EP0459038A1 - Prozessor für ein adaptives Antennensystem - Google Patents

Prozessor für ein adaptives Antennensystem Download PDF

Info

Publication number
EP0459038A1
EP0459038A1 EP90305494A EP90305494A EP0459038A1 EP 0459038 A1 EP0459038 A1 EP 0459038A1 EP 90305494 A EP90305494 A EP 90305494A EP 90305494 A EP90305494 A EP 90305494A EP 0459038 A1 EP0459038 A1 EP 0459038A1
Authority
EP
European Patent Office
Prior art keywords
weight
outputs
coefficients
tapped delay
filter means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90305494A
Other languages
English (en)
French (fr)
Other versions
EP0459038B1 (de
Inventor
Christopher Robert Ward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
STC PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd, STC PLC filed Critical Northern Telecom Ltd
Priority to DE1990616409 priority Critical patent/DE69016409T2/de
Publication of EP0459038A1 publication Critical patent/EP0459038A1/de
Application granted granted Critical
Publication of EP0459038B1 publication Critical patent/EP0459038B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays

Definitions

  • This invention relates to an off-line processor for a broadband accelerated convergence adaptive antenna array.
  • an adaptive antenna is to combine the signals received by the elements in an array to produce a far-field pattern that, in some sense, optimises the reception of a desired signal in the presence of jamming and noise.
  • the substantial improvements in anti-jam performance offered by this form of array signal processing have meant that it is now becoming an essential requirement for many military radar, communication and navigation systems.
  • FIG. 1 A known type of combining circuit for a broadband adaptive array is shown in Fig. 1.
  • Signals from the antenna array elements are received on individual channels which are identified as 'PRIMARY CHANNEL' and 'AUX CHANNELS'.
  • the primary channel is applied via a time delay T D to a beamforming network BFN.
  • the auxiliary channels 1 to N-1 are applied to respective tapped delay lines T, the outputs of which are fed through respective weighting networks to the beamforming network.
  • Time delay T D in the PRIMARY channel compensates for the associated signal delay through the tapped delay line auxiliary weighting.
  • Weights W 1,1 W 1,2 W 1,3 ...W n-1,1 W n-1,2 ....W n-1,m-1 W n-1,m are applied to the weighting networks.
  • the weighted outputs of the tapped delay lines are combined in the beamforming network BFN together with the primary channel signal to form the output response of the array.
  • the weights are calculated (by a signal processor not shown in Fig. 1) to form a beam pattern with broadband spatial nulls in the directions of the jammer sources.
  • the array can be arranged for the array to adapt to null the jamming signal(s) during intervals when the desired signal is absent.
  • the weights are then frozen while the desired signal is present and then recalculated during any pauses in the desired signal.
  • an off-line processor arrangement for a broadband accelerated convergence adaptive antenna array wherein signals from a plurality of antenna elements are applied to respective identical tapped delay lines the outputs of which are fed through individual signal weighting means to a beamforming network, the arrangement including one or more lattice filter means to which the auxiliary antenna element signals are applied together with the output response of the beamforming network to compute sets of weight correction vectors with which to update weight coefficients and means for storing said updated coefficients, said stored coefficients being applied to the individual signal weighting means to weight the outputs of the tapped delay lines.
  • separate identical lattice filter means are provided for each of the antenna element signal to compute weight vectors for updating the weight coefficients for the outputs of the respective tapped delay line.
  • each lattice filter is constructed of a number of identical stages or sections LS (Fig.4) in cascade.
  • the signal from the appropriate antenna element, i.e. auxiliary channel, is fed to the two inputs X, Y of the basic lattice structure.
  • a typical lattice section LS is shown in Fig. 5.
  • Input X is applied via a time delay T and then the X and Y signals are applied to the appropriate cross multiplier structure.
  • each section provides two outputs, X1 and Y1.
  • the X1 outputs of each lattice section are subjected to a scaling factor and then combined with the output response from the beamformer BFN.
  • the operation of the m-stage lattice filters is controlled by a process controller PC which produces, for example, weight flush control signals to cause the weight correction vectors to be flushed out of the filters at the correct time intervals.
  • the weight flush control calculates impulse response of the lattice filter.
  • the flushed out impulse coefficients from the filters (represented in vector notation by * W i (P) for the i th lattice filter at the p th recursion) are applied to update the weights in respective stores WS1...WS n-1 where the weights to be applied to the tapped delay line outputs are held.
  • a single lattice filter LF is used in a time-shared mode.
  • the auxiliary channel signals from the antenna elements are applied to a time division multiplexer MUX from which the multiplexed signals are fed to the filter LF.
  • the weight correction vectors * W i are supplied to the weight update-and-store circuit WS for all the tapped delay lines.
  • off-line lattice filters to produce weight correction vectors offers various levels of reduced circuit complexity while retaining a significant improvement in convergence compared with more conventional adaptive weight control techniques e.g. the Widrow LMS technique.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
EP19900305494 1989-02-08 1990-05-21 Prozessor für ein adaptives Antennensystem Expired - Lifetime EP0459038B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1990616409 DE69016409T2 (de) 1990-05-21 1990-05-21 Prozessor für ein adaptives Antennensystem.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8902801A GB2229580B (en) 1989-02-08 1989-02-08 Adaptive array processor

Publications (2)

Publication Number Publication Date
EP0459038A1 true EP0459038A1 (de) 1991-12-04
EP0459038B1 EP0459038B1 (de) 1995-01-25

Family

ID=10651322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900305494 Expired - Lifetime EP0459038B1 (de) 1989-02-08 1990-05-21 Prozessor für ein adaptives Antennensystem

Country Status (2)

