EP0462458B1 - Méthode d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz - Google Patents

Méthode d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz Download PDF

Info

Publication number
EP0462458B1
EP0462458B1 EP19910109322 EP91109322A EP0462458B1 EP 0462458 B1 EP0462458 B1 EP 0462458B1 EP 19910109322 EP19910109322 EP 19910109322 EP 91109322 A EP91109322 A EP 91109322A EP 0462458 B1 EP0462458 B1 EP 0462458B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
gas turbine
injector
turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910109322
Other languages
German (de)
English (en)
Other versions
EP0462458A1 (fr
Inventor
Hansulrich Frutschi
Hans Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0462458A1 publication Critical patent/EP0462458A1/fr
Application granted granted Critical
Publication of EP0462458B1 publication Critical patent/EP0462458B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/32Inducing air flow by fluid jet, e.g. ejector action

Definitions

  • the present invention relates to a method for increasing the pressure drop in the gas turbine of a power generation system as a result of the preamble of claim 1.
  • a power plant has become known from document FR-358 569, in which an injector can be seen which is operated by compressed air and a gaseous fuel.
  • the task of this injector is to give the fuel / air mixture a higher speed before it flows into the combustion chamber of the power plant.
  • a steam is generated in this combustion chamber, which is detached from the injector and admixed with the mixture mentioned to increase the pressure.
  • the operation of a driving nozzle of an injector arranged in front of the combustion chamber can only be accomplished by a medium of high pressure.
  • a power plant with a conventional steam generator is not able to provide a quantity of steam with the necessary pressure. So if the amount of steam required to operate such an injector has to be specially generated, it is obvious that such provision triggers a reduction in the efficiency of the system.
  • the object of the invention is to maximize the efficiency in a method of the type mentioned at the outset by increasing the pressure gradient in the gas turbine caused by the compressor.
  • the main advantage of the invention can be seen in the fact that the pressure increase of the working gas in the gas turbine of a power plant system occurs without using the shaft power of the system. Wherever there is a post-compression stage to the existing compressor niche considerations, the yield from the gas turbine caused by the task solution according to the invention is several times higher than this power consumed from the additional compression.
  • Another advantage of the invention can be seen in the fact that the increase in efficiency is achieved both in pure gas turbine groups and in combination systems; furthermore regardless of whether the respective circuit has a constant pressure combustion chamber or an isochor combustion chamber.
  • the gas turbine group as an autonomous unit consists of a generator 1, a compressor 2, a combustion chamber 6 and a gas turbine 8.
  • the air 3 that is sucked in is compressed in the compressor 2 in the sense of a pre-compression and then reaches the injector 5 via line 4. namely through its catch nozzle; the injector 5 is placed upstream of the combustion chamber 6.
  • the air then thermally processed in this combustion chamber 6 acts as hot gas 7 on the gas turbine 8.
  • the gas turbine exhaust gases 9 are fed to the heat recovery steam generator 13, where they are used for energy purposes.
  • a high-pressure steam 10 is generated in a high-pressure steam generating part 14, which acts on the injector 5 via its driving nozzle. Since it is a two-pressure heat recovery steam generator 13, a low-pressure steam 11 is generated in a further low-pressure steam generating part 16. A part of this steam 11a is fed to the combustion chamber 6, and there, for example, reduces the NOx emissions. Another part of the low-pressure steam 12 acts as a coolant for the gas turbine 8. The cooled exhaust gases are then blown out into the open as flue gases 18 via a chimney.
  • a first feed water pump 17 provides the medium replenishment in the heat recovery steam generator 13, while a second Feed water pump 15 provides the promotion of the medium between the low-pressure and high-pressure steam generating part.
  • a circuit here that is designed such that the high-pressure steam 10 generated in the waste heat steam generator 13 acts on the driving nozzle of the injector 13 and causes the pre-compressed air 4 coming from the compressor 2, which flows into the injector 5 via the collecting nozzle, to further compress is before both media 4 and 10 flow into the combustion chamber 6 placed downstream of the injector 5.
  • the gas turbine 8 experiences a greater pressure drop than could only be built up by means of the compressor 2 alone.
  • this circuit according to FIG. 1 can be designed as a combination system, in that a steam part from the waste heat steam generator 13 would act on a steam turbine connected downstream of it and not visible. Such an arrangement can in connection with an additional firing in the exhaust pipe 9, at the latest in the heat recovery steam generator 13 may be advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (3)

