EP0456526A1 - Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif - Google Patents

Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif Download PDF

Info

Publication number
EP0456526A1
EP0456526A1 EP91400524A EP91400524A EP0456526A1 EP 0456526 A1 EP0456526 A1 EP 0456526A1 EP 91400524 A EP91400524 A EP 91400524A EP 91400524 A EP91400524 A EP 91400524A EP 0456526 A1 EP0456526 A1 EP 0456526A1
Authority
EP
European Patent Office
Prior art keywords
drill string
drilling
tubular body
trajectory
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91400524A
Other languages
German (de)
English (en)
Other versions
EP0456526B1 (fr
Inventor
Jean Boulet
Pierre Morin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0456526A1 publication Critical patent/EP0456526A1/fr
Application granted granted Critical
Publication of EP0456526B1 publication Critical patent/EP0456526B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/004Indexing systems for guiding relative movement between telescoping parts of downhole tools
    • E21B23/006"J-slot" systems, i.e. lug and slot indexing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Definitions

  • the invention relates to a rotary drilling device comprising means for adjusting the azimuth of the trajectory of the drilling tool, these means being able to be controlled remotely.
  • This adjustment can be relative to the inclination of the trajectory, that is to say to the angle of this trajectory with the vertical, this angle being able to be modified by remote control, during drilling.
  • This adjustment can also be relative to the azimuth of the trajectory, that is to say to the direction of this trajectory relative to the direction of magnetic north.
  • the drilling tool can be rotated by a drill string, one end of which is located on the surface and is connected to a rotational drive means.
  • the axial force on the tool in the case of this process known as rotary drilling, is also exerted via the drill string.
  • the rods of the drill string are produced in tubular form and allow the circulation of a drilling fluid in the axial direction of the drill string, between the surface and the drilling tool.
  • the object of the invention is therefore to propose a rotary drilling device comprising means remotely controlled in azimuth adjustment of the trajectory of the drilling tool and a drill string having a first end connected to setting means. rotation of the drill string around its axis and application of an axial steering force on the drill string and to means for supplying drilling fluid to the drill string ensuring axial circulation of the drilling fluid up to to the drilling tool attached to the second end of the drill string, this device being able to operate during advancement, as required, either with azimuth adjustment of the drilling trajectory, or without azimuth control of this trajectory.
  • Figure 1 is a schematic view 4 'of a rotary drilling device.
  • FIGS. 2A and 2B are views in axial section of means for adjusting the azimuth of the trajectory of a rotary drilling tool according to a first embodiment.
  • FIG. 2A is a view in axial section of the upper part of the adjustment means connected to the part of the drill string comprising the first end of this drill string located on the surface.
  • FIG. 2B is a view in axial section of the lower part of the adjustment means connected to the drilling tool.
  • Figure 3 is an enlarged sectional view of detail 3 of Figure 2A showing a means of junction between the drill string and the tubular body of the azimuth adjustment means.
  • Figure 4 is an end view along 4 of Figure 2B.
  • Figure 5 is a cross-sectional view along 5-5 of Figure 2A.
  • Figure 6 is a developed view of the actuation ramps of the device.
  • FIG. 7 is a view in axial section of means for adjusting the azimuth of the trajectory of a drilling tool, according to a second embodiment.
  • Figure 7A is a cross-sectional view along A-A of Figure 7 showing a first alternative embodiment of the tubular body of the adjusting means.
  • FIG. 7B is a view similar to FIG. 7A showing a second alternative embodiment of the tubular body of the adjustment means shown in FIG. 7.
  • Figure 8 is a schematic view showing the principle of azimuth adjustment of the trajectory of a drilling tool.
  • FIG. 9 is a representation of the variations as a function of time of the pressure and of the flow rate of the drilling fluid in the drill string, during an operation of operating adjustment means according to the invention.
  • FIG. 1 a rotary drilling device 1 can be seen, the drill string 2 of which carries at its end the drilling tool 3 in the process of advancing to produce the borehole 4.
  • the end of the drill string located opposite the tool 3 is connected to a rotary drive device 5 of the drill string 2 about its axis.
  • the rod 2a located at the top of the drill string 2 has a square section and the rotary drive means 5 of the drill string consists of a horizontal rotation table crossed by an opening allowing the engagement of the rod to square section.
