EP0458045A1 - Metallträgermatrix für einen katalytischen Reaktor - Google Patents

Metallträgermatrix für einen katalytischen Reaktor Download PDF

Info

Publication number
EP0458045A1
EP0458045A1 EP91105500A EP91105500A EP0458045A1 EP 0458045 A1 EP0458045 A1 EP 0458045A1 EP 91105500 A EP91105500 A EP 91105500A EP 91105500 A EP91105500 A EP 91105500A EP 0458045 A1 EP0458045 A1 EP 0458045A1
Authority
EP
European Patent Office
Prior art keywords
metal support
support matrix
stacks
shape
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91105500A
Other languages
English (en)
French (fr)
Other versions
EP0458045B1 (de
Inventor
Bohumil Humpolik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Behr GmbH and Co KG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP0458045A1 publication Critical patent/EP0458045A1/de
Application granted granted Critical
Publication of EP0458045B1 publication Critical patent/EP0458045B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • F01N2330/04Methods of manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]

Definitions

  • the invention relates to a metal support matrix for a catalytic reactor for exhaust gas purification, in particular for internal combustion engines, according to the preamble of patent claim 1.
  • the aforementioned method has the disadvantage that special shapes are produced by inserting loose filler pieces Need to become. It is also disadvantageous that devouring thicker stacks of sheet metal, which are required to produce larger catalyst diameters, requires extraordinarily high forces.
  • the invention is therefore based on the object of designing a metal support matrix of the type mentioned at the outset in such a way that a homogeneous, easy-to-manufacture honeycomb body is formed from a multiplicity of sheet metal layers and, if possible, each sheet metal layer comes into contact with the enveloping jacket.
  • the proposed configuration allows the simple production of a metal support matrix from a large number of sheet metal layers.
  • the adaptation to different forms of the jacket is easily possible.
  • a variety of shapes can be created by varying the length and / or the thickness of the individual stacks will.
  • special shapes for example of elliptical support matrices, it is not necessary to insert filler pieces, as a result of which a substantial reduction in production costs is achieved.
  • Catalyst forms with larger diameters can advantageously be designed in that the metal support matrix consists of a larger number of stacks. This reduces the thickness of the individual stacks, the individual sheet layers are evenly distributed in the metal support matrix, and the forces required for the stacks to be devoured are reduced.
  • the configuration of the metal support matrix from four stacks is also particularly advantageous, since this configuration results in a very uniform distribution of the lines of contact of the sheet metal layers with the jacket on the inner jacket surface.
  • the embodiment according to claim 6 enables the advantageous embodiment of an elliptical or ellipse-like catalyst shape.
  • the even distribution of the lines of contact on the inner circumferential surface in elliptical or ellipse-like catalyst forms can be expediently obtained by pressing a round metal support matrix, which has a larger cavity inside, into the desired elliptical or ellipse-like shape.
  • the shape of the stack from which the metal carrier matrix is made always has two parallel edges in the side view.
  • the ends of the stack can end at different angles, so that the geometric shapes described in the characterizing part of claim 1 result.
  • FIG. 1a A circular catalyst shape is shown in FIG. 1a and the associated arrangement of the stacks (3) is shown schematically in FIG. 1b.
  • the dimensions of the stacks (3) are identical. They have a rectangular shape, in the illustration shown here corrugated (4) and smooth (5) sheet metal layers are layered on top of one another.
