'étendant depuis ledit appui jusqu'à l'intérieur du corps de la pale,
    - ladite douille (11) est tubulaire et une extrémité (11a) opposée à ladite extrémité brochée est reliée à une première partie tronquée (9c) d'une pièce terminale en forme d'ogive du carter en passant à travers une bride annulaire (9a) reliée à la face d'extrémité dudit carter, un ressort de rappel (17) s'emboîtant sur la dite douille tubulaire et venant appuyer en compression contre la surface intérieure de ladite bride annulaire (9a) pour maintenir ladite douille (11) en prise avec ledit manchon denté (1),
    - un couvercle (9e) en forme d'ogive, fileté, est vissé dans un trou central fileté de ladite première partie (9c) en ogive tronquée,
       le pas pouvant être modifié par traction de ladite pièce terminale en forme d'ogive formée par ladite première partie tronquée (9c) et par ledit couvercle (9e) à l'encontre de la résistance dudit ressort (17) jusqu'à désengagement de ladite douille (11) dudit manchon denté (1), par rotation d'un certain angle de la pièce terminale en forme d'ogive qui a été tirée et libération de cette dernière pour réengager la douille (11) sur le manchon denté (1) dans une position angulaire relative modifiée, et
       l'hélice pouvant être retirée dudit arbre d'entraînement (2) par dévissage dudit couvercle (9e), introduction d'une clé et dévissage dudit écrou de verrouillage (22), ce qui libère l'hélice de l'arbre d'entraînement.
  7. Hélice selon la revendication 6, dans laquelle ledit secteur (7') rigidement relié audit carter est formé par un insert en secteur de bague ayant une section trapézoïdale ou rectangulaire, logé dans un appui (7a) en arc de cercle présent sur la paroi intérieure de l'un (6') desdits secteurs qui composent ledit carter et confiné dans celui-ci au moyen d'inserts terminaux élastiques (7e, 7f) retenus par les surfaces d'accouplement des deux secteurs de carter adjacents pour amortir le raclement.
  8. Hélice selon la revendication 7, dans laquelle lesdits inserts élastiques sont des blocs de caoutchouc maintenus aux deux extrémités dudit appui en arc de cercle sous les extensions respectives dudit insert en secteur de bague qui dépassent par rapport à la surface de ladite paroi intérieure.
EP90904926A 1989-03-21 1990-03-19 Helice a pas variable reglable manuellement Expired - Lifetime EP0464085B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IT8361489 1989-03-21
IT8983614A IT1235687B (it) 1989-03-21 1989-03-21 Elica a pale abbattibili e passo regolabile.
IT8363089 1989-07-14
IT8983630A IT1235831B (it) 1989-07-14 1989-07-14 Dispositivo per variare il passo di un'elica con pale a bandiera.
PCT/IT1990/000030 WO1990011221A1 (fr) 1989-03-21 1990-03-19 Helice a pas variable reglable manuellement

Publications (2)

Publication Number Publication Date
EP0464085A1 EP0464085A1 (fr) 1992-01-08
EP0464085B1 true EP0464085B1 (fr) 1994-01-26

Family

ID=26330097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904926A Expired - Lifetime EP0464085B1 (fr) 1989-03-21 1990-03-19 Helice a pas variable reglable manuellement

Country Status (6)

Country Link
EP (1) EP0464085B1 (fr)
JP (1) JPH04503935A (fr)
AU (1) AU629328B2 (fr)
DE (1) DE69006357T2 (fr)
ES (1) ES2049027T3 (fr)
WO (1) WO1990011221A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927160B1 (en) 2007-12-21 2011-04-19 Brp Us Inc. Variable pitch propeller
US8465257B1 (en) 2008-10-31 2013-06-18 Brp Us Inc. Variable pitch propeller