  1. Procédé d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz, qui se compose essentiellement d'au moins un compresseur (2), d'une chambre de combustion (6) placée en aval du compresseur et d'une turbine (8) opérant en aval de la chambre de combustion, dans lequel, en amont de la turbine (8), agit un injecteur (5) par la partie divergente duquel s'écoule l'air précomprimé (4) provenant du compresseur (2), cet air (4) étant surcomprimé en alimentant la partie convergente de l'injecteur (5) avec un autre fluide (10), caractérisé en ce que l'injecteur (5) opère en amont de la chambre de combustion (6), en ce qu'un générateur de vapeur à récupération de chaleur (13) avec une partie de générateur de vapeur à haute pression (14) fonctionne en aval de la turbine (8) avec les gaz d'échappement (9) de celle-ci, et en ce que la partie convergente de l'injecteur (5) est alimentée par de la vapeur produite (10) provenant de la partie de générateur de vapeur à haute pression (14) du générateur de vapeur à récupération de chaleur (13).
  2. Procédé suivant la revendication 1, caractérisé en ce que le générateur de vapeur à récupération de chaleur (13) produit une vapeur à basse pression (11), qui est recyclée dans la turbine (8) et/ou dans la chambre de combustion (6).
  3. Procédé suivant la revendication 1, caractérisé en ce que la chambre de combustion (6) fonctionne comme une chambre de combustion à pression constante ou isochore.
EP19910109322 1990-06-19 1991-06-07 Méthode d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz Expired - Lifetime EP0462458B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2038/90A CH683018A5 (de) 1990-06-19 1990-06-19 Verfahren zur Erhöhung des verdichterbedingten Druckgefälles einer Gasturbine einer Kraftwerksanlage.
CH2038/90 1990-06-19

Publications (2)

Publication Number Publication Date
EP0462458A1 EP0462458A1 (fr) 1991-12-27
EP0462458B1 true EP0462458B1 (fr) 1995-10-25

Family

ID=4224485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910109322 Expired - Lifetime EP0462458B1 (fr) 1990-06-19 1991-06-07 Méthode d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz

Country Status (3)

Country Link
EP (1) EP0462458B1 (fr)
CH (1) CH683018A5 (fr)
DE (1) DE59106755D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022491A1 (de) 2009-05-25 2011-01-05 Kirchner, Hans Walter, Dipl.-Ing. Kombinierter Kraftwerksprozess mit STIG- und Hochdruckdampfturbine
WO2016181307A1 (fr) 2015-05-11 2016-11-17 Devcon Engineering Gerhard Schober Turbine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4415315A1 (de) * 1994-05-02 1995-11-09 Abb Management Ag Kraftwerksanlage
DE4446543A1 (de) * 1994-12-24 1996-06-27 Abb Management Ag Kraftwerksanlage
DE19508018A1 (de) * 1995-03-07 1996-09-12 Abb Management Ag Verfahren zum Betrieb einer Kraftwerksanlage
DE19609912A1 (de) 1996-03-14 1997-09-18 Asea Brown Boveri Verfahren zum Betrieb einer Kraftwerksanlage
DE19639623A1 (de) * 1996-09-26 1998-04-09 Siemens Ag Mischung von zwei Fluidströmen an einem Verdichter
DE19941685C1 (de) * 1999-09-01 2000-07-20 Siemens Ag Verfahren und Einrichtung zur Erhöhung des Drucks eines Gases
AT501418B1 (de) * 2005-03-11 2008-08-15 Delunamagma Ind Gmbh Injektor-geladene gasturbine mit atmosphärischer feststofffeuerung und rekuperativer abwärmenutzung
AT501419B1 (de) * 2005-03-11 2008-08-15 Delunamagma Ind Gmbh Verbrennungskraftmaschine mit abwärmerekuperation und beheiztem dampfstrahl-verdichter
US9181876B2 (en) * 2012-01-04 2015-11-10 General Electric Company Method and apparatus for operating a gas turbine engine
RU2545261C9 (ru) * 2013-03-04 2015-06-10 Александр Алексеевич Белоглазов Газотурбинная установка повышенной эффективности
FI127525B (en) 2014-01-08 2018-08-15 Finno Energy Oy System and method for generating electrical energy
US9995314B2 (en) * 2015-07-20 2018-06-12 General Electric Company Cooling system for a turbine engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR358569A (fr) * 1905-10-16 1906-02-24 Jules Jean Deschamps Turbines à gaz ou à pétrole
GB272777A (en) * 1926-12-08 1927-06-23 Frank Robinson Improvements in and connected with the supply of fluid to fluid expansion engines
DE560273C (de) * 1928-02-03 1932-09-30 Robert Edley Lasley Gasdampfturbine
NL39438C (fr) * 1934-10-09
FR1006585A (fr) * 1948-02-04 1952-04-24 Perfectionnements aux turbines à gaz
FR1059635A (fr) * 1952-07-10 1954-03-26 Perfectionnements aux turbines à gaz
DE1085717B (de) * 1957-07-09 1960-07-21 Licentia Gmbh Gasturbinenanlage mit einem Strahlapparat oder einer Ausgleichduese