Country Link
EP (1) EP0459038B1 (de)
GB (1) GB2229580B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008849A2 (en) * 1994-09-14 1996-03-21 Philips Electronics N.V. A radio transmission system and a radio apparatus for use in such a system
US5887247A (en) * 1994-09-14 1999-03-23 U.S. Philips Corporation Radio transmission system and a radio apparatus for use therein
KR100337249B1 (ko) * 1998-04-03 2002-05-17 루센트 테크놀러지스 인크 다이버시티 안테나 시스템

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242268B (en) * 1990-03-22 1993-07-21 Stc Plc Adaptive antenna
US5028931A (en) * 1990-05-24 1991-07-02 Stc Plc Adaptive array processor
AU2756797A (en) * 1996-05-20 1997-12-09 Post Und Telekom Austria Aktiengesellschaft Process and device for reception with directional resolution
EP0948082A1 (de) * 1998-04-03 1999-10-06 Lucent Technologies Inc. Adaptive Antenne
DE19950577C2 (de) * 1999-10-20 2002-08-22 Siemens Ag Komplexwertiges CORDIC-Verfahren für Signalverarbeitungsaufgaben sowie Funkkommunikationssystem zur Durchführung des Verfahrens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003359A1 (en) * 1984-01-23 1985-08-01 The Commonwealth Of Australia Care Of The Secretar Method of processing sensor elements
US4578676A (en) * 1984-04-26 1986-03-25 Westinghouse Electric Corp. Delay lattice filter for radar doppler processing
GB2188782A (en) 1985-07-18 1987-10-07 Stc Plc Adaptive antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003359A1 (en) * 1984-01-23 1985-08-01 The Commonwealth Of Australia Care Of The Secretar Method of processing sensor elements
US4578676A (en) * 1984-04-26 1986-03-25 Westinghouse Electric Corp. Delay lattice filter for radar doppler processing
GB2188782A (en) 1985-07-18 1987-10-07 Stc Plc Adaptive antenna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B WIDROW ET AL.: "Comparison of Adaptive Algorithms Based on the Methods of Steepest Descent and Random Search", IEEE TRANS., vol. AP-24, 1976, pages 615 - 637
DIXIEME COLLOQUE SUR LE TRAITEMENT DU SIGNAL ET SES APPLICATIONS - NICE 20.5 - 24.5.1985 pages 391-396; G. FAVIER et al.: "Etude comparative de Filtres adaptatifs en treillis (Application au Traitement d'Antenne)" *
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION vol. AP-34, no. 3, March 1986, pages 338-346, New York, US; C.E. WARD et al.: "A novel Algorithm and Architecture for adaptive digital Beamforming" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008849A2 (en) * 1994-09-14 1996-03-21 Philips Electronics N.V. A radio transmission system and a radio apparatus for use in such a system
WO1996008849A3 (en) * 1994-09-14 1996-05-30 Philips Electronics Nv A radio transmission system and a radio apparatus for use in such a system
US5751249A (en) * 1994-09-14 1998-05-12 U.S. Philips Corporation Radio transmission system and a radio apparatus for use in such a system
US5887247A (en) * 1994-09-14 1999-03-23 U.S. Philips Corporation Radio transmission system and a radio apparatus for use therein
KR100337249B1 (ko) * 1998-04-03 2002-05-17 루센트 테크놀러지스 인크 다이버시티 안테나 시스템

Also Published As

Publication number Publication date
GB8902801D0 (en) 1990-06-20
GB2229580B (en) 1993-07-21
EP0459038B1 (de) 1995-01-25
GB2229580A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
US5028931A (en) Adaptive array processor
US7778425B2 (en) Method for generating noise references for generalized sidelobe canceling
US4956867A (en) Adaptive beamforming for noise reduction
AU559567B2 (en) Adaptive antenna array
KR100831655B1 (ko) 적응적 간섭 제거기의 적응 제어 조정 방법
JP2697648B2 (ja) 判定帰還形等化器
US5581495A (en) Adaptive signal processing array with unconstrained pole-zero rejection of coherent and non-coherent interfering signals
US8379875B2 (en) Method for efficient beamforming using a complementary noise separation filter
US4313116A (en) Hybrid adaptive sidelobe canceling system
US5473333A (en) Apparatus and method for adaptively controlling array antenna comprising adaptive control means with improved initial value setting arrangement
JP2002094318A (ja) 無線通信システムにおける信号抽出方法及び装置
JP2004507767A (ja) 目的信号源から雑音環境に放射される信号を処理するシステム及び方法
JP2005527789A (ja) 適応加重正規化を使用するサブバンドビーム形成システムおよび方法
US4596986A (en) Sidelobe canceller with adaptive antenna subarraying using a weighted Butler matrix
EP0459038A1 (de) Prozessor für ein adaptives Antennensystem
US4222051A (en) Cascaded digital cancelers
JP4468203B2 (ja) レーダ装置
GB2188782A (en) Adaptive antenna
USH739H (en) Auxiliary antenna interference canceller
EP0129333B1 (de) Adaptive Antenne mit mehreren Strahlerelementen
USH740H (en) Antenna sidelobe interference canceller
RU2349996C1 (ru) Способ компенсационного подавления помех в многоканальной антенной системе
GB2357385A (en) Optimisation of spread spectrum signal receiver in particular direction
JPH1146112A (ja) 干渉波抑圧装置
JPS63165784A (ja) 不要波抑圧装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR SE

17Q First examination report despatched

Effective date: 19930820

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORTHERN TELECOM LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

EAL Se: european patent in force in sweden

Ref document number: 90305494.8

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69016409

Country of ref document: DE

Date of ref document: 19950309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030422

Year of fee payment: 14

Ref country code: FR

Payment date: 20030422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030530

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST