EP0460071A1 - Procede et dispositif pour determiner un indice de proliferation dans un echantillon cellulaire - Google Patents
Procede et dispositif pour determiner un indice de proliferation dans un echantillon cellulaireInfo
- Publication number
- EP0460071A1 EP0460071A1 EP90904138A EP90904138A EP0460071A1 EP 0460071 A1 EP0460071 A1 EP 0460071A1 EP 90904138 A EP90904138 A EP 90904138A EP 90904138 A EP90904138 A EP 90904138A EP 0460071 A1 EP0460071 A1 EP 0460071A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- proliferation
- image
- determining
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000035755 proliferation Effects 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims description 31
- 210000004027 cell Anatomy 0.000 claims abstract description 171
- 239000000126 substance Substances 0.000 claims abstract description 99
- 210000003855 cell nucleus Anatomy 0.000 claims abstract description 87
- 230000003287 optical effect Effects 0.000 claims abstract description 38
- 238000010186 staining Methods 0.000 claims abstract description 6
- 210000001519 tissue Anatomy 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000003556 assay Methods 0.000 claims description 8
- 102000003992 Peroxidases Human genes 0.000 claims description 6
- 108050006400 Cyclin Proteins 0.000 claims description 5
- 102000016736 Cyclin Human genes 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 4
- 238000010191 image analysis Methods 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 claims description 2
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 claims description 2
- 239000000427 antigen Substances 0.000 claims description 2
- 108091007433 antigens Proteins 0.000 claims description 2
- 102000036639 antigens Human genes 0.000 claims description 2
- 229950004398 broxuridine Drugs 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims description 2
- 238000004445 quantitative analysis Methods 0.000 claims description 2
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 claims 1
- 238000003672 processing method Methods 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 230000010076 replication Effects 0.000 description 7
- 238000003491 array Methods 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000018199 S phase Effects 0.000 description 4
- GPKUGWDQUVWHIC-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.NNC1=CC=C(C=C1)C1=CC=C(NN)C=C1 GPKUGWDQUVWHIC-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- KJDSORYAHBAGPP-UHFFFAOYSA-N 4-(3,4-diaminophenyl)benzene-1,2-diamine;hydron;tetrachloride Chemical compound Cl.Cl.Cl.Cl.C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 KJDSORYAHBAGPP-UHFFFAOYSA-N 0.000 description 2
- 230000010337 G2 phase Effects 0.000 description 2
- 208000002151 Pleural effusion Diseases 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- IDAQSADEMXDTKN-UHFFFAOYSA-L ethyl green Chemical compound [Cl-].[Br-].C1=CC([N+](C)(C)CC)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C1C=CC(=[N+](C)C)C=C1 IDAQSADEMXDTKN-UHFFFAOYSA-L 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010562 histological examination Methods 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 206010011732 Cyst Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101000929583 Homo sapiens N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- 102100036658 N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- -1 cerebrospinal fluid Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000035773 mitosis phase Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
- G01N2021/177—Detector of the video camera type
Definitions
- the invention relates to a system for performing a biochemical assay of a cell sample to provide an accurate quantitative analysis of a characteristic of the cells which have been sampled. More particularly, the invention is directed to a system which receives images of stained cells and enhances the cell images prior to further processing to determine the proliferation index of the enhanced cell images.
- a pathologist after having examined the stained cell sample, makes a qualitative determination of the state of the tissue or the patient from whom the sample was removed and reaches a conclusion as to whether the patient is normal, has a premalignant condition which might place him at risk of a malignancy in the future or has cancer. While this diagnostic method has provided some degree of predictability in the past it is somewhat lacking in scientific rigor since it is heavily reliant on the subjective judgement of the pathologist. Atte pts have been made to automate the cellular examination process. In U.S. Patent No.
- the cells in the synthesis or S-phase are actively synthesizing DNA and produce double the amount of DNA normally contained in the cell nuclei in preparation for mitosis or division of the cell nuclei during cell replication.
- a normal human somatic cell contains 23 chromosome pairs and is in the diploid state. The diploid state is also referred to as the 2N state. At the time of replication the number. of chromosome pairs increases to 46, double the normal amount in anticipation of cell division.
- the chromosome state immediately before replication is referred to as the 4N state.
- the cells then enter the second gap phase or G2 phase in which little or no DNA is synthesized.
- G2 phase is the mitosis or M-phase in which the cells themselves divide. If the cells are actively proliferating they may reenter the Gl phase.
