EP0459008B1 - Outil de forage pour forage dirigé - Google Patents

Outil de forage pour forage dirigé Download PDF

Info

Publication number
EP0459008B1
EP0459008B1 EP90115963A EP90115963A EP0459008B1 EP 0459008 B1 EP0459008 B1 EP 0459008B1 EP 90115963 A EP90115963 A EP 90115963A EP 90115963 A EP90115963 A EP 90115963A EP 0459008 B1 EP0459008 B1 EP 0459008B1
Authority
EP
European Patent Office
Prior art keywords
drilling tool
tool according
outer casing
drilling
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90115963A
Other languages
German (de)
English (en)
Other versions
EP0459008A2 (fr
EP0459008A3 (en
Inventor
Hans-Jürgen Faber
Dagobert Feld
Volker Dr.-Ing. Krüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Eastman Teleco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Teleco Co filed Critical Eastman Teleco Co
Priority to CA 2043695 priority Critical patent/CA2043695C/fr
Priority to NO912127A priority patent/NO301900B1/no
Publication of EP0459008A2 publication Critical patent/EP0459008A2/fr
Publication of EP0459008A3 publication Critical patent/EP0459008A3/de
Application granted granted Critical
Publication of EP0459008B1 publication Critical patent/EP0459008B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0412Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion characterised by pressure chambers, e.g. vacuum chambers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/042Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using a single piston or multiple mechanically interconnected pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0422Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion characterised by radial pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor

Definitions

  • the invention relates to a drilling tool for sinking bores into underground rock formations, with the specification of a selectable direction course for the borehole in an embodiment according to the preamble of claim 1.
  • a hydraulic system housed in the tool with a hydraulic accumulator and a hydraulic pump is provided to act upon the force transmitters.
  • the force transmitters act on control skids that are pressed against the borehole wall.
  • the invention has for its object to provide a drilling tool of the type mentioned with a much simplified hydraulic system for the control of the force transmitter, and the invention solves this problem by a drilling tool with the features of claim 1.
  • the claims 2 to 30 referenced.
  • the drilling tool according to the invention uses for the Deriving the required directional forces of the already existing drilling fluid as a hydraulic medium, as is known for extending contact members in engagement with a borehole wall (US-A-3788136), in order to increase the rotational resistance of a drilling tool for measuring purposes, so that the structural design of the Tool significantly simplified.
  • the hydraulic pressure chambers of the force transmitters are continuously flowed through, apart from temporary interruptions, so that sediment formation has been effectively countered.
  • the force transducers can bring about a displacement of the outer housing of the drilling tool together with the chisel drive shaft, but instead the chisel drive shaft can also be supported in the outer housing to a limited extent in a radially displaceable manner and can be displaced from one position in the outer housing to a different position for straightening purposes by means of a plurality of force transducers arranged over the circumference .
  • Such a configuration relocates the component displacements required in the event of changes of direction into the interior of the drilling tool, which simplifies the design of the outer housing.
  • FIG. 1 illustrates a drilling tool for drilling holes in underground rock formations, which comprises an outer housing 1 with a stabilizer 100 and a chisel drive shaft 3 which rotates in the outer housing 1 and has a rotary drill bit 2 on its projecting end.
  • the outer housing 1 can be connected via the upper connecting means, in particular an upper connecting thread 4, illustrated in the drilling tool according to FIG. 2, to a drill pipe string, as is schematically indicated in FIGS. 2 to 5, through which drilling fluid is supplied to the drilling tool.
  • the chisel drive shaft 3 is driven by a hydraulic drive motor, not shown, located in the upper area of the drilling tool in the outer housing, e.g. a Moineau engine or a turbine.
  • the outer housing 1 is provided with four hydraulically actuable force transmitters 6, 7, 8, 9, which are distributed over the circumference and are arranged in a common plane and form a group.
  • Each drilling tool preferably has a plurality of groups of force transmitters 6 to 9 arranged one above the other at a distance, of which expediently the force transmitters, which in each case are aligned one above the other in the vertical direction, are hydraulically controlled for mutual actuation.
  • a control device is provided for the hydraulic actuation of the force transducers 6, 7, 8, 9. if there are a plurality of groups of force transmitters arranged one above the other, each group of force transmitters having the same effect has an electrically actuable control valve.
  • FIG. 1 only the control valves 10 and 12 for acting on the force transmitters 6 and 8 or force transmitters assigned to them in the same way are shown. However, it goes without saying that corresponding valves are also provided for the force transmitters 7 and 9.
  • the electromagnets 14, 16 of the control valves 10, 12 are connected to a signal transmitter, as indicated schematically at 18 for the drilling tool according to FIG. 2.
  • This signal generator 18, together with a further signal generator 19, which can be provided for different control tasks and is illustrated schematically in FIG.
  • FIG. 2 schematically shows a sensor at 20, in addition to which further sensors 21, 22 can be provided for position data, as illustrated in FIG. 2.
  • the electrical supply can be secured by batteries 23 which, like the other electrical and sensory components of the control device, can be accommodated in an annular space 24 of the outer housing 1.
  • batteries 23 which, like the other electrical and sensory components of the control device, can be accommodated in an annular space 24 of the outer housing 1.
  • an energy supply using an electrical generator driven by a turbine is also conceivable.
  • the turbine can be operated by drilling fluid.
  • the force transmitters 6, 7, 8, 9 or force transmitters connected in parallel to each other act on pressure pieces 26, 27, 28, 29, which are supported in or on the outer housing 1 so as to be displaceable in and out, and like the four force transmitters 6, 7, 8.9 can be applied to the borehole wall 30 at a central angle of 90 °.
  • Each hydraulic pressure chamber 32, 33, 34, 35 of a force generator 6, 7, 8, 9 is optionally higher with a drilling fluid via a connecting channel 36, 37, 38, 39 and the control valve assigned to it (10, 12 for the connecting channels 36, 38) Pressure or with drilling fluid of lower pressure.
  • a feed line is provided above the group of force transmitters 6, 7, 8, 9 per connection channel 36, 37, 38, 39, of which only the feed lines 40, 42 for the connection channels 36 and 38 are illustrated in FIG. 1.
  • These feed lines are each controlled by the associated control valve (such as the control valves 10, 12) and open out from an annular gap 43 which is connected to drilling fluid of higher pressure via a branch line 44 which leads to the annular space 45 in the bit drive shaft 3.
  • the connecting channels 36,37,38,39 each open via a throttle point in the annular space and thus in an area with drilling fluid of lower pressure, as is illustrated in FIG. 1 at 46 and 48 for the connecting channels 36 and 38.
  • a pressure is formed in the connecting channels 36, 37, 38, 39 and the pressure chambers 32, 33, 34, 35 connected to them, which is higher than the pressure that arises when the control valves are closed. Because in this case, a pressure corresponding to the pressure in the flushing in the annular space is formed in the connecting channels 36, 37, 38, 39 via their connection to the annular space 50, which pressure is lower than the drilling fluid pressure in the drilling tool.
  • the connecting channels 36, 37, 38, 39 between their ends are connected via a branch channel 56, 57, 58, 59 to the associated pressure chamber 36, 37, 38, 39 of the force generator 6, 7, 8. 9 connected, and the pressure change in the pressure chambers corresponds to the pressure change as is formed in the connection channels 36, 37, 38, 39, which are pressurized at one end with higher drilling fluid and at the other end with lower drilling fluid.
  • the application of higher pressure drilling fluid can also be derived from the annular space 50 surrounding the outer housing 1 in the flow direction in front of a throttle point for the drilling fluid flowing through the annular space and with lower pressure drilling fluid from the annular space 50 behind such a throttle point.
  • a throttle point can be formed, for example, by a stabilizer.