  • the stacks (3) are arranged such that the lines of contact in the side view give the shape of a right-angled cross (6), which is shown in the drawing by thick lines.
  • the stacks (3) are wrapped clockwise around a point of symmetry (8), which is the center of the cross (6) here.
  • the metal carrier matrix (1) thus produced is then inserted into a jacket (2).
  • the sheet metal layers (4, 5) of the metal carrier matrix (1) and the jacket (2) are connected in the next production step by a joining technique, preferably by soldering.
  • FIG. 2 shows a square catalyst shape (with rounded corners).
  • the arrangement of the stacks (3) is cruciform, as in the round catalyst shape.
  • the individual stacks (3) are not rectangular in the side view, but tapering at the outer end, ie trapezoidal. The manufacturing process proceeds as indicated in the description of FIG. 1.
  • FIG. 3a An elongated catalyst shape is shown in FIG. 3a and the associated arrangement of the stacks (3) is shown schematically in FIG. 3b.
  • the arrangement of the stacks (3) is also cruciform.
  • the stacks (3) above and below a displacement plane E-E which is perpendicular to the plane of the drawing, are displaced relative to each other, so that a displaced cross (7) results, which is shown in the drawing by thick lines.
  • the distance between the stacks (3) which are perpendicular to the displacement plane E-E determines the width of the catalyst.
  • the stacks (3) as already shown in the description of FIG. 1, are wrapped clockwise around the point of symmetry (8), which is arranged on the displacement plane E-E and centrally to both displaced stacks (3). The further manufacturing steps take place as already stated above.
  • FIGS. 4b and 5b schematically illustrate elliptical catalyst shapes and in FIGS. 4b and 5b the associated arrangements of the stacks (3).
  • the arrangement of the stacks (3) is similar to the arrangement shown in Fig. 3b.
  • the stacks (3) shown here vary in thickness and length. This results in further different forms for the catalyst. The manufacturing process proceeds as explained in the description of FIG. 1.
  • FIG. 6a shows a further embodiment of an elliptical catalytic converter shape
  • FIG. 6b shows the associated arrangement of the stacks before devouring
  • FIG. 6c shows the associated arrangement of the stacks after devouring.
  • the stacks (3) are in the side view parallelogram. They are arranged in a cross shape around the point of symmetry (8) that a central square cavity (9) is formed.
  • the stacks (3) are devoured clockwise around the cavity (9) or the point of symmetry (8), which forms the center of the cavity (9).
  • a round shape of the metal carrier matrix (1) results, which is shown schematically in FIG. 6c. Starting from this round shape, the metal support matrix (1) is pressed into the desired elliptical shape using suitable tools.
  • the central cavity (9) is closed.
  • the metal carrier matrix (1) is inserted into a jacket (2) and connected to it by joining technology.
  • a round catalyst shape is shown, which consists of eight stacks (3).
  • Fig. 7b shows the symmetrical arrangement of the eight parallelogram stacks (3) around the point of symmetry (8) before devouring.
  • the stacks (3) are the same in thickness and length. Their end faces are brought into contact with the side surfaces of the adjacent stack (3), the free ends of the stack (3) are intertwined in the same direction around the point of symmetry (8).
  • the metal carrier matrix (1) thus produced is inserted into the jacket (2) and connected to it by joining technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Dieser Metallträger besteht aus mehreren Stapeln, vorzugsweise aus vier Stapeln. Die Stapel sind dabei symmetrisch um einen Punkt angeordnet. Die freien Enden der Stapel sind um den Symmetriepunkt verschlungen. Unterschiedliche Katalysatorformen oder Katalysatordurchmesser können sehr einfach durch die gezielte Dimensionierung der einzelnen Stapel erreicht werden. <IMAGE>