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022491A1 (de) 2009-05-25 2011-01-05 Kirchner, Hans Walter, Dipl.-Ing. Kombinierter Kraftwerksprozess mit STIG- und Hochdruckdampfturbine
WO2016181307A1 (fr) 2015-05-11 2016-11-17 Devcon Engineering Gerhard Schober Turbine
US10648355B2 (en) 2015-05-11 2020-05-12 Devcon Engineering Gerhard Schober Turbine

Also Published As

Publication number Publication date
DE59106755D1 (de) 1995-11-30
EP0462458A1 (fr) 1991-12-27
CH683018A5 (de) 1993-12-31

Similar Documents

Publication Publication Date Title
EP0439754B1 (fr) Méthode de démarrage d'une centrale combinée
EP0695860B1 (fr) Centrale à turbine à gaz avec stockage d'air comprimé
EP0150340B1 (fr) Procédé de commande d'une centrale combinée à turbine à gaz et à turbine à vapeur
DE102007053192B4 (de) Kraftwerke mit Gasturbinen zur Erzeugung von Elektroenergie und Prozesse zu der Reduzierung von CO2-Emissionen
EP0076529B1 (fr) Réduction de NOx pour turbines à gaz par injection de l'eau dans la chambre de combustion
EP0516995B1 (fr) Centrale combinée à gaz et à vapeur
EP0462458B1 (fr) Méthode d'augmentation du taux de compression d'un compresseur d'une installation de turbine à gaz
DE2524723C2 (de) Kombiniertes Gas-Dampf-Kraftwerk mit Druckgaserzeuger
EP0681099B1 (fr) Centrale à turbine à gaz
DE4301100C2 (de) Verfahren zum Betrieb eines Kombikraftwerkes mit Kohle- oder Oelvergasung
EP1753940B1 (fr) Procede pour exploiter une centrale electrique et centrale electrique
DE102004039164A1 (de) Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
EP1219800A2 (fr) Cycle de turbine à gaz
CH697810A2 (de) Gasturbinensystem für den Betrieb bei niedrigen Lasten bei Einhaltung der Emissionsgrenzwerte.
DE3419216A1 (de) Chemischer prozessor mit geschlossenem kreislauf
DE10307374A1 (de) Verfahren zum Betrieb eines teilgeschlossenen, aufgeladenen Gasturbinenkreislaufs sowie Gasturbinensystem zur Durchführung des Verfahrens
DE1476806A1 (de) Verfahren und Vorrichtung zum Bereitschafts-Leerlaufbetrieb eines Gasturbogenerators,der an ein elektrisches Kraftversorgungsnetz angeschlossen ist
DD264955A5 (de) Kraftwerksanlage
EP1208294B1 (fr) Procede et dispositif permettant d'augmenter la pression d'un gaz
EP0489270B1 (fr) Procédé pour la réduction de pression d'un gaz d'un réseau primaire
DE2335594A1 (de) Verbesserte anlage zur energiespeicherung mittels druckluft
DE3331153A1 (de) Gasturbinenanlage fuer offenen prozess
EP0530519A1 (fr) Centrale électrique chauffée par l'énergie nucléaire et fossile
DE4015104A1 (de) Kombinierte waermekraftanlage
DE3801605C1 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI NL SE

17P Request for examination filed

Effective date: 19920625

17Q First examination report despatched

Effective date: 19930827

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI NL SE

REF Corresponds to:

Ref document number: 59106755

Country of ref document: DE

Date of ref document: 19951130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080613

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080612

Year of fee payment: 18

Ref country code: DE

Payment date: 20080620

Year of fee payment: 18

Ref country code: NL

Payment date: 20080618

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090607

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090608