  • the force transducers comprise pistons 66, 67, 68, 69 or 266, 267, 268, 269 (FIG. 5), as is the case with the force transducers 6, 7, 8, 9, and 206, 207, 208, 209, which are accommodated in cylinder spaces in the outer housing 1, then the Sealing gap between piston and cylinder form the connecting channel or channel part connected to the drilling fluid with lower pressure.
  • the mutually facing surfaces are advantageously armored with a hard metal.
  • control valves are preferably designed with an unbranched valve channel that can only be changed in its flow cross-section, which the valve bodies either release or completely or partially close in the closed position.
  • the latter design has the advantage that in the closed position of the control valve, this only forms a throttle point.
  • the pistons 66, 67, 68, 69 provided in the embodiment according to FIG. 1 act on the inside of pressure pieces 26, 27, 28, 29, which can be displaced to a limited extent by stops 80 on guide lugs 76, 77, 78, 79 of the outer housing 1 out and are designed as stabilizer ribs.
  • the chisel drive shaft 3 in the outer housing 1 is supported to a limited extent in a radially displaceable manner and by means of four force transmitters 106, 107, 108, 109 (FIG. 4) or 206, 207, 208, 209 (FIG. 5) - or a multiple thereof in the case of several groups acting in parallel - can be shifted from one position in the outer housing 1 for directional purposes to another position.
  • the force transmitters 106, 107, 108, 109 are designed as bellows pistons, which delimit a pressure chamber 132, 133, 134, 135, which are connected via connecting channels 136, 137, 138, 139 (FIG. 4) to the drilling fluid in the manner described above in connection with the embodiment according to FIGS. 1 and 3.
  • This also applies to the embodiment according to FIG. 5 with the connection channels 236, 237, 238, 239 illustrated there, which are assigned to the pressure spaces 236, 237, 238, 239.
  • the arrangement of the control valves 110, 112 with their electromagnetic drives 114 and 116 also corresponds to that of FIG. 1.
  • a force transmitter group is usually provided for specifying a basic position for the bit drive shaft 3 and / or the pressure pieces 26, 27, 28, 29.
  • This group of force transmitters 306, 308 (FIGS. 1 and 6) has stepped pistons 316, 318 that act as centering pistons and extend against a stop. In the end position abutting the stop, such pistons 316, 318 give the thrust pieces 26, 27, 28, 29 a basic, for example a centering position. 2 provides the chisel drive shaft 3 with a corresponding basic or centering position in the outer housing 1.
  • the force transmitter 306, 308 which specifies the basic position, for example a centering position, for the chisel drive shaft 3 and / or the pressure pieces 26, 27, 28, 29 can be acted upon hydraulically independently of the other force transmitters, either in the sense of a separate, independent control or in the sense of an uncontrolled one Permanent loading.
  • the force transducers 306, 308, which provide the basic position can be applied in whole or in part to drilling fluid of lower pressure in the event of desired displacements of the chisel drive shaft 3 or of the outer housing 1, in order to minimize the resistance to displacements by the other groups of force transducers.
  • the force transducers relevant for the basic position specification form a fail-safe device which, in the event of a control device failure, ensures that the drilling operation can be continued by drilling straight ahead.
  • the force transducers which are relevant for a displacement of the chisel drive shaft 3 or the pressure pieces 26, 27, 28, 29 of the outer housing 1 from their basic position are substantially greater forces on the chisel drive shaft 3 or the pressure pieces 26, 27, 28 , 29 can exercise than that is possible for the force setting the basic position.
  • This can be brought about by appropriate design of the pressure surfaces of the respective force transmitters or also by the fact that several groups of force transmitters are provided for the changes in direction.
  • Such an overpressure of the force transmitters specifying the basic position by the force transmitters which are decisive for shifting the direction can, however can also be achieved when all power providers and joint control are applied together.
  • the embodiment according to FIG. 5 provides for a combinable equipment of a drilling tool with an internal and an external control.
  • the pistons 266, 267, 268, 269 delimit a pressure space 232, 233, 234, 235 on one side, which at the same time forms the pressure space for the pistons 466, 467, 468 and 469 of a force transmitter 406, 407, 408, 409 which acts on pressure pieces 426, 427, 428, 429.
  • These pressure pieces 426, 427, 428 and 429 can be designed as stabilizer ribs and guided on the outer housing 1, as was described in connection with FIG. 1.
  • the pressure chamber 232, 233, 234, 235 is acted upon with drilling fluid from the connecting channels 236, 237, 238, 239, as was described in connection with FIG. 1 above.
  • the force transmitters 106, 107, 108, 109 and 206, 207, 208, 209 act on a bushing 81, which can each have tendon-shaped flats in the pressure engagement areas with the force transmitters.
  • the sleeve 81 delimits a cylindrical bearing shell 82 in which the bit drive shaft 3 is rotatably mounted.
  • the bearing shell 82 can also be a rotating part of the chisel drive shaft 3. This avoids wear and improves the load distribution.
  • FIG. 6a shows in its right half a hydraulic loading plan for the embodiment according to FIG. 2 with a control valve 110 in the area of the connection channel 136 with a higher drilling fluid pressure, and in the left half an embodiment with an arrangement of a control valve 210 in the area of the connection channel 136 lower drilling fluid pressure.
  • Throttle points 48 are each in the area not provided with the control valve 110, 210 of the connecting channel 136 is provided, which can correspond to the throttling points 48 (FIG. 1).
  • all the force transmitters are actuated jointly and the force transmitters 306, 308 are suppressed by the other force transmitters 106, 108 in the event of displacements from the basic position.
  • FIG. 6b illustrates an actuation plan for an embodiment according to FIG. 2, in which the force transmitters 306, 308 which determine the basic position receive an independent, uncontrolled actuation via a branch duct branching off from the connecting duct 136 above its control valve 110.
  • the force transmitters 306, 308 are subjected to a permanent load, which is also effective when the control of the force transmitters 106, 108, e.g. should fail due to a defect in the electronics of the control device.
  • FIGS. 7, 8 and 9 schematically illustrate possible variations in the arrangement of the force transmitters within the drilling tool.
  • FIG. 7 shows an arrangement of force transmitters 106, 108 acting on the bit drive shaft 3 near the bit-side end of the drilling tool
  • FIG. 8 illustrates an embodiment with force transmitters acting on pressure pieces 26, 28, which are located near the end of the drilling tool facing away from the rotary drill bit 2.
  • FIG. 9 shows an embodiment with pressure pieces 26, 28 acted upon by force transmitters, which in this case are arranged near the end of the drilling tool on the bit side.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Claims (30)