- DNA analysis may be adequate for estimating the number or proportion of proliferating cells in normal cells or tissue, it should be appreciated that this is not the case with malignant cells, the very ones for which it often is important to know the extent of proliferation. This is because malignant cells often have increased amounts of DNA, even in the GO phase, due to the increased chromosome count.
- a well known method of determining the proliferation index is to stain the cells with an immunofluorescent dye which binds to cyclin and manually count the stained cells to determine the proportion of cells having proliferation substance.
- Another method of determining the proliferation index of cells is the grain counting method.
- tritiated thymidine is added to a cell culture growth medium.
- Proliferating cells take up the tritiated thymidine and incorporate it into DNA being synthesized in the cells.
- the cells are then fixed and placed in proximity with a photographic emulsion. Decay products of the tritium expose portions of the emulsion. The exposed portions may be visualized as grains by photographic development processes.
- the grains are then counted to determine whether the cells are normal or abnormal.
- One of the drawbacks of this method lies in the fact that it is very time consuming. It is necessary that the cells be harvested alive and kept alive long enough to take up the tritiated thymidine.
- the cells must then be fixed and held in proximity with the emulsion in order to expose it. Since relatively low intensities of radiation may emanate from the cells, it may take days or even weeks to obtain a latent image on the emulsion, which must then be developed. In the meantime, the patient's disease may be progressing.
- the prior imaging systems have also suffered from the problem that while they usually accurately identify the images of cell objects in an image being processed they do not always accurately identify boundaries of the cell objects being evaluated. This may be a problem when an assay is being performed on the cell objects on the basis of their image areas.
- the prior art methods of quantitatively analyzing the cell samples for proliferation substances could not be automated simply. This is because it is necessary to determine a baseline value for the total number of cells examined as opposed to the number of cells which have proliferation substance. In order to make this type of evaluation an automatic system must be able to recognize what constitutes a cell or a cell nucleus. In order to solve this baseline recognition problem the instant invention employs separate stains for the cell nuclei and the proliferation substances.
- the stains are separated spectrally so that they can be readily distinguished by optical filters which are compatible with them.
- the optical separation of the two components to be measured makes the subsequent analysis of the cell images more convenient to automate.
- a similar difficulty is encountered in an image analysis based on cell object areas when cell objects images overlap, touch or otherwise share contiguous areas. In that case, what is actually a double or triple object image may not be tallied properly resulting in an inaccurate result or conclusion.
- the present invention provides a rapid and convenient method and an apparatus for practicing that method for determining the amount of a proliferation substance in a cell sample.
- the cell sample may be a tissue sample or a cell preparation. Tissue samples are frozen sections or paraffin sections of connected cells.
- the cell preparations are made from body fluids such as cerebrospinal fluid, blood, pleural effusions and the like. Cell preparations may also be made from needle aspirates of tumors, cysts or lymph nodes. Cell preparations may also be made from touch preparations which are made by touching a freshly microtomed surface of a piece of tissue to a microscope slide to which the cells cling.
- the apparatus and method employ a rabbit anti-mouse immunoglobulin (IgG) based staining system wherein antibodies for a proliferation substance such as cyclin or the antigen for Ki-67 are complexed with an enzyme in this embodiment horseradish peroxidase (HRP) .
- HRP horseradish peroxidase
- the cells are contacted with the HRP-proliferation substance antibody conjugate which binds only to portions of the cells which have epitopes identifying them as proliferation substance.
- a stain, in this embodiment 3, 3' diaminobenzidine tetrahydrochloride (DAB), and hydrogen peroxide H 2 0 2 are placed in contact with the cells having the antibody-HRP conjugate bound to their proliferation substance sites.
- the HRP catalyzes a chromogen forming reaction only at the areas where it is bound.
- the catalyzed chromogen forming reaction produces a red-brown chromogen precipitate bound to proliferation sites.
- the cells are then stained with a counterstain, in this instance ethyl green, which is commonly known as methyl green.
- a counterstain in this instance ethyl green, which is commonly known as methyl green.
- the image of the cells is magnified in a light microscope and split into a pair separated images.
- the separated images are enhanced by a pair of narrow bandpass optical filters.
- One of the narrow bandpass optical filters preferentially transmits light having a wavelength at the transmission peak of the counterstain thereby producing an optically enhanced proliferation substance image which only has background and the red-brown chromogen.
- the background of the proliferation substance " image is composed of the cell nuclei, cytoplasm and the like which have substantially zero optical density.
- the proliferation substance sites have a relatively high optical density. Thus the only features which are easily perceivable are the proliferation substance sites.
- the other narrow bandpass optical filter preferentially transmits the red-brown transmission peak and blocks the counterstain peak thereby enhancing optical density differences between the cell nuclei and the proliferation substance chromogen.
- the filter produces an optically enhanced cell nuclei image which has only background features and the cell nuclei.
- the inventive apparatus senses the enhanced proliferation substance image with a first monochrome television camera.
- the enhanced cell nuclei image is sensed by a second monochrome television camera.
- Analog signals representative of the images are fed to respective image processors.
- the image processors convert the analog signals to digitized arrays of pixels which are stored in internal frame buffers.
- the apparatus When a tissue section is being examined the apparatus computes an area of the proliferation substance 5 image which has high optical density, yielding an area measure for the proliferation substance in that image field. When a cell preparation is being examined the apparatus computes the proliferation index on the basis of the percentage of cell nuclei having more than a threshold 1° amount of proliferation substance therein.
- FIG. 1 is an isometric view of an apparatus for I 5 determining a proliferation index of a cell sample embodying the present invention
- FIG. 2 is a block diagram of the apparatus of FIG. 1;
- FIG. 3 is an elevational view of an optical 20 conversion module of the apparatus of FIG. 1;
- FIG. 4 is a magnified view of a stained cell sample as seen through the microscope of FIG. 1 without optical filtering;
- FIG. 5 is a magnified view of the stained cell 25 sample of FIG. 4 as seen through a 620 nanometer narrow band optical filter which yields a cell nuclei image;
- FIG. 6 is a magnified view of the stained cell sample of FIG. 4 as seen through a 500 nanometer narrow band optical filter which yields a proliferation substance
- FIG. 7 is a graph of the spectral response of a chromogen, a counterstain and the narrow band optical filters
- FIG. 8 is a flow chart of a sequence of steps
- FIG. 9 is a flow chart of a sequence of steps performed by the apparatus of FIG. 1 in determining the proliferation index of a tissue section cell sample;
- FIG. 10 is a flow chart of the steps carried by the apparatus in determining the proliferation index of a cell preparation cell sample
- FIG. 11 is a screen display of the tissue screen.
- FIG. 12 is a screen display of the cell preparation screen.
- the apparatus 10 comprises an optical microscope 12, which may be of any conventional type but in this embodiment is a Reichart Diastar or Microstar.
- An optical conversion module 14 is mounted on the microscope 12 to enhance optically a magnified image of a cell sample viewed with the microscope 12.
- the optical conversion module 14, as may best be seen in FIG. 3, has a cell nuclei sensing means comprising a cell nuclei image optical enhancement unit 16.
- the cell nuclei image optical enhancement unit 16 has a 620 + 20 nanometer red narrow bandpass optical transmission filter 18 and a television camera 20 for receiving a filtered image from the filter 18.
- a proliferation substance sensing means comprising a proliferation substance optical enhancement module 22 has a green 500 + 20 nanometer narrow bandpass optical transmission filter 24 and a television camera 26 and is also part of the optical conversion module 14.
- Each of the television cameras 20 and 26 generates a standard NTSC compatible signal representative, respectively, of an enhanced cell nuclei image and an enhanced proliferation substance image.
- An image processing system 28 is connected to the television cameras 20 and 26 to receive the enhanced cell nuclei image signal and the enhanced proliferation substance image signal and to store a cell nuclei pixel array and a proliferation substance suffiel array therein.
- the image processor 28 is connected to a computer 32, in the present embodiment, an IBM personal computer model AT for processing of the cell nuclei and proliferation substance pixel arrays.
- the computer 32 includes a system bus 34, connected to the image processor unit 28.
- An 80286 microprocessor 36 is connected to the system bus 34.
- a random access memory 38 and a read only memory 40 are also connected to the system bus 34 for storage of information.
- a disk controller 40 is connected by a local bus 44 to a Winchester disk drive 46 and to a floppy disk drive 48 for secondary information storage.
- a video conversion board 50 in this embodiment, an EGA board having 256K bytes of memory, is connected to the system bus 34 to control an instruction monitor 52 connected to the EGA board 50.
- a keyboard processor 54 is connected to the system bus 34 to interpret signals from a keyboard 56 which is connected to the keyboard processor 54.
- a printer 58 is connected to the system bus 54 for communication therewith.
- An X Y or image field board 60 is connected to the system bus 34.
- the X Y board 60 also is connected to a slide holder of the microscope 12 to sense the relative position of a slide 62 with respect to a microscope objective 64 and thus identify a field being viewed. Included is a Y position sensor 66 and an X position sensor 68.
- the Y position sensor 66 is connected via a communication path 70 to the X Y board 60.
- the X position sensor 68 is connected via a communication path 72 to the X Y board 60.
- the microscope 12 also includes an eyepiece 76 in optical alignment with the objective 74 for magnification of light forming an image of a cell sample on the slide 62.
- the method of the instant invention is practiced by collecting a cell sample, which may be in the form of a tissue section made from a frozen section or a paraffinized section and having both cell nuclei, cell fragments and whole cells therein.
- the cell sample may be a cell preparation of the type which might be taken from blood, pleural effusions, cerebrospinal fluid, or by aspirating the contents of a cyst or a tumor.
- the cells of the cell sample are placed on the slide 62 and fixed thereon.
- a monoclonal antibody for a proliferation substance to be detected in the cells is then placed in contact with them.
- the monoclonal antibody may for instance be Ki-67 or may be an antibody for, 5-bromodeoxyuridine, for cyclin or for other proteins which indicate that cellular replication is occurring.
- the monoclonal antibody selectively binds to all points on and within the cells where the proliferation substance is present.
- the monoclonal antibody also has bound thereto a bridging antibody and a peroxidase anti-peroxidase complex.
- the anti-peroxidase comprises an antibody which specifically binds to the enzyme peroxidase.
- the peroxidase enzyme is bound to the antibody and held through the chain of antibodies to the proliferation substance in the cells.
- a quantity of a mixture containing hydrogen peroxide and 3, 3' diaminobenzidine tetrahydrochloride (DAB) is applied to the cell sample on the slide 62.
- the hydrogen peroxide and the DAB react to form a chromogen consisting of a reddish-brown precipitate.
- the usual rate of reaction however is relatively low.
- the peroxidase catalyzes the chromogen-forming reaction only at the points where the peroxidase is localized.
- chromogen is precipitated only at the points in the cells where proliferation substance is present and the cells are preferentially stained only at the points where they have proliferation substance.
- the unreacted DAB and hydrogen peroxide are removed from the cell sample.
- the cells are then counterstained with methyl green (more properly known as ethyl green) which preferentially binds with the cell nuclei.
- methyl green more properly known as ethyl green
- cell nuclei are stained and the points within the cell nuclei having proliferation substance are stained reddish-brown.
- the microscope slide 62 is then placed on a carrying stage of the microscope 12 and the objective 64 is focused thereon.
- Light from the objective 64 travels through the eyepiece 12 where it may be viewed by an observer.
- the optical converter module 14 includes a beam-splitting mirror 80 which carries off approximately 90% of the light from the objective 64 to other portions of the converter 14.
- the light is fed to a dual prism dichroic mirror 82 which reflects a portion of the light to the red filter 18.
- the remaining portion of the light is filtered by the dichroic mirror 82 and fed to the green filter 24.
- the dichroic mirror 82 selectively passes light having wavelengths greater than 500 nanometers to the filter 18 and having a wavelength of less than 500 nanometers to the filter 24.
- the dichroic mirror 82 acts as a first color filter before the light reaches the color filters 18 and 24.
- the filter 18 When the light passes through the filter 18, the filter 18 preferentially blocks light from the green stained cell nuclei and provides a high contrast cell nuclei image to the camera 20.
- the camera 20 then generates an NTSC cell nuclei image signal which is fed to the image processor module 28.
- the image processor module 28 has an image processor 90 and an image processor 92. Each of the image processors 90 and 92 is a model AT428 from the Datacube Corporation.
- the green filter 24, filter provides a high contrast proliferation substance image to the camera 26.
- the camera 26 then feeds the proliferation substance image signal to the image processor 92.
- Both of the image processors 90 and 92 contain analog to digital converters for converting the analog NTSC image signals to digitized arrays of pixels which are then stored within internal frame buffers.
- the internal frame buffers may be accessed via the system bus 34 under the control of the microprocessor 36.
- the image of the cell sample viewed through the eyepiece 12 is of the type shown in FIG. 4 wherein a green cell nucleus 100, a green cell nucleus 102, a reddish-brown cell nucleus 104 having proliferation substance therein, a reddish-brown cell nucleus 106, and a reddish-brown and green cell nucleus 108 appear in an image field.
- the cell nuclei are shown therein as they would appear through the red filter 18, which causes all of the green cell nuclei to darken and appear prominently.
- cell nuclei 100 and 102 being rendered substantially transparent or invisible by the effect of the green filter 24 which has its transmission peak at approximately the same wavelength as the transmission peak for the methyl green stain.
- the cell nuclei 104, 106 and 108 having the reddish-brown chromogen deposited therein which is an indicator for the proliferation substance appear clearly in high contrast.
- the cell nuclei image of FIG. 5 is stored in the internal frame buffer of the image processor 90.
- the proliferation substance image of FIG. 6 stored in the internal frame buffer of the image processor 92.
- the pixel values for the images may be sliced using standard image processing techniques to increase the contrast between the cell nuclei and the backgrounds. That is, the areas of high optical density in FIG. 6 such as the cell nuclei 104, 106 and 108 may be shown as being very dense and stored as high optical density pixels, while the background areas 110 may be stored in substantially zero optical density pixels in order to provide a clear threshold or difference between the two areas. This is particularly helpful when 5 performing computations to determine the proliferation index, since the system can differentiate more easily between background and nuclei to be measured. This slicing technique acts as an additional amplifying step for the images.
- the user is interrogated as to whether the images are from a tissue section or a cell preparation. More particularly, after a starting step 120, the system 10 next displays an
- step 126 wherein a tissue section screen is displayed on the instruction monitor 52. If the response is negative, control is transferred to a step 128 where the user is questioned as to whether the cell sample is from a cell preparation. If the response is positive,
- control is transferred to a step 130 wherein a cell preparation processing and result screen of the type shown in FIG. 12 is displayed on the instruction monitor 52.
- a step 132 transfer control to a HELP screen 134.
- the screen of FIG. 11 is displayed during the step 126.
- the screen provides a menu of functions at the right-hand side which are of the type well known to users of automated cell analysis
- the user may select a nuclear threshold function wherein the user may specify the threshold optical density or pixel value at which the system 10 determines for purposes of computation that a particular pixel value is indicative of the presence of a portion of a cell nucleus at that point.
- an antibody threshold may similarly be set wherein the optical density of the image of FIG. 6 is measured and a threshold is set indicative of the presence or absence of antibody at a particular pixel address.
- the user once having set the thresholds, may then display outlines or shaded areas of the cell nuclei and the antibodies in a display nuc-anti masking function. Once the user does this, control is transferred to a tissue section analysis step 140 which may be seen in more detail in FIG. 9.
- a 620 nanometer cell nuclei image of the type is received by the camera 20 in a step 150.
- the analogy image signal is digitized in a step 152 and a threshold value for pixels indicating the presence of the cell nuclei is selected in a step 154. Once the threshold has been selected, pixels having a value less than the threshold have their values set to a pre-selected background level while the pixels having values over leaving a high contrast pixel array for further processing.
- the pixel array is transferred to the computer system 32 where the number of pixels having values exceeding the selected nuclear threshold value is counted to provide a cell nuclei amount or count which will be used as a proliferation index denominator in later processing.
- the proliferation substance image of the type shown in FIG. 6 is received by the camera 26 in a step 160.
- the proliferation substance image is digitized by the image processor 92 in a step 162.
- An antibody threshold which has been selected by the user reduces the background of the proliferation substance image to zero and effectively isolates the pixels representative of the proliferation substance antibody in a step 164.
- the isolated pixels that is those pixels having a value greater than the preselected antibody threshold, are then counted by the system 32 5 and a pixel count number 162 is provided in the step 166.
- steps 150 through 156 effectively measure the area of the image field of FIG. 5 wherein cell nuclei are found.
- steps 160 through 166 effectively measure the area of the proliferation substance in the image field of FIG. 6.
- the computer 32 in a step 168 then divides the proliferation substance by the area of the cell nuclei and generates a quotient which is equal to the
- the proliferation index is then displayed on the tissue section screen as a percentage number.
- the total nuclear area as computed in steps 150 through 156 is also displayed.
- step 200 the cell nuclei image of FIG. 5 is received by the camera 20.
- the cell nuclei image is
- the digitized cell nuclei image is then analyzed in a step 204 to determine, using neighborhood labelling, what objects are to be considered by the system 10 to be cell nuclei and what objects are not.
- step 206 if two or more of the objects are in contact with each other, the operator is given the opportunity to have the system draw a line of demarkation in between then or to
- a threshold value is then applied to the pixel arrays in a step 208 to amplify the differences among pixels by slicing, as was done in steps 154 and 164 previously.
- the proliferation substance image of FIG. 6 is received 5 by the camera 26.
- the proliferation substance image is digitized in the step 214 and is isolated in a step 216.
- the cell nuclei and proliferation substance pixel arrays are then combined in a step 218 and displayed on the image monitor 30. The cell nuclei are counted by
- the computer 32 the computer 32.
- the cell nuclei having proliferation substance are also counted by the computer 32.
- the number of proliferation substance nuclei is then divided by the total number of cell nuclei to produce a proliferation index for the cell preparation
- the proliferation index is then displayed on the cell preparation screen of FIG. 12.
- tissue section feature of FIG. 9 allows the proliferation index for a tissue section sample to be easily and rapidly
- the cells may be counted by using the cell principal preparation technique.
- the system provides considerable amplification for determination of the proliferation index.
- the initial amplification takes place when the proliferation substance is identified with the chromogen and the cell nuclei are stained with the counterstain.
- a second amplification takes place when the cell nuclei and proliferation substance images are formed by filtering the light through the optical filters 18 and 24. Further amplification takes place when the threshold values for the proliferation substance and the cell nuclei are set providing high contrast images and high gain digital arrays for further processing.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Sustainable Development (AREA)
- Virology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Procédé et dispositif (10) de traitement d'images pour déterminer un indice de prolifération dans un échantillon cellulaire en colorant les cellules avec un chromogène pour une substance de prolifération et avec une contre-coloration pour les noyaux cellulaires. Le chromogène est activé par un conjugué anticorps-enzyme qui se lie à la substance de prolifération pour produire un échantillon cellulaire coloré. On examine cet échantillon cellulaire coloré à l'aide d'un microscope optique (12), qui représente une partie du dispositif, et qui produit une image agrandie de l'échantillon cellulaire. Le dispositif filtre optiquement (18) l'image de l'échantillon cellulaire et produit deux images optiquement améliorées, une de la substance de prolifération et une des noyaux cellulaires. On analyse électroniquement ces images améliorées pour déterminer les quantités de noyaux cellulaires et de substance de prolifération qui y apparaissent. On compare ensuite ces quantités pour obtenir un indice de prolifération pour la portion d'échantillion cellulaire qui appparaît sur l'image de l'échantillon cellulaire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/315,289 US5086476A (en) | 1985-11-04 | 1989-02-24 | Method and apparatus for determining a proliferation index of a cell sample |
US315289 | 1989-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0460071A1 true EP0460071A1 (fr) | 1991-12-11 |
EP0460071A4 EP0460071A4 (en) | 1993-02-03 |
Family
ID=23223738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19900904138 Ceased EP0460071A4 (en) | 1989-02-24 | 1990-02-23 | Method and apparatus for determining a proliferation index of a cell sample |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0460071A4 (fr) |
CA (1) | CA2045614C (fr) |
WO (1) | WO1990010277A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006069246A2 (fr) | 2004-12-22 | 2006-06-29 | Ambrx, Inc. | Compositions contenant des acides amines non naturels et des polypeptides, procedes impliquant ces acides amines non naturels et polypeptides, et utilisations desdits acides amines non naturels et polypeptides |
EP2327724A2 (fr) | 2004-02-02 | 2011-06-01 | Ambrx, Inc. | Polypeptides d'hormone de croissance humaine et leur utilisations |
US9156899B2 (en) | 2008-09-26 | 2015-10-13 | Eli Lilly And Company | Modified animal erythropoietin polypeptides and their uses |
EP3103880A1 (fr) | 2008-02-08 | 2016-12-14 | Ambrx, Inc. | Polypeptides d'insuline modifiés et utilisations de ceux-ci |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5889881A (en) * | 1992-10-14 | 1999-03-30 | Oncometrics Imaging Corp. | Method and apparatus for automatically detecting malignancy-associated changes |
US6026174A (en) * | 1992-10-14 | 2000-02-15 | Accumed International, Inc. | System and method for automatically detecting malignant cells and cells having malignancy-associated changes |
KR101699142B1 (ko) | 2004-06-18 | 2017-01-23 | 암브룩스, 인코포레이티드 | 신규 항원-결합 폴리펩티드 및 이의 용도 |
CN103520735B (zh) | 2004-12-22 | 2015-11-25 | Ambrx公司 | 包含非天然编码的氨基酸的人生长激素配方 |
MX2007007591A (es) | 2004-12-22 | 2007-07-25 | Ambrx Inc | Metodos para expresion y purificacion de hormona de crecimiento humano recombinante. |
JP2008525473A (ja) | 2004-12-22 | 2008-07-17 | アンブレツクス・インコーポレイテツド | 修飾されたヒト成長ホルモン |
CA2590429C (fr) | 2004-12-22 | 2014-10-07 | Ambrx, Inc. | Compositions de synthetase d'aminoacyl-arnt et utilisations correspondantes |
JP2008541769A (ja) | 2005-06-03 | 2008-11-27 | アンブレツクス・インコーポレイテツド | 改善されたヒトインターフェロン分子及びそれらの使用 |
PT2339014E (pt) | 2005-11-16 | 2015-10-13 | Ambrx Inc | Métodos e composições compreendendo aminoácidos não-naturais |
ES2465473T3 (es) | 2006-09-08 | 2014-06-05 | Ambrx, Inc. | Transcripción de arnt supresor en células de vertebrado |
WO2008030613A2 (fr) | 2006-09-08 | 2008-03-13 | Ambrx, Inc. | Arnt suppresseur hybride pour cellules de vertébrés |
KR20090060294A (ko) | 2006-09-08 | 2009-06-11 | 암브룩스, 인코포레이티드 | 변형된 인간 혈장 폴리펩티드 또는 Fc 스캐폴드 및 그의 용도 |
CN104163864B (zh) | 2007-03-30 | 2017-08-01 | Ambrx公司 | 经修饰fgf‑21多肽和其用途 |
AU2008247815B2 (en) | 2007-05-02 | 2012-09-06 | Ambrx, Inc. | Modified interferon beta polypeptides and their uses |
JP5547083B2 (ja) | 2007-11-20 | 2014-07-09 | アンブルックス,インコーポレイテッド | 修飾されたインスリンポリペプチドおよびそれらの使用 |
UA118536C2 (uk) | 2008-07-23 | 2019-02-11 | Амбркс, Інк. | Модифікований поліпептид бичачого гранулоцитарного колонієстимулювального фактора та його застосування |
NZ607477A (en) | 2008-09-26 | 2014-09-26 | Ambrx Inc | Non-natural amino acid replication-dependent microorganisms and vaccines |
CN107056929A (zh) | 2009-12-21 | 2017-08-18 | Ambrx 公司 | 经过修饰的猪促生长素多肽和其用途 |
CN107674121A (zh) | 2009-12-21 | 2018-02-09 | Ambrx 公司 | 经过修饰的牛促生长素多肽和其用途 |
MX346786B (es) | 2010-08-17 | 2017-03-31 | Ambrx Inc | Polipeptidos de relaxina modificados y sus usos. |
US9567386B2 (en) | 2010-08-17 | 2017-02-14 | Ambrx, Inc. | Therapeutic uses of modified relaxin polypeptides |
AR083006A1 (es) | 2010-09-23 | 2013-01-23 | Lilly Co Eli | Formulaciones para el factor estimulante de colonias de granulocitos (g-csf) bovino y variantes de las mismas |
JP6355082B2 (ja) | 2013-07-18 | 2018-07-11 | パナソニックIpマネジメント株式会社 | 病理診断支援装置及び病理診断支援方法 |
PL3412302T3 (pl) | 2014-10-24 | 2021-11-02 | Bristol-Myers Squibb Company | Zmodyfikowane polipeptydy fgf-21 i ich zastosowania |
CN110637027B (zh) | 2017-02-08 | 2024-08-30 | 百时美施贵宝公司 | 包含药代动力学增强子的修饰的松弛素多肽及其用途 |
CN111413504B (zh) * | 2020-04-03 | 2022-01-28 | 河北医科大学第四医院 | 一种辅助判读ki67增殖指数的标准比对卡 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999047A (en) * | 1972-09-05 | 1976-12-21 | Green James E | Method and apparatus utilizing color algebra for analyzing scene regions |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4125828A (en) * | 1972-08-04 | 1978-11-14 | Med-El Inc. | Method and apparatus for automated classification and analysis of cells |
US4199748A (en) * | 1976-11-01 | 1980-04-22 | Rush-Presbyterian-St. Luke's Medical Center | Automated method and apparatus for classification of cells with application to the diagnosis of anemia |
JPS5661650A (en) * | 1979-10-24 | 1981-05-27 | Omron Tateisi Electronics Co | Analyzing device of cell |
US4741043B1 (en) * | 1985-11-04 | 1994-08-09 | Cell Analysis Systems Inc | Method of and apparatus for image analyses of biological specimens |
-
1990
- 1990-02-23 WO PCT/US1990/000999 patent/WO1990010277A1/fr not_active Application Discontinuation
- 1990-02-23 CA CA002045614A patent/CA2045614C/fr not_active Expired - Fee Related
- 1990-02-23 EP EP19900904138 patent/EP0460071A4/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999047A (en) * | 1972-09-05 | 1976-12-21 | Green James E | Method and apparatus utilizing color algebra for analyzing scene regions |
Non-Patent Citations (3)
Title |
---|
CELL TISSUE KINETICS, vol. 19, 1986, pages 275-287; M. PINCU et al.: "A modified harlequin stain for cell kinetics" * |
CYTOMETRY, vol. 9, no. 3, May 1988, pages 201-205, Alan R. Liss, Inc.; C SOUCHIER et al.: "Image analysis applied to proliferating cells in malignant lymphoma" * |
See also references of WO9010277A1 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2327724A2 (fr) | 2004-02-02 | 2011-06-01 | Ambrx, Inc. | Polypeptides d'hormone de croissance humaine et leur utilisations |
WO2006069246A2 (fr) | 2004-12-22 | 2006-06-29 | Ambrx, Inc. | Compositions contenant des acides amines non naturels et des polypeptides, procedes impliquant ces acides amines non naturels et polypeptides, et utilisations desdits acides amines non naturels et polypeptides |
EP2399893A2 (fr) | 2004-12-22 | 2011-12-28 | Ambrx, Inc. | Compositions contenant des acides aminés et des polypeptides non naturels, procédés les impliquant et leurs utilisations |
EP3103880A1 (fr) | 2008-02-08 | 2016-12-14 | Ambrx, Inc. | Polypeptides d'insuline modifiés et utilisations de ceux-ci |
US9156899B2 (en) | 2008-09-26 | 2015-10-13 | Eli Lilly And Company | Modified animal erythropoietin polypeptides and their uses |
US9644014B2 (en) | 2008-09-26 | 2017-05-09 | Ambrx, Inc. | Modified animal erythropoietin polypeptides and their uses |
EP3216800A1 (fr) | 2008-09-26 | 2017-09-13 | Ambrx, Inc. | Polypeptides d'érythropoïétine animale modifiés et leurs utilisations |
Also Published As
Publication number | Publication date |
---|---|
WO1990010277A1 (fr) | 1990-09-07 |
CA2045614A1 (fr) | 1990-08-25 |
CA2045614C (fr) | 1997-09-30 |
EP0460071A4 (en) | 1993-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2045614C (fr) | Appareil servant a determiner l'indice de proliferation d'un echantillon de cellules et methode connexe | |
US5086476A (en) | Method and apparatus for determining a proliferation index of a cell sample | |
US5252487A (en) | Method and apparatus for determining the amount of oncogene protein product in a cell sample | |
US5008185A (en) | Methods and apparatus for the quantitation of nuclear proteins | |
US6656683B1 (en) | Laser scanning cytology with digital image capture | |
US6165734A (en) | In-situ method of analyzing cells | |
US7899624B2 (en) | Virtual flow cytometry on immunostained tissue-tissue cytometer | |
Remmele et al. | Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer: computer-assisted image analysis (QIC score) vs. subjective grading (IRS) | |
US4741043A (en) | Method of and an apparatus for image analyses of biological specimens | |
US6007996A (en) | In situ method of analyzing cells | |
US5109429A (en) | Apparatus and method for analyses of biological specimens | |
US5202931A (en) | Methods and apparatus for the quantitation of nuclear protein | |
US5485527A (en) | Apparatus and method for analyses of biological specimens | |
EP0534247A2 (fr) | Procédé et dispositif pour l'essai automatique d'échantillons biologiques | |
US5202230A (en) | Methods of detecting cut cells in a tissue section | |
EP1065496A2 (fr) | Procédé et dispositif pour l'extraction d'images séparées à partir d'une pluralité de chromogènes dans un échantillon biologique | |
Parry et al. | Cancer detection by quantitative fluorescence image analysis | |
Ornberg et al. | Analysis of stained objects in histological sections by spectral imaging and differential absorption | |
US9607372B2 (en) | Automated bone marrow cellularity determination | |
JP2002521682A5 (fr) | ||
Satturwar et al. | Ki‐67 proliferation index in neuroendocrine tumors: Can augmented reality microscopy with image analysis improve scoring? | |
Moroz et al. | Cytologic nuclear grade of malignant breast aspirates as a predictor of histologic grade | |
US20230394716A1 (en) | Method of generating inference-based virtually stained image annotations | |
Clatch et al. | Multiparameter analysis of DNA content and cytokeratin expression in breast carcinoma by laser scanning cytometry | |
Hemstreet III et al. | Quantitative fluorescence image analysis in bladder cancer screening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910816 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched | ||
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940711 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19961017 |