Description

  • Die Erfindung betrifft eine Metallträgermatrix für einen katalytischen Reaktor zur Abgasreinigung, insbesondere für Brennkraftmaschinen, nach dem Oberbegriff des Patentanspruchs 1.
  • Es ist bekannt (EP-A1 245 737) eine Metallträgermatrix für einen katalytischen Reaktor dadurch herzustellen, daß mehrere glatte und gewellte Metallbänder abwechselnd zu einem Stapel aufeinander geschichtet und daß die Enden dieses Stapels um zwei Fixpunkte verschlungen werden. Diese Metallträgermatrix wird in einen rohrförmigen Mantel eingesetzt und mit diesem fügetechnisch verbunden.
  • Die vorgenannte Methode weist den Nachteil auf, daß Sonderformen durch das Einlegen loser Füllstücke hergestellt werden müssen. Nachteilig ist außerdem, daß ein Verschlingen dickerer Blechstapel, die zur Herstellung größerer Katalysatordurchmesser erforderlich sind, ausserordentlich hohe Kräfte erfordert.
  • Es ist auch bekannt (DE-U1 89 08 671), Metallträgermatrizen aus mehr als zwei Stapeln herzustellen, wobei die einzelnen Stapel um eine Knicklinie gefaltet und anschließend gemeinsam verschlungen werden. Nachteilig ist hierbei, daß jeder einzelne Stapel in einem zusätzlichen Arbeitsgang gefaltet werden muß. Außerdem verbleiben bei dieser Art der Herstellung einer Metallträgermatrix im Inneren der Trägermatrix größere Bereiche, die nicht durch den Wabenkörper ausgefüllt werden, insbesondere im Zentrum der Trägermatrix.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Metallträgermatrix der eingangs genannten Art so auszubilden, daß ein homogener, einfach zu fertigender Wabenkörper aus einer Vielzahl von Blechlagen entsteht und möglichst jede Blechlage mit dem umhüllenden Mantel in Berührung kommt.
  • Zur Lösung der Aufgabe wird ein Wabenkörper mit den kennzeichnenden Merkmalen des Anspruchs 1 vorgeschlagen. Weitere vorteilhafte Ausgestaltungen einer solchen Metallträgermatrix sind in den Unteransprüchen 2 bis 8 aufgezeigt.
  • Die vorgeschlagene Ausgestaltung erlaubt die einfache Herstellung einer Metallträgermatrix aus einer Vielzahl von Blechlagen. Insbesondere die Anpassung an unterschiedliche Formen des Mantels ist leicht möglich. Durch eine Variierung der Länge und/oder der Dicke der einzelnen Stapel kann eine Vielzahl von Formen erzeugt werden. So ist zur Herstellung von Sonderformen, z.B. von elliptischen Trägermatrizen, ein Einlegen von Füllstücken nicht erforderlich, wodurch eine wesentliche Verminderung der Produktionskosten erreicht wird.
  • Katalysatorformen mit größeren Durchmessern sind vorteilhaft dadurch zu gestalten, daß die Metallträgermatrix aus einer größeren Anzahl von Stapeln besteht. Dadurch wird die Dicke der einzelnen Stapel verringert, die einzelnen Blechlagen sind gleichmäßig in der Metallträgermatrix verteilt und die Kräfte, die zum Verschlingen der Stapel erforderlich sind, werden verkleinert. Besonders vorteilhaft ist auch die Ausgestaltung der Metallträgermatrix aus vier Stapeln, da diese Ausgestaltung eine sehr gleichmäßige Verteilung der Berührungslinien der Blechlagen mit dem Mantel auf der inneren Mantelfläche ergibt.
  • Die Ausführung nach Anspruch 6 ermöglicht die vorteilhafte Ausgestaltung einer elliptischen oder ellipsenähnlichen Katalysatorform. Die gleichmäßige Verteilung der Berührungslinien auf der inneren Mantelfläche bei elliptischen oder ellipsenähnlichen Katalysatorformen ist zweckmäßigerweise dadurch zu erhalten, daß eine runde Metallträgermatrix, die einen größeren Hohlraum im Inneren aufweist, zu der gewünschten elliptischen oder ellipsenähnlichen Form gepreßt wird.
  • Die Form der Stapel, aus denen die Metallträgermatrix gefertigt wird, weist in der Seitenansicht immer zwei parallele Kanten auf. Die Enden der Stapel können in verschiedenen Winkeln auslaufen, so daß sich die im Kennzeichen des Anspruchs 1 beschriebenen geometrischen Formen ergeben.
  • Die Erfindung ist in der Zeichnung anhand von Ausführungsbeispielen dargestellt und wird im folgenden näher beschrieben. Es zeigen:
  • Fig. 1a
    eine runde Katalysatorform und
    Fig. 1b
    die zugehörige Anordnung der Stapel vor dem Verschlingen,
    Fig. 2a
    eine quadratische Katalysatorform und
    Fig. 2b
    die zugehörige Anordnung der Stapel vor dem Verschlingen,
    Fig. 3a
    eine längliche Katalysatorform und
    Fig. 3b
    die zugehörige Anordnung der Stapel vor dem Verschlingen,
    Fig. 4a
    eine elliptische Katalysatorform und
    Fig. 4b
    die zugehörige Anordnung der Stapel vor dem Verschlingen,
    Fig. 5a
    eine längliche elliptische Katalysatorform und
    Fig. 5b
    die zugehörige Anordnung der Stapel vor dem Verschlingen,
    Fig. 6a
    eine elliptische Katalysatorform,
    Fig. 6b
    die zugehörige Anordnung der Stapel mit zentralem viereckigem Hohlraum vor dem Verschlingen und
    Fig. 6c
    die zugehörige Anordnung der Stapel mit viereckigem Hohlraum nach dem Verschlingen,
    Fig. 7a
    eine runde Katalysatorform aus acht Stapeln und
    Fig. 7b
    die zugehörige Anordnung der acht Stapel vor dem Verschlingen.
  • In der Fig. 1a ist eine kreisrunde Katalysatorform und in der Fig. 1b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Stapel (3) sind in ihren Abmessungen identisch. Sie haben eine rechteckige Form, in der hier gezeigten Darstellung sind abwechselnd gewellte (4) und glatte (5) Blechlagen aufeinandergeschichtet. Die Stapel (3) sind derartig angeordnet, daß die Berührungslinien in der Seitenansicht die Form eines rechtwinkligen Kreuzes (6) ergeben, welches in der Zeichnung durch stärkere Linien dargestellt ist. Die Stapel (3) werden im Uhrzeigersinn um einen Symmetriepunkt (8) geschlungen, der hier der Mittelpunkt des Kreuzes (6) ist. Die so erzeugte Metallträgermatrix (1) wird anschließend in einen Mantel (2) eingeschoben. Die Blechlagen (4,5) der Metallträgermatrix (1) und der Mantel (2) werden im nächsten Produktionsschritt durch ein fügetechnisches Verfahren, vorzugsweise durch Verlöten, verbunden.
  • In der Fig. 2 wird eine quadratische Katalysatorform (mit abgerundeten Ecken) gezeigt. Die Anordnung der Stapel (3) ist, wie bei der runden Katalysatorform, kreuzförmig. Die einzelnen Stapel (3) sind hierbei in der Seitenansicht aber nicht rechteckig, sondern am außenliegenden Ende spitz zulaufend, d.h. trapezförmig. Der Fertigungsprozeß verläuft wie in der Beschreibung zu Fig. 1 angegeben.
  • In der Fig. 3a wird eine längliche Katalysatorform und in der Fig. 3b die zugehörige Anordnung der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ebenfalls kreuzförmig. Allerdings sind die Stapel (3) oberhalb und unterhalb einer Verschiebeebene E-E, die zur Zeichenebene senkrecht steht, relativ zueinander verschoben, so daß sich ein verschobenes Kreuz (7) ergibt, welches in der Zeichnung durch stärkere Linien dargestellt ist. Der Abstand der senkrecht auf der Verschiebeebene E-E stehenden Stapel (3) bestimmt die Breite des Katalysators. Die Stapel (3) werden, wie in der Beschreibung zu Fig. 1 bereits dargestellt, im Uhrzeigersinn um den Symmetriepunkt (8), der auf der Verschiebeebene E-E und mittig zu beiden verschobenen Stapeln (3) angeordnet ist, geschlungen. Die weiteren Fertigungsschritte erfolgen wie oben bereits angegeben.
  • In den Fig. 4a und 5a sind elliptische Katalysatorformen und in den Fig. 4b und 5b die zugehörigen Anordnungen der Stapel (3) schematisch dargestellt. Die Anordnung der Stapel (3) ist ähnlich der in Fig. 3b gezeigten Anordnung. Die hier gezeigten Stapel (3) sind aber in der Dicke und in der Länge variiert. Daraus ergeben sich weitere unterschiedliche Formen für den Katalysator. Der Herstellungsprozeß verläuft wie in der Beschreibung zu Fig. 1 erläutert.
  • In der Fig. 6a ist eine weitere Ausgestaltung einer elliptischen Katalysatorform, in der Fig. 6b die zugehörige Anordnung der Stapel vor dem Verschlingen und in der Fig. 6c die zugehörige Anordnung der Stapel nach dem Verschlingen dargestellt. Die Stapel (3) sind in der Seitenansicht parallelogrammförmig. Sie sind kreuzförmig so um den Symmetriepunkt (8) angeordnet, daß sich ein zentraler viereckiger Hohlraum (9) bildet. Die Stapel (3) werden im Uhrzeigersinn um den Hohlraum (9) bzw. den Symmetriepunkt (8), der den Mittelpunkt des Hohlraums (9) bildet, verschlungen. Nach dem Verschlingen ergibt sich eine runde Form der Metallträgermatrix (1), die in Fig. 6c schematisch dargestellt ist. Die Metallträgermatrix (1) wird, von dieser runden Form ausgehend, mit Hilfe von geeigneten Werkzeugen in die gewünschte elliptische Form gepreßt. Dabei wird der zentrale Hohlraum (9) geschlossen. Die Metallträgermatrix (1) wird in einen Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.
  • In der Fig. 7a ist eine runde Katalysatorform dargestellt, die aus acht Stapeln (3) besteht. Fig. 7b zeigt die symmetrische Annordnung der acht parallelogrammförmigen Stapel (3) um den Symmetriepunkt (8) vor dem Verschlingen. Die Stapel (3) sind in der Dicke und der Länge gleich. Ihre Stirnseiten sind mit den Seitenflächen der jeweils benachbarten Stapel (3) zur Anlage gebracht, die freien Enden der Stapel (3) sind gleichsinnig um den Symmetriepunkt (8) verschlungen. Die so erzeugte Metallträgermatrix (1) wird in den Mantel (2) eingesetzt und mit diesem fügetechnisch verbunden.
  • Wie die wenigen Ausführungsbeispiele bereits zeigen, ist eine Vielfalt von weiteren Formvarianten mit Hilfe der erfindungsgemäßen Metallträgermatrix (1) möglich.

Claims (9)

  1. Metallträgermatrix für einen katalytischen Reaktor zur Abgasreinigung, insbesondere für Brennkraftmaschinen, bestehend aus gewellten oder aus gewellten und glatten Metallbändern, die zu mehreren aneinandergrenzenden Schichten gefaltet oder gestapelt und verschlungen und fügetechnisch mit einem Mantel verbunden sind, dadurch gekennzeichnet, daß mindestens zwei Stapel (3), deren Seitenansicht die Form eines Rechtecks, eines Trapezes oder eines Parallelogrammes aufweist, mit jeweils einem Ende miteinander zur Anlage gebracht und gemeinsam gleichsinnig verschlungen sind und die freien Enden mit dem umhüllenden Mantel (2) in Kontakt gebracht und verbunden sind.
  2. Metallträgermatrix nach Anspruch 1, dadurch gekennzeichnet, daß die Metallträgermatrix (1) aus vier Stapeln (3) besteht, die punktsymmetrisch angeordnet und um einen Symmetriepunkt (8) verschlungen sind.
  3. Metallträgermatrix nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Metallträgermatrix (1) aus Stapeln (3) besteht, die sowohl in der Dicke als auch in der Länge unterschiedliche Abmessungen haben.
  4. Metallträgermatrix nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß für runde oder annähernd quadratische Querschnittsformen der Metallträgermatrix (1) die Anlageflächen der vier aneinandergelegten Stapel (3) vor dem Verschlingen die Form eines Kreuzes (6) bilden.
  5. Metallträgermatrix nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß für elliptische oder sonstige Querschnittsformen der Metallträgermatrix (1) die Anlageflächen der vier aneinandergelegten Stapel (3) vor dem Verschlingen die Form eines in der Verschiebeebene E-E verschobenen Kreuzes (7) bilden.
  6. Metallträgermatrix nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß für elliptische oder ellipsenähnliche Querschnittsformen der Metallträgermatrix (1) vier parallelogrammförmige Stapel (3) kreuzförmig so aneinandergelegt werden, daß sich im Zentrum der Metallträgermatrix (1) ein viereckiger Hohlraum (9) ergibt, der nach dem Verschlingen dadurch verschlossen wird, daß die Metallträgermatrix (1) zu der gewünschten elliptischen oder ellipsenähnlichen Querschnittsform gepreßt wird.
  7. Metallträgermatrix nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Metallträgermatrix (1) im Zentralbereich punktsymmetrisch ausgebildet ist und in den Randbereichen von der punktsymmetrischen Form abweicht.
  8. Metallträgermatrix nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Metallbänder (4,5) der Metallträgermatrix (1) durch ein fügetechnisches Verfahren untereinander verbunden sind.
  9. Metallträgermatrix nach Anspruch 1, 3, 7 oder 8, dadurch gekennzeichnet, daß die Metallträgermatrix (1) aus mehr als vier Stapeln (3), vorzugsweise aus acht Stapeln (3) besteht, die sternförmig um einen Symmetriepunkt (8) angeordnet und gleichsinning um diesen verschlungen sind, wobei sich die Enden der Stapel (3) im Symmetriepunkt (8) unter Einschließung eines spitzen Winkels berühren.
EP91105500A 1990-05-21 1991-04-08 Metallträgermatrix für einen katalytischen Reaktor Expired - Lifetime EP0458045B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4016276A DE4016276C1 (de) 1990-05-21 1990-05-21
DE4016276 1990-05-21

Publications (2)

Publication Number Publication Date
EP0458045A1 true EP0458045A1 (de) 1991-11-27
EP0458045B1 EP0458045B1 (de) 1994-07-13

Family

ID=6406854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105500A Expired - Lifetime EP0458045B1 (de) 1990-05-21 1991-04-08 Metallträgermatrix für einen katalytischen Reaktor

Country Status (5)

Country Link
US (1) US5342588A (de)
EP (1) EP0458045B1 (de)
JP (1) JPH0736896B2 (de)
DE (2) DE4016276C1 (de)
ES (1) ES2056512T3 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4112354A1 (de) * 1991-04-16 1992-10-22 Behr Gmbh & Co Vorrichtung zum katalytischen entgiften von abgasen
DE4129824A1 (de) * 1991-09-07 1993-03-11 Behr Gmbh & Co Verfahren und vorrichtung zum herstellen eines traegerkoerpers fuer einen abgaskatalysator
DE4132439A1 (de) * 1991-09-28 1993-04-01 Behr Gmbh & Co Abgaskatalysator
DE4215986A1 (de) * 1992-05-14 1993-11-18 Emitec Emissionstechnologie Vorrichtung zur katalytischen Abgasreinigung
JP3392895B2 (ja) * 1993-01-08 2003-03-31 臼井国際産業株式会社 X−ラップタイプのメタルハニカム体
CZ86495A3 (en) * 1994-04-11 1995-11-15 Scambia Ind Dev Ag Catalyst means for catalytic treatment of exhaust gases, the catalyst as such and process for producing the catalyst means
US5670264A (en) * 1994-05-10 1997-09-23 Shertech, Inc. Thermal barrier
JPH0824670A (ja) * 1994-07-11 1996-01-30 Usui Internatl Ind Co Ltd 排気ガス浄化用メタルハニカム体
DE19525262A1 (de) * 1994-07-11 1996-02-15 Usui Kokusai Sangyo K K Ltd Metallsubstrat für Abgasreinigungskatalysator
WO1997002884A1 (en) * 1995-07-12 1997-01-30 Engelhard Corporation Structure for converter body
US5846495A (en) * 1995-07-12 1998-12-08 Engelhard Corporation Structure for converter body
US5820835A (en) * 1995-07-12 1998-10-13 Engelhard Corporation Assembly and method for making catalytic converter structure
US5651906A (en) * 1995-07-12 1997-07-29 W. R. Grace & Co.-Conn. Electrically heatable converter body having plural thin metal core elements attached only at outer ends
AU7553796A (en) * 1995-12-22 1997-07-17 W.R. Grace & Co.-Conn. Assembly and method for making catalytic converter structures
US5791044A (en) * 1995-12-22 1998-08-11 Engelhard Corporation Assembly and method for catalytic converter structures
US6602477B2 (en) 1996-08-05 2003-08-05 Usui Kokusai Sangyo Kaisha, Ltd. Metal honeycomb structure
DE19825018A1 (de) * 1998-06-04 1999-12-09 Emitec Emissionstechnologie Verfahren und Blechpaket zur Herstellung eines Wabenkörpers mit einer Vielzahl von für ein Fluid durchlässigen Kanälen
MXPA02006855A (es) * 2000-01-11 2003-05-23 Accenstus Plc Reactor catalitico.
TW534945B (en) * 2000-11-13 2003-06-01 Catalytica Energy Sys Inc Thermally tolerant support structure for a catalytic combustion catalyst
DE60203018T2 (de) * 2001-10-12 2005-07-07 Gtl Microsystems Ag Katalytischer reaktor
GB0124999D0 (en) * 2001-10-18 2001-12-05 Accentus Plc Catalytic reactor
GB0125035D0 (en) * 2001-10-18 2001-12-12 Accentus Plc Catalytic reactor
GB0125000D0 (en) * 2001-10-18 2001-12-05 Accentus Plc Catalytic reactor
GB0218540D0 (en) * 2002-08-09 2002-09-18 Johnson Matthey Plc Engine exhaust treatment
GB0408896D0 (en) * 2004-04-20 2004-05-26 Accentus Plc Catalytic reactor
US7320778B2 (en) * 2004-07-21 2008-01-22 Catacel Corp. High-performance catalyst support
DE102005028044A1 (de) * 2005-06-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Herstellung von, insbesondere großen, Wabenkörpern für die mobile Abgasnachbehandlung
US7501102B2 (en) * 2005-07-28 2009-03-10 Catacel Corp. Reactor having improved heat transfer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8612882U1 (de) * 1986-05-12 1987-10-29 INTERATOM GmbH, 5060 Bergisch Gladbach Metallischer Katalysator-Trägerkörper mit evolventenförmig verlaufenden Schichten
EP0322566A1 (de) * 1987-12-23 1989-07-05 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren und Vorrichtung zur Herstellung eines metallischen Trägerkörpers für einen katalytischen Reaktor
EP0245737B1 (de) * 1986-05-12 1989-08-23 INTERATOM Gesellschaft mit beschränkter Haftung Wabenkörper, insbesondere Katalysator-Trägerkörper, mit gegensinnig verschlungenen Metallblechschichten und Verfahren zu seiner Herstellung
DE8908671U1 (de) * 1988-09-22 1990-02-15 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Wabenkörper, insbesondere Katalysator-Trägerkörper, aus einer Mehrzahl verschlungener Blechstapel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890104A (en) * 1970-11-03 1975-06-17 Getters Spa Catalytic cartridge
EP0245736B1 (de) * 1986-05-12 1989-08-23 Siemens Aktiengesellschaft Metallischer Katalysator-Trägerkörper mit evolventenförmig verlaufenden Schichten
US4928485A (en) * 1989-06-06 1990-05-29 W. R. Grace & Co.,-Conn. Metallic core member for catalytic converter and catalytic converter containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8612882U1 (de) * 1986-05-12 1987-10-29 INTERATOM GmbH, 5060 Bergisch Gladbach Metallischer Katalysator-Trägerkörper mit evolventenförmig verlaufenden Schichten
EP0245737B1 (de) * 1986-05-12 1989-08-23 INTERATOM Gesellschaft mit beschränkter Haftung Wabenkörper, insbesondere Katalysator-Trägerkörper, mit gegensinnig verschlungenen Metallblechschichten und Verfahren zu seiner Herstellung
EP0322566A1 (de) * 1987-12-23 1989-07-05 Emitec Gesellschaft für Emissionstechnologie mbH Verfahren und Vorrichtung zur Herstellung eines metallischen Trägerkörpers für einen katalytischen Reaktor
DE8908671U1 (de) * 1988-09-22 1990-02-15 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Wabenkörper, insbesondere Katalysator-Trägerkörper, aus einer Mehrzahl verschlungener Blechstapel

Also Published As

Publication number Publication date
DE59102153D1 (de) 1994-08-18
DE4016276C1 (de) 1991-06-20
JPH04227855A (ja) 1992-08-17
JPH0736896B2 (ja) 1995-04-26
EP0458045B1 (de) 1994-07-13
ES2056512T3 (es) 1994-10-01
US5342588A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
EP0458045B1 (de) Metallträgermatrix für einen katalytischen Reaktor
EP0245737B1 (de) Wabenkörper, insbesondere Katalysator-Trägerkörper, mit gegensinnig verschlungenen Metallblechschichten und Verfahren zu seiner Herstellung
EP0430945B1 (de) Wabenkörper, insbesondere katalysator-trägerkörper, aus einer mehrzahl verschlungener blechstapel
EP0186801B1 (de) Trägermatrix, insbesondere für einen katalytischen Reaktor zur Abgasreinigung
DE2733640C3 (de) Matrix für einen katalytischen Reaktor zur Abgasreinigung bei Brennkraftmaschinen
DE2452929A1 (de) Verfahren zum herstellen von wabenkoerpern
EP0151229A1 (de) Matrix für einen katalytischen Reaktor
DE2642521C2 (de) Vorrichtung zum gegenseitigen Distanzieren paralleler zylindrischer Elemente, die der Wärmeübertragung dienen
EP0152560B1 (de) Matrix für einen katalytischen Reaktor zur Abgasreinigung
DE3744265C2 (de) Rußfilter zur Abgasreinigung in Kraftfahrzeugen
DE4025434A1 (de) Wabenkoerper mit querschnittsbereichen unterschiedlicher kanalgroessen, insbesondere katalysator-traegerkoerper
EP0316596A2 (de) Verfahren und Vorrichtung zur Herstellung eines Trägerkörpers für einen katalytischen Reaktor
DE2636671A1 (de) Mit kanaelen durchsetzter koerper und verfahren zu seiner herstellung
EP0761303B1 (de) Einbauelement für Stoff- oder Wärmeaustauschkolonnen
DE3517035C1 (de) Matrix fuer einen katalytischen Reaktor zur Abgasreinigung
EP0577117A2 (de) Verfahren zum Herstellen eines Katalysators
DE3844350C2 (de) Trägerkörper für einen katalytischen Reaktor zur Abgasreinigung
DE112006001650T5 (de) Wabenförmiger Metallkatalysatorträger
DE3817490A1 (de) Traegerkoerper fuer einen katalytischen reaktor zur abgasreinigung
EP3797220B1 (de) Wabenkörper und verfahren zur herstellung des wabenkörpers
DE3108596C2 (de)
AT398350B (de) Flachheizkörper und verfahren zu seiner herstellung
DE3722707C2 (de)
EP0375986A1 (de) Trägerkörper für einen katalytischen Reaktor zur Abgasreinigung
DE19537690C2 (de) Einbauelement für Stoff- oder Wärmeaustauschkolonnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19911210

17Q First examination report despatched

Effective date: 19921207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59102153

Country of ref document: DE

Date of ref document: 19940818

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056512

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940912

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 91105500.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080423

Year of fee payment: 18

Ref country code: ES

Payment date: 20080423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080422

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080422

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080422

Year of fee payment: 18

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090408

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090408

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080422

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090409