  1. Outil de forage pour le fonçage de forages dans des formations rocheuses souterraines, en imposant une direction à sélectionner pour le trou de forage, comportant un boîtier extérieur (1) tubulaire, à relier, par des moyens de raccord supérieurs, à une ligne de tubes fourreaux et un arbre d'entraînement de trépan (3) tournant dans le boîtier extérieur (1), portant un trépan rotatif (2), sur son extrémité dépassant du boîtier extérieur (1), comportant un nombre de transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) actionnables hydrauliquement, placés dans le boîtier extérieur (1), répartis sur le pourtour, pour la production de forces dirigées avec des composantes de force orientées radialement pour l'orientation de l'outil de forage et comportant un dispositif pour les transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209), qui comprend par transmetteur de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) une soupape de commande (10, 12, 110, 112) actionnable électriquement pour leur alimentation hydraulique, des capteurs de valeurs de mesure (20, 21, 22) pour des données de position de l'outil de forage et un transmetteur de signaux (18, 19) produisant des signaux de commande électriques pour les entraînements de soupape de commande (14, 16, 114, 116), caractérisé en ce que chaque chambre de pression hydraulique (32, 33, 34, 35 ; 132, 133, 134, 135 ; 232, 233, 234, 235 ; 306, 308 ; 406, 407, 408, 409) d'un transmetteur de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) par au moins un canal de liaison (36, 37, 38 ; 136, 137, 138, 139 ; 236, 237, 238, 239) et la soupape de commande (10, 12, 110, 112), associée à celui-ci, peut être soumise au choix à un lavage de forage de plus haute pression ou un lavage de forage de plus basse pression, et en ce que les soupapes de commande sont pourvues d'un corps de soupape, qui en position de fin de fermeture réduit uniquement la section d'écoulement du canal de soupape, mais ne la ferme pas.
  2. Outil de forage selon la revendication 1, caractérisé en ce qu'à chaque chambre de pression hydraulique (32, 33, 34, 35 ; 132, 133, 134, 135 ; 232, 233, 234, 235 ; 306, 308 ; 406, 407, 408, 409) d'un transmetteur de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) sont associés deux canaux de liaison, dont un communique avec un lavage de forage de plus haute pression et l'autre avec un lavage de forage de plus basse pression, et dont un est pourvu d'une soupape de commande (10, 12 ; 110, 112).
  3. Outil de forage selon la revendication 1, caractérisé en ce qu'il est prévu un canal de liaison (36, 37, 38, 39), qui communique à une extrémité avec un lavage de forage de plus haute pression et à l'autre extrémité avec un lavage de forage de plus basse pression et est raccordé, entre ses extrémités, par un canal de dérivation (56, 57, 58, 59), à la chambre de pression (36, 37, 38, 39) du transmetteur de force (6, 7, 8, 9).
  4. Outil de forage selon l'une des revendications 1 à 3, caractérisé en ce que l'alimentation en lavage de forage de plus haute pression est dérivée d'un canal de lavage de forage (45) dans le boîtier extérieur et l'alimentation en lavage de forage de plus basse pression, est dérivée de la chambre annulaire (50), entourant le boîtier extérieur.
  5. Outil de forage selon l'une des revendications 1 à 3, caractérisé en ce que l'alimentation en lavage de forage de plus haute pression est dérivée d'un canal de lavage de forage (45) dans le boîtier extérieur (1), devant un point d'étranglement, dans le sens d'écoulement et l'alimentation en lavage de forage de plus basse pression, est dérivée du canal de lavage de forage (45) sous son point d'étranglement.
  6. Outil de forage selon la revendication 4 ou 5, caractérisé en ce qu'il est prévu comme canal de lavage de forage, le canal de lavage de forage central (45) dans l'arbre d'entraînement du trépan (3).
  7. Outil de forage selon la revendication 1, caractérisé en ce que l'alimentation en lavage de forage de plus haute pression est dérivée de la chambre annulaire (50), entourant le boîtier extérieur (1), devant un point d'étranglement, dans le sens d'écoulement, pour le lavage de forage traversant la chambre annulaire et l'alimentation en lavage de forage de plus basse pression, est dérivée de la chambre annulaire, derrière ce point d'étranglement.
  8. Outil de forage selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que la soupape de commande (10, 12 ; 110, 112) pour la commande de l'alimentation hydraulique d'un transmetteur de force hydraulique (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) est associée au canal ou partie de canal de liaison, recevant la pression de lavage de forage supérieure.
  9. Outil de forage selon une ou plusieurs des revendications 1 à 5, caractérisé en ce que la soupape de commande (110, 112) pour l'alimentation hydraulique d'un transmetteur de force est associée au canal ou partie de canal de liaison recevant la pression de lavage de forage inférieure.
  10. Outil de forage selon la revendication 7 ou 8, caractérisé en ce que le canal ou la partie de canal de liaison sans soupape de commande est configuré en point d'étranglement (46, 48) ou est pourvu d'un tel point d'étranglement.
  11. Outil de forage selon une ou plusieurs des revendications 1 à 7, caractérisé en ce qu'une soupape de commande (10, 12, 110, 112) est placée dans les deux canaux ou parties de canaux de liaison.
  12. Outil de forage selon une ou plusieurs des revendications 1 à 11, caractérisé en ce que les soupapes de commande comportent un canal de soupape non ramifié, variable uniquement dans sa section d'écoulement.
  13. Outil de forage selon une ou plusieurs des revendications 1 à 12, caractérisé en ce que l'arbre d'entraînement de trépan (1) est soutenu de manière limitée et radialement déplaçable dans le boîtier extérieur (1) et est déplaçable au moyen d'un grand nombre de transmetteurs de force (106, 107, 108, 109 ; 206, 207, 208, 209), répartis sur le pourtour, à partir d'une position dans le boîtier extérieur, à des fins d'orientation, dans une autre position.