  • the rotation of the table by a motor assembly makes it possible to drive the rod with square section 2a and the drill string 2 in rotation while allowing the axial displacement of the drill string to carry out the drilling.
  • a weight is applied to the upper end of the drill string, in order to exert an axial directional force on the drill string and on the tool allowing its application with sufficient pressure on the bottom of the borehole 4.
  • the upper end of the drill string constituting its first end, opposite the second end connected to the drilling tool 3, comprises a drilling fluid injection head 6 connected to the first rod 2a so as to inject the drilling fluid under pressure into its internal bore.
  • the drilling fluid flows in the axial direction, inside the drill string and over its entire length so as to reach the lower part of the drilling device, at the level of the tool 3.
  • the drilling fluid sweeps the bottom of the borehole 4 then rises to the surface in the annular space located between the drill string and the wall of the borehole 4, by carrying out the driving of the rock debris torn off by the drilling 3.
  • the drilling fluid loaded with debris is recovered at the surface, separated from the debris and recycled in a tank 7.
  • a pump 8 makes it possible to return the drilling fluid to the injection head 6.
  • the drilling device 1 comprises, in its lower part, azimuth adjustment means comprising a tubular body 10 having a support blade 11 projecting radially with respect to the tubular body itself.
  • the drill string 2 is rotatably mounted around its axis inside the tubular body 10, the axis of which coincides with the axis of the drill string.
  • the rotary drilling device is suspended, at its upper part, by means of a hook 13 from a lifting device making it possible to release the weight exerting a thrust on the drill string 2 and on the tool 3, and lift the drill string and the tool.
  • the drilling device comprises a means for rotationally connecting the drill string 2 and the tubular body 10; this device can be operated to be placed in the active position or in the inactive position.
  • the tubular body 10 When the connecting device is in its active position, the tubular body 10 is rotated with the drill string. In this case, the drill string 2, the tubular body 10 and the tool 3 are rotated as a whole around the axis of the drill string.
  • the drilling device then operates without adjusting the azimuth of the drilling trajectory, the drilling being carried out in the direction of the axis of the drill string.
  • the drill string 2 When the device for connecting the drill string 2 and the tubular body 10 is in the inactive position, the drill string 2 can be rotated inside the tubular body 10.
  • the application of an axial force FPo on the tool through the drill string produces a lateral reaction force FR2 acting on the wall of the borehole 4.
  • the force FR2 is taken up by the support blade 11 of the tubular body 10 (force FR1).
  • the support blade 11, under the effect of the force FR1 is kept stationary in rotation against the wall of the borehole 4.
  • the direction of the azimuth drilling trajectory is then determined by the angular position of the support blade 11 in the borehole, around the axis of the drill string and by the angle of misalignment of the lower section 15 of the drill string integral with the tool 3 relative to the upper section 16 comprising the first end of the drill string located on the surface.
  • FIGS. 2A and 2B a first embodiment of the means according to the invention making it possible to adjust the direction of the drilling trajectory of the device shown in FIG. 1 in azimuth.
  • FIGS. 2A and 2B the assembly 20 of the means for adjusting the azimuth of the direction of the trajectory of a drilling device according to the invention is shown.
  • the device 20 is mainly constituted by a first element 21 of the drill string, by a second element 22 of the drill string connected in an articulated manner at the end of the first element and by a tubular body 23 in two parts 23a, 23b defining two successive sections whose axes make an adjustable angle ⁇ , the first element 21 of the drill string being rotatably mounted in the first section of the tubular body and the second element 22 of the drill string being rotatably mounted in the second section of the tubular body 23.
  • the first element 21 of the drill string consists of two successive parts 21a and 21b connected together by screwing the tapered tapered end 24 of the first part 21a in a tapped bore of corresponding shape of the second part 21b.
  • the first part 21a of the first element 21 comprises a tapered tapped bore 25 intended to ensure the rigid connection of the first element 21 of the drill string to the upper section comprising the first end of the drill string ending at the surface and cooperating with the drive means in rotation of the drill string.
  • the element 21 is produced in tubular form and comprises in its part 21b a bore 26 with an enlarged diameter in which is mounted all of the control means of the connection device between the drill string and the tubular body 23.
  • This assembly comprises a piston 27 mounted movable in translation and in rotation inside the bore 26 and biased towards the first end of the drill string, by a helical spring 28 mounted inside the first part 21a of the element 21 of the drill string.
  • the piston 27 is produced in tubular form and delimits a central conduit communicating at its two ends with the bore of the drill string which is traversed, during drilling, by a flow Q of drilling fluid circulating in the axial direction and in the direction given by arrow 29.
  • the end of the central duct of the piston 27 located on the downstream side if we consider the circulation of the drilling fluid is profiled so as to constitute a throttled part 27a located opposite and near the end part frustoconical in shape of a needle 30 fixed in the axial direction inside of the bore 26, by means of a support device 31 comprising openings for the passage of the drilling fluid at the periphery of the central needle 30.
  • the central bore of the element 21 of the drill string has a reduced diameter compared to the bore 26 and opens, through openings 33, into the internal bore of the tubular body 23, around the end part of the element 21 of reduced diameter and comprising at its end an opening in the form of a portion of a sphere constituting the female part of a ball joint of articulated assembly of the first element 21 and the second element 22 of the drill string.
  • the second element 22 has at its end located in the extension of the element 21 a spherical assembly surface constituting the male part of the ball joint for assembling the elements 21 and 22.
  • the ball joint 32 allows the drive in rotation of the second element 22 by the first element 21 while allowing angular misalignment of the second element 22 connected to the drilling tool, relative to the first element 21 connected to the section of the drill string ending at the surface.
  • the piston 27 comprises a body 27b in which are machined two sets of ramps 35a and 35b inclined relative to the axis of the first element 21 of the drill string.
  • Each of the sets of ramps 35a and 35b comprises several ramps disposed at the periphery of the piston 27, in angular positions regularly spaced around the axis of the piston 27 coinciding with the axis of the element 21.
  • the different parts of the sets of ramps 35a and 35b are connected together by grooves of constant depth machined in the peripheral surface of the piston 27, so that the different parts of the ramps and the grooves of constant depth constitute a continuous track around the peripheral surface of the body 27b of the piston 27, as can be seen in FIGS. 5 and 6.
  • each of the tracks comprising the set of ramps 35a or the set of ramps 35b, is applied, by means of springs, one or more locking assemblies 36 allowing the junction between the element 21 of the drill string and the tubular body 23 so as to make the drill string and the tubular body integral in rotation or, on the contrary, to allow rotation of the drill string inside the tubular body, by unlocking the assemblies 36.
  • Each of the assemblies 36 comprises a locking finger 38 and an actuating finger 39, the end of the locking finger 38 directed inwards being engaged in a blind bore formed in the axial direction of the actuating finger 39.
  • the radial opening 37 of the element 21 comprises a closing plate 40 disposed at its end opening outwards, the plate 40 comprising a central opening 40a in which the head 38a of the locking finger 38 is engaged.
  • first return spring 42 which tends to push the locking finger 38 outwards.
  • a second helical return spring 43 which tends to push the finger 39 inwards, that is to say towards the axis of the piston 27 and element 21.
  • a pin or a key 44 is fixed in the bore of the actuation pin 39, projecting radially inwards, so as to come to engage in an axial slot 38b formed in the lateral surface of the locking finger 38.
  • the pin 44 ensures the return of the locking finger 38, under the effect of the spring 43, via the actuating finger 39.
  • the head 38a of the locking finger 38 engages, in the active position, as shown in FIG. 3, in an opening 41 of depth h machined in the interior surface of the part 23a of the tubular body 23.
  • the locking pin 38 ensures the connection in rotation about their common axis of the element 21 of the drill string and of the tubular body 23.
  • the sets of fingers 36 as shown in FIG. 3 are actuated by the piston 27, the ramps 35a and 35b of which are capable of being placed opposite the cooperating end of the actuating finger 39, as it can be seen on the figure 3.
  • Each of the ramps 35a and 35b has an end part whose depth H1 in the radial direction from the external surface of the piston 27 is minimum and an end part whose depth H2 under the external surface of the piston 27 in the radial direction is maximum.
  • the successive junction parts 60 of the set of ramps 35a or 35b are formed by grooves, the bottom of which is either at the depth H1 or at the depth H2.
  • the pressure drop is maximum, so that a measurement of the pressure of the drilling fluid carried out on the surface used to control the position of the piston 27 and the achievement of a step of displacement of the control means.