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243015B (it) * 1990-09-19 1994-05-23 Santa Caterina Di Brena Ada & Elica a pale orientabili e abbattibili
ATE360570T1 (de) * 2003-12-30 2007-05-15 Marine Propeller S R L Stossdämpfer für verstellpropeller mit anstellwinkelverstellbaren flügeln, insbesondere für segler
DK2275343T3 (da) 2006-12-19 2012-08-20 Max Prop S R L Skrue med stilbart blad
FR2911930A1 (fr) * 2007-01-26 2008-08-01 Snecma Sa Turbopropulseur a helice a pas reglable
ITMI20081667A1 (it) * 2008-09-19 2010-03-20 Max Prop S R L Elica nautica a passo variabile
IT1393705B1 (it) * 2009-04-28 2012-05-08 Max Prop S R L Elica nautica a passo variabile
US20100260606A1 (en) 2009-04-08 2010-10-14 Max Prop S.R.L. Nautical variable-pitch propeller
EP2714508B1 (fr) 2011-05-26 2016-01-20 Max Prop S.r.l. Hélice de bateau munie de moyens servant à maintenir sa position assemblée
EP3523193B1 (fr) * 2016-10-04 2020-12-02 Wärtsilä Netherlands B.V. Hélice pour navire et procédé d'installation de chapeau de moyeu sur le moyeu
CN114940251A (zh) * 2022-04-29 2022-08-26 广东逸动科技有限公司 螺旋桨、推进器及水上设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066718A (en) * 1964-08-11 1967-04-26 George William Kean Variable pitch propeller
US3275083A (en) * 1965-10-15 1966-09-27 Bradley A Kendis Variable pitch propeller
US3294176A (en) * 1966-04-11 1966-12-27 Reimers Fritz Changeable-pitch propeller
JPS5219511A (en) * 1975-08-05 1977-02-14 Tanashin Denki Co Auto-eject device for tape recorder
US4140434A (en) * 1975-12-29 1979-02-20 Massimiliano Bianchi Feathering propeller especially for sailing boats

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927160B1 (en) 2007-12-21 2011-04-19 Brp Us Inc. Variable pitch propeller
US8465257B1 (en) 2008-10-31 2013-06-18 Brp Us Inc. Variable pitch propeller

Also Published As

Publication number Publication date
EP0464085A1 (fr) 1992-01-08
ES2049027T3 (es) 1994-04-01
AU5331190A (en) 1990-10-22
DE69006357T2 (de) 1994-05-11
DE69006357D1 (de) 1994-03-10
AU629328B2 (en) 1992-10-01
WO1990011221A1 (fr) 1990-10-04
JPH04503935A (ja) 1992-07-16

Similar Documents

Publication Publication Date Title
US5232345A (en) Feathering propeller with a manually adjustable pitch
EP0464085B1 (fr) Helice a pas variable reglable manuellement
JP2002544063A (ja) 脱着可能な羽根を備えた船用プロペラ
US5807151A (en) Propeller for marine propulsion drive
US3308889A (en) Variable pitch propeller with automatic adjustment
JP3963646B2 (ja) 舶用推進器
US5445497A (en) Variable pitch propellers
EP1585663B1 (fr) Absorbeur de chocs pour helice a pas variable avec aubes a eclipsage, en particulier pour voiliers
US3145780A (en) Variable pitch propeller
US3790304A (en) Detachable propeller blade
US5810561A (en) Variable pitch propeller apparatus
CA2039067C (fr) Barre a gouverner a rapport variable
US5203675A (en) Variable-pitch propeller having feathering blades
EP2832633B1 (fr) Hélice à pas mécaniquement réglable
EP2857307B1 (fr) Hélice à pas réglable
US9567049B2 (en) Self-adjustable pitch propeller
US5527154A (en) Variable pitch boat prop
EP2593359B1 (fr) Hélice à pas contrôlable avec amortissement des pales pendant la navigation avant et arrière et contrôle du pas des pales pendant la navigation arrière
US6585546B2 (en) Methods and apparatus for retaining a propshaft support bearing housing in a gear case
US6840828B1 (en) Expandable retaining ring assembly
CA3222275A1 (fr) Helice a pas variable a reglage automatique
JP3247562B2 (ja) 船用の可変プロペラ
CN116395116A (zh) 一种内置式游艇推进器及推进组合结构
FR2567096A1 (fr) Mecanisme pour commande d'orientation de pales d'helice de navire
IT9083610A1 (it) Elica con pale a bandiera e passo regolabile manualmente senza smontare l'elica

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB NL SE

17Q First examination report despatched

Effective date: 19921006

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69006357

Country of ref document: DE

Date of ref document: 19940310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049027

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90904926.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090331

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090422

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090410

Year of fee payment: 20

Ref country code: SE

Payment date: 20090323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090325

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100319

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100318

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100320

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100319