  14. Outil de forage selon une ou plusieurs des revendications 1 à 12, caractérisé en ce que les transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) agissent sur quatre pièces de pression (26, 27, 28, 29 ; 426, 427, 428, 429) soutenues déplaçables vers l'intérieur et vers l'extérieur dans ou sur le boîtier extérieur (1), disposées sous un angle au centre de 90°, applicables contre la paroi du trou de forage.
  15. Outil de forage selon la revendication 14, caractérisé en ce que les pièces de pression (26, 27, 27, 28, 29) sont configurées en nervures de stabilisateur.
  16. Outil de forage selon une ou plusieurs des revendications 1 à 15, caractérisé en ce que dans le boîtier extérieur (1) sont prévus des groupes de plusieurs transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) agissant parallèlement pour une action sur l'arbre d'entraînement de trépan (3) et/ou les pièces de pression (26, 27, 28, 29).
  17. Outil de forage selon la revendication 16, caractérisé en ce que l'un des groupes agissant sur l'arbre d'entraînement de trépan (3) et/ou les pièces de pression (26, 27, 28, 29) de transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) montés en parallèle, est prévu en tant que groupe de transmetteurs de force pour imposer une position de base de l'arbre d'entraînement de trépan et/ou des pièces de pression (26, 27, 28, 29) dans le boîtier extérieur (1).
  18. Outil de forage selon la revendication 17, caractérisé en ce que les transmetteurs de force (306, 308), imposant la position de base, comportent des éléments de réglage (316, 318), pouvant être extraits de manière limitée par des butées.
  19. Outil de forage selon la revendication 17 ou 18, caractérisé en ce que les transmetteurs de force (306, 308), imposant la position de base, de l'arbre d'entraînement de trépan (3), imposent une position de centrage coaxiale au boîtier extérieur.
  20. Outil de forage selon la revendication 18 ou 19, caractérisé en ce que les transmetteurs de force (306, 308), imposant la position de base, imposent aux pièces de pression (26, 27, 28, 29) ou à des pièces de pression séparées, une position de centrage, extraite sur une même distance du boîtier extérieur (1), pour le boîtier extérieur (1).
  21. Outil de forage selon l'une des revendications précédentes 13 à 16, caractérisé en ce que les transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209) ou groupes de transmetteurs de force peuvent être sollicités hydrauliquement, indépendamment les uns des autres, pour imposer ou modifier la position de l'arbre d'entraînement de trépan (3) dans le boîtier extérieur (1) ainsi que les transmetteurs de force pour imposer et modifier la position des pièces de pression (26, 27, 28, 29) par rapport au boîtier extérieur (1).
  22. Outil de forage selon une ou plusieurs des revendications 17 à 21, caractérisé en ce que les transmetteurs de force (306, 308), déterminant la position de base de l'arbre d'entraînement de trépan (1) et/ou des pièces de pression (26, 27, 28, 29) peuvent être sollicités indépendamment de la sollicitation des autres transmetteurs de force (6, 7, 8, 9 ; 106, 107, 108, 109 ; 206, 207, 208, 209).
  23. Outil de forage selon la revendication 22, caractérisé en ce que les transmetteurs de force (306, 308), déterminant la position de base de l'arbre d'entraînement de trépan (1) et/ou des pièces de pression (26, 27, 28, 29), sont soumis une sollicitation permanente non commandée et transmettent à l'arbre d'entraînement de trépan (1) et/ou aux pièces de pression, des forces de base qui sont inférieures aux forces de réglage des transmetteurs de force (6, 7, 109 ; 206, 207, 208, 209) entraînant une position imposée ou modifiée.
  24. Outil de forage selon une ou plusieurs des revendications 1 à 23, caractérisé en ce que les transmetteurs de force (6, 7, 8, 9 ; 206, 207, 208, 209) comportent, comme pièces de réglage, un piston de pression coulissant dans une chambre de cylindre, dans le boîtier extérieur (1).
  25. Outil de forage selon la revendication 24, caractérisé en ce que les surfaces tournées l'une vers l'autre du piston de pression (66, 67, 68, 69) et du cylindre logeant celui-ci sont blindées avec une garniture dure et la fente d'étanchéité entre le piston de pression (66, 67, 68, 69) et le cylindre forme le canal ou la partie de canal de liaison communiquant avec le lavage de forage de plus basse pression.
  26. Outil de forage selon une ou plusieurs des revendications 1 à 25, caractérisé en ce que les transmetteurs de force (106, 107, 108, 109) présentent des soufflets métalliques comme pièces de réglage et limitation de chambre de pression.
  27. Outil de forage selon une ou plusieurs des revendications 1 à 26, caractérisé en ce que les pièces de pression, configurées en nervures de stabilisateur, sont placées sur des appendices du boîtier extérieur et sont limitées dans leur déplacement vers l'extérieur par une butée.
  28. Outil de forage selon une ou plusieurs des revendications précédentes 1 à 26, caractérisé en ce que les transmetteurs de force, agissant sur l'arbre d'entraînement de trépan (3), sont placés à l'extrémité inférieure du boîtier extérieur (1).
  29. Outil de forage selon une ou plusieurs des revendications 1 à 27, caractérisé en ce que les pièces de pression (26, 27, 28, 29) pouvant être introduites et extraites sont placées à proximité de l'extrémité inférieure du boîtier extérieur (1).
  30. Outil de forage selon l'une des revendications 1 à 27, caractérisé en ce que les pièces de pression (26, 27, 28, 29) pouvant être introduites et extraites sont placées à très grande distance au-dessus de l'extrémité inférieure du boîtier extérieur (1), pourvue de nervures de stabilisateur fixes.
EP90115963A 1990-06-01 1990-08-21 Outil de forage pour forage dirigé Expired - Lifetime EP0459008B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA 2043695 CA2043695C (fr) 1990-06-01 1991-05-31 Outil de forage pour le creusage de puits dans la roche
NO912127A NO301900B1 (no) 1990-06-01 1991-06-03 Boreverktöy til boring i underjordiske bergformasjoner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4017761A DE4017761A1 (de) 1990-06-01 1990-06-01 Bohrwerkzeug zum abteufen von bohrungen in unterirdische gesteinsformationen
DE4017761 1990-06-01