  • the flow rate of the drilling fluid is reduced or canceled so that the spring 28 can return the piston to its initial position, the end of the actuating finger 39 being placed in a groove at constant depth to return to a position d balance either at depth H Advisor or at depth H2.
  • this finger 39 recalls the locking finger 38 inwards via the pin 44, over a height h , so that the element 21 is unlocked and the drill string is capable of rotating inside the tubular body 23.
  • the first part 23a of the tubular body 23 is rotatably mounted on the first element 21 of the drill string, by means of radial bearings 46a, 46b and 47 and an axial bearing 48, so that the first part 23a of the body tubular 23 is coaxial with the first element 21 whose axis is itself coincident with the axis of the part of the drill string having its first end emerging at the surface.
  • seals 49 and 51 are interposed between the element 21 and the tubular body 23, so as to prevent the passage of the drilling fluid between these two parts.
  • the second part 23b of the tubular body 23 is mounted on the first part 23a, by means of a frustoconical assembly span 53 whose axis makes a certain angle (of the order of a few degrees) with the axis of element 21.
  • the second part 23b of the tubular body 23 engaged on the first part 23a via the bearing surface 53 can be turned around the axis of this bearing surface and placed in an orientation such that the axis of the bore of the second part 23b of the tubular body 23 makes a certain angle ⁇ with the axis of the bore of the first part 23a of the tubular body 23 coincides with the axis of the element 21.
  • the angle ⁇ can be adjusted to a value between 0 and 2 times the angle of misalignment of the frustoconical bearing 53 relative to the axis of the bore of the part 23a of the tubular body.
  • Locking screws 54 make it possible to secure and rotate the second part 23b of the tubular body 23 on the first part 23a.
  • This adjustment of the angle ⁇ is carried out at the surface, before starting a drilling operation.
  • the angle ⁇ is chosen as a function of the desirable amplitude of the azimuth adjustments of the direction of the drilling trajectory.
  • the tubular body 23 constitutes a bent tubular element comprising two successive sections whose axes make an angle ⁇ .
  • the second part 23b of the tubular body carries three blades 55 projecting radially and in angular positions at 120 ° on its external surface, one of which (55a) is located on the external side of the elbow of the tubular body 23.
  • the second element 22 of the drill string comprises a tapered tapered opening 22a allowing the mounting of the drilling tool or of an adaptation piece of this drilling tool at the end of the element 22 opposite its mounted end articulated at the end of element 21.
  • the element 22 has an internal bore communicating through openings 56 with the internal bore of the tubular body 23.
  • the element 22 is rotatably mounted inside the bore of the second part 23b of the tubular body 23, by means of a radial bearing 57 and an axial bearing 58.
  • a seal 59 is interposed between the inner surface of the bore of the tubular body and the outer surface of the second member of the drill string.
  • the axis of the second element 22 of the drill string arranged coaxially in the second section of the tubular body 23 therefore forms an angle ⁇ with the axis of the first element 21 of the drill string arranged coaxially with respect to the first section 23a of the bent tubular body 23.
  • the drilling device according to the invention has the general structure shown in Figure 1 and control means of the azimuth adjustment device as shown in Figures 2A and 2B.
  • the tubular body 23 is adjusted so that the angle of misalignment ⁇ of its two sections is adjusted according to the desired azimuth settings.
  • the drilling device can operate without azimuth adjustment, the drill string and the tubular body being secured in rotation by junction devices such as the devices 36 shown in FIG. 2A.
  • the drill string, the drilling tool and the tubular body 23 rotate together around the axis of the upper part of the drill string combined with the axis of the first element of the drill string engaged in the first section of the tubular body .
  • An axial force is transmitted by the drill string, so as to perform drilling along the direction of the axis of the first part of the drill string.
  • elbow tubular body 23 operating as a rigid connection results, during the operation according to the first mode, by a simple enlargement of the borehole of small amplitude, the angle ⁇ having a small value.
  • FIG. 8 which shows very schematically the drill string 2 engaged in a tubular body comprising a support blade 11, a mark Z makes it possible to determine by telemetry the angular position of the train of rods and the blade 11 of the tubular body, around the axis of the drill string and with respect to the direction of magnetic north (NM).