Publications (3)

Publication Number Publication Date
EP0459008A2 EP0459008A2 (fr) 1991-12-04
EP0459008A3 EP0459008A3 (en) 1993-01-13
EP0459008B1 true EP0459008B1 (fr) 1996-05-22

Family

ID=6407673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115963A Expired - Lifetime EP0459008B1 (fr) 1990-06-01 1990-08-21 Outil de forage pour forage dirigé

Country Status (3)

Country Link
US (1) US5168941A (fr)
EP (1) EP0459008B1 (fr)
DE (2) DE4017761A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601658B1 (en) 1999-11-10 2003-08-05 Schlumberger Wcp Ltd Control method for use with a steerable drilling system
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678678A1 (fr) * 1991-07-04 1993-01-08 Smf Int Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.
FR2679293B1 (fr) * 1991-07-16 1999-01-22 Inst Francais Du Petrole Dispositif d'actionnement associe a une garniture de forage et comportant un circuit hydrostatique en fluide de forage, methode d'actionnement et leur application.
US5553678A (en) * 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
JP2995118B2 (ja) * 1992-01-23 1999-12-27 石油公団 部材の位置決め装置およびこの装置を用いた掘削機の掘削方向制御装置
NO311265B1 (no) * 1994-01-25 2001-11-05 Halliburton Co Ledekileanordning
GB9610382D0 (en) * 1996-05-17 1996-07-24 Anderson Charles A Drilling apparatus
US5752572A (en) * 1996-09-10 1998-05-19 Inco Limited Tractor for remote movement and pressurization of a rock drill
EP0954674B1 (fr) * 1997-01-30 2001-09-12 Baker Hughes Incorporated Ensemble de forage avec dispositif de guidage pour operations effectuees avec des colonnes de production spiralees
US6609579B2 (en) 1997-01-30 2003-08-26 Baker Hughes Incorporated Drilling assembly with a steering device for coiled-tubing operations
US6920944B2 (en) * 2000-06-27 2005-07-26 Halliburton Energy Services, Inc. Apparatus and method for drilling and reaming a borehole
US6213226B1 (en) 1997-12-04 2001-04-10 Halliburton Energy Services, Inc. Directional drilling assembly and method
US20010011591A1 (en) * 1998-05-13 2001-08-09 Hector F. A. Van-Drentham Susman Guide device
US6581690B2 (en) * 1998-05-13 2003-06-24 Rotech Holdings, Limited Window cutting tool for well casing
US7413032B2 (en) * 1998-11-10 2008-08-19 Baker Hughes Incorporated Self-controlled directional drilling systems and methods
NO312110B1 (no) * 2000-06-29 2002-03-18 Stiftelsen Rogalandsforskning Boreanordning
FR2812338B1 (fr) * 2000-07-25 2002-11-08 Total Fina Elf S A Procede et dispositif de forage rotary d'un puits
US7513318B2 (en) * 2002-02-19 2009-04-07 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US7267184B2 (en) * 2003-06-17 2007-09-11 Noble Drilling Services Inc. Modular housing for a rotary steerable tool
US7757784B2 (en) * 2003-11-17 2010-07-20 Baker Hughes Incorporated Drilling methods utilizing independently deployable multiple tubular strings
US7395882B2 (en) 2004-02-19 2008-07-08 Baker Hughes Incorporated Casing and liner drilling bits
GB2408526B (en) * 2003-11-26 2007-10-17 Schlumberger Holdings Steerable drilling system
US7624818B2 (en) 2004-02-19 2009-12-01 Baker Hughes Incorporated Earth boring drill bits with casing component drill out capability and methods of use
US7954570B2 (en) 2004-02-19 2011-06-07 Baker Hughes Incorporated Cutting elements configured for casing component drillout and earth boring drill bits including same
US7861802B2 (en) * 2006-01-18 2011-01-04 Smith International, Inc. Flexible directional drilling apparatus and method
US7506703B2 (en) * 2006-01-18 2009-03-24 Smith International, Inc. Drilling and hole enlargement device
US7413034B2 (en) 2006-04-07 2008-08-19 Halliburton Energy Services, Inc. Steering tool
US8408333B2 (en) * 2006-05-11 2013-04-02 Schlumberger Technology Corporation Steer systems for coiled tubing drilling and method of use
US7621351B2 (en) * 2006-05-15 2009-11-24 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner
US7650952B2 (en) * 2006-08-25 2010-01-26 Smith International, Inc. Passive vertical drilling motor stabilization
US7464770B2 (en) 2006-11-09 2008-12-16 Pathfinder Energy Services, Inc. Closed-loop control of hydraulic pressure in a downhole steering tool
US8118114B2 (en) * 2006-11-09 2012-02-21 Smith International Inc. Closed-loop control of rotary steerable blades
US7967081B2 (en) * 2006-11-09 2011-06-28 Smith International, Inc. Closed-loop physical caliper measurements and directional drilling method
US8082988B2 (en) * 2007-01-16 2011-12-27 Weatherford/Lamb, Inc. Apparatus and method for stabilization of downhole tools
US7377333B1 (en) 2007-03-07 2008-05-27 Pathfinder Energy Services, Inc. Linear position sensor for downhole tools and method of use
US7735581B2 (en) 2007-04-30 2010-06-15 Smith International, Inc. Locking clutch for downhole motor
US8497685B2 (en) 2007-05-22 2013-07-30 Schlumberger Technology Corporation Angular position sensor for a downhole tool
US7725263B2 (en) * 2007-05-22 2010-05-25 Smith International, Inc. Gravity azimuth measurement at a non-rotating housing
GB2450498A (en) * 2007-06-26 2008-12-31 Schlumberger Holdings Battery powered rotary steerable drilling system
US8245797B2 (en) * 2007-10-02 2012-08-21 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
US7954571B2 (en) * 2007-10-02 2011-06-07 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
EA013913B1 (ru) * 2008-03-18 2010-08-30 Сзао "Новинка" Ориентатор
RU2471954C2 (ru) * 2008-09-10 2013-01-10 Смит Интернэшнл, Инк. Стопорная муфта для забойного двигателя
US7950473B2 (en) * 2008-11-24 2011-05-31 Smith International, Inc. Non-azimuthal and azimuthal formation evaluation measurement in a slowly rotating housing
US20120018219A1 (en) 2009-03-30 2012-01-26 Douwe Johannes Runia Method and steering assembly for drilling a borehole in an earth formation
NO20093306A1 (no) * 2009-11-09 2011-05-10 Badger Explorer Asa System for utforskning av underjordiske strukturer
WO2011076846A1 (fr) 2009-12-23 2011-06-30 Shell Internationale Research Maatschappij B.V. Procédé de forage et système de forage hydrodynamique
US8550186B2 (en) * 2010-01-08 2013-10-08 Smith International, Inc. Rotary steerable tool employing a timed connection
US9243488B2 (en) * 2011-10-26 2016-01-26 Precision Energy Services, Inc. Sensor mounting assembly for drill collar stabilizer
CA2885500C (fr) 2012-09-21 2018-11-13 Halliburton Energy Services, Inc. Systeme et procede de determination de parametres de forage sur base de la pression hydraulique associee a un systeme de forage directionnel
WO2014062158A1 (fr) 2012-10-16 2014-04-24 Halliburton Energy Services, Inc. Moteur de forage à embrayage rotatif unidirectionnel
WO2014116934A1 (fr) 2013-01-25 2014-07-31 Halliburton Energy Services, Inc. Actionnement hydraulique d'outil d'ensemble de fond de trou mécanique
US10161196B2 (en) 2014-02-14 2018-12-25 Halliburton Energy Services, Inc. Individually variably configurable drag members in an anti-rotation device
US10041303B2 (en) 2014-02-14 2018-08-07 Halliburton Energy Services, Inc. Drilling shaft deflection device
CA2933812C (fr) 2014-02-14 2018-10-30 Halliburton Energy Services Inc. Elements de trainee reglables configurables uniformement de maniere variable dans un dispositif anti-rotation
US10519769B2 (en) * 2014-09-10 2019-12-31 Fracture ID, Inc. Apparatus and method using measurements taken while drilling to generate and map mechanical boundaries and mechanical rock properties along a borehole
US9797204B2 (en) 2014-09-18 2017-10-24 Halliburton Energy Services, Inc. Releasable locking mechanism for locking a housing to a drilling shaft of a rotary drilling system
CA2964748C (fr) 2014-11-19 2019-02-19 Halliburton Energy Services, Inc. Correction de direction de forage d'une foreuse souterraine orientable en fonction d'une tendance de formation detectee
WO2017019073A1 (fr) 2015-07-29 2017-02-02 Halliburton Energy Services, Inc. Mécanisme de commande de force de direction pour un outil de forage de fond de trou
WO2017065741A1 (fr) 2015-10-12 2017-04-20 Halliburton Energy Services, Inc. Appareil d'actionnement d'un module de forage dirigé
BR112018010724A8 (pt) * 2015-12-30 2019-02-26 Halliburton Energy Services Inc método para perfurar uma formação subterrânea e conjunto de rolamentos para perfurar uma formação subterrânea

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126971A (en) * 1964-03-31 Drill string stabilizer
US2796234A (en) * 1953-06-08 1957-06-18 William L Mann Full bore deflection drilling
US3141512A (en) * 1958-11-19 1964-07-21 British Petroleum Co Straight borehole drilling with automatic detecting and correcting means
US3180437A (en) * 1961-05-22 1965-04-27 Jersey Prod Res Co Force applicator for drill bit
US3092188A (en) * 1961-07-31 1963-06-04 Whipstock Inc Directional drilling tool
US3196959A (en) * 1961-08-14 1965-07-27 Lamphere Jean K Directional drilling apparatus
US3424256A (en) * 1967-01-10 1969-01-28 Whipstock Inc Apparatus for controlling directional deviations of a well bore as it is being drilled
US3554302A (en) * 1968-07-05 1971-01-12 American Gas Ass Directional control of earth boring apparatus
US3593810A (en) * 1969-10-13 1971-07-20 Schlumberger Technology Corp Methods and apparatus for directional drilling
US3595326A (en) * 1970-02-03 1971-07-27 Schlumberger Technology Corp Directional drilling apparatus
US3788136A (en) * 1972-08-11 1974-01-29 Texaco Inc Method and apparatuses for transmission of data from the bottom of a drill string during drilling of a well
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US3945443A (en) * 1974-08-14 1976-03-23 The Richmond Manufacturing Company Steerable rock boring head for earth boring machines
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
US4241796A (en) * 1979-11-15 1980-12-30 Terra Tek, Inc. Active drill stabilizer assembly
DE3046122C2 (de) * 1980-12-06 1984-05-17 Bergwerksverband Gmbh, 4300 Essen Einrichtungen zur Herstellung zielgerichteter Bohrungen mit einer Zielbohrstange
US4281723A (en) * 1980-02-22 1981-08-04 Conoco, Inc. Control system for a drilling apparatus
US4394881A (en) * 1980-06-12 1983-07-26 Shirley Kirk R Drill steering apparatus
DE3219362C1 (de) * 1982-05-22 1983-04-21 Wirth Maschinen- und Bohrgeräte-Fabrik GmbH, 5140 Erkelenz Verfahren und Vorrichtung zum Niederbringen von Bohrungen
US4615401A (en) * 1984-06-26 1986-10-07 Smith International Automatic hydraulic thruster
US4635736A (en) * 1985-11-22 1987-01-13 Shirley Kirk R Drill steering apparatus
DE3741717A1 (de) * 1987-12-09 1989-06-29 Wirth Co Kg Masch Bohr Vorrichtung zum niederbringen von im wesentlichen vertikalen bohrungen
ATE65111T1 (de) * 1988-01-19 1991-07-15 Schwing Hydraulik Elektronik Selbststeuerndes gestaengerohr fuer rotierende bohrgestaenge von gesteinsbohrmaschinen.
CA2011972A1 (fr) * 1989-03-13 1990-09-13 Trevelyn M. Coltman Dispositif pour guider un trepan de forage
US5038872A (en) * 1990-06-11 1991-08-13 Shirley Kirk R Drill steering apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601658B1 (en) 1999-11-10 2003-08-05 Schlumberger Wcp Ltd Control method for use with a steerable drilling system
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools

Also Published As

Publication number Publication date
DE4017761A1 (de) 1991-12-05
EP0459008A2 (fr) 1991-12-04
EP0459008A3 (en) 1993-01-13
US5168941A (en) 1992-12-08
DE59010342D1 (de) 1996-06-27

Similar Documents

Publication Publication Date Title
EP0459008B1 (fr) Outil de forage pour forage dirigé
DE69801646T2 (de) Bohreinrichtung mit lenkvorrichtung zur benutzung mit einem gewickelten rohrstrang
DE60207559T2 (de) Richtbohrwerkzeug
DE69219250T2 (de) Regelbare Ablenkeinheiten für richtungssteuerbare Bohrsysteme
DE3208469C2 (fr)
DE69630518T2 (de) Unterirdische Vorrichtung zum Richtbohren ohne Materialaustrag
EP2553201B1 (fr) Procédé de réalisation d'un forage horizontal dans le sol et dispositif de forage horizontal
DE19512993C2 (de) Einheitliches Gehäuse für eine Doppelhydraulikeinheit
EP0193618B1 (fr) Dispositif et méthode d'assemblage orientée d'un moteur de fond de puits de vis sectionnel
EP3414419B1 (fr) Outil de forage permettant de creuser des forages à direction automatiquement contrôlée
DE3650026T2 (de) Schlagwerkzeug zum Bohren von Löchern in den Boden.
EP2553202B1 (fr) Procédé pour faire fonctionner un dispositif de forage horizontal et dispositif de forage horizontal
DE69305054T2 (de) Hydraulikmotoraggegrat zum Antrieb eines Bohrwerkzeuges
DE3939538C2 (fr)
DE102016003749A1 (de) Bohranlage zum Einbringen von Bohrungen in Gestein und/oder Felsen
DE102012111994A1 (de) Vorrichtung zum Vortreiben von Strecken, Tunneln oder dergleichen
EP2900895B1 (fr) Dispositif et procédé de pose d'une canalisation dans un trou de forage
EP2553203B1 (fr) Dispositif de forage horizontal
DE4037259C2 (fr)
EP2626506B1 (fr) Dispositif de déplacement d'un moyen de travail dans la terre
DE3125082A1 (de) Verfahren und tunnelvortriebsmaschine zur herstellung von tunnelquerschnitten mit querschnittsveraenderungen
EP0893571B1 (fr) Dispositif pour diriger un train de tiges
DE3708763A1 (de) Rammbohrgeraet
DE102015001720A1 (de) Bohranlage zum Einbringen von Bohrungen in Gestein und Felsen
DE202009014799U1 (de) Rudermaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EASTMAN TELECO COMPANY

17P Request for examination filed

Effective date: 19930320

17Q First examination report despatched

Effective date: 19931217

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960522

REF Corresponds to:

Ref document number: 59010342

Country of ref document: DE

Date of ref document: 19960627

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960715

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960726

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980728

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060825

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061002

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070821