  • NM magnetic north
  • the position in azimuth of the reference mark Z (defined by the angle Az) can be controlled from the surface, by telemetry, so as to determine the adjustments or corrections to be made to the direction in azimuth of the drilling trajectory.
  • the angle A between the direction of the mark Z and the radial direction Y of the blade 11 is fixed at a determined value, in the first operating mode, the engagement of the locking fingers in determined openings of the tubular body defining an indexing angular of the tubular body with respect to the drill string.
  • the azimuth adjustment of the drilling path (second mode of operation of the device) is obtained, as indicated above, by adjusting the angular position of the support blade 11 in the borehole and by unlocking the drill string drilling, so as to allow it to rotate inside the tubular body, after pressing the blade 11 against the wall of the borehole, in a position determined, under the effect of the lateral forces involved and resulting from the axial force on the drill string.
  • transition from the first operating mode without azimuth adjustment to the second operating mode with azimuth adjustment is therefore achieved by releasing the locking means of the tubular body on the drill string and by orienting the tubular body so that the blade support is in the desired position, as will be described below.
  • the drilling device being in operation according to the first mode without azimuth adjustment, to pass to the second mode of operation with azimuth adjustment, we initially release the axial force on the tool exerted by the through the drill string, without removing the tool from the bottom of the borehole and the rotation of the drill string ensuring drilling is stopped.
  • the angular position of the blade 11 (or 55a) is adjusted relative to the magnetic north, so as to carry out the azimuth adjustment in the desired direction, by turning the drill string from the surface by a determined angle.
  • This rotation of the drill string causes the same rotation of the tubular body integral with the first element of the drill string and the angular position of the support blade.
  • the axial force is again applied to the drill string so as to generate a reaction force FR1 (see FIG. 1) at the level of the support blade, which fixes the angular position of the support blade and the tubular body 10.
  • the flow rate is increased by so as to pass it to the activation value of the control means.
  • Pressure recording tracks the movement of the piston and the position of the actuating fingers from the surface.
  • the circulation of the drilling fluid in the drill string is interrupted, so that the piston 27 is recalled by the spring 28, in the opposite direction of the circulation of the drilling fluid.
  • the ends of the actuating fingers move in contact with a groove 60 at constant depth H2 joining two successive ramps.
  • the actuating fingers pass from the ramp to the groove at constant depth by a rotation of the piston 27 about its axis, when the actuating fingers come into contact at the end of the ramps with curved joining parts between the ramps 35 and the grooves 60 at constant depth.
  • the piston is then in its equilibrium position and the fingers 38 are unlocked.
  • the flow rate of the drilling fluid is restored to the value QF, which does not cause any displacement of the piston 27, the flow rate QF being less than the actuation flow rate QACT.
  • the pressure of the drilling fluid after passing from its maximum value to the zero value rises to an intermediate value corresponding to the substantially constant value of the pressure during drilling.
  • the drill string is put back in rotation in order to restart drilling.
  • the drill string is free to rotate in the tubular body 23, so that the first element 21 of the drill string drives the second element 22 in rotation, this second element secured to the drilling tool having an axis making an angle ⁇ with the first element disposed in the first section of the tubular body 23.
  • the drill string arranged inside the bent tubular body has a misalignment identical to the misalignment of the two sections of the tubular body; during drilling, the advancement of the drilling tool causes advancement of the drill string and of the tubular body integral in translation with this drill string, the support blade 55a being driven in rubbing contact with the wall of the drilling hole drilling.
  • the axial force exerted via the drill string on the drilling tool and the tool is peeled from the bottom of the hole.
  • the flow rate of the drilling fluid is increased to the activation value QACT, so as to pass the end of the actuating fingers in contact with the ramps with variable depth, from level H2 to level H1 where the fingers of locking 38 are pushed outwards by the return springs 42 and 43.
  • the flow rate of the drilling fluid is canceled, so as to return the piston to its equilibrium position.
  • the drill string is rotated inside the tubular body in order to engage the locking fingers 38, the heads 38a of the fingers 38 repelled by the springs 43 coming to engage in the corresponding openings 41 when the heads and the openings came in coincidence.
  • FIGS. 7, 7A and 7B there is shown a second embodiment of the means for adjusting the azimuth of the trajectory of a drilling tool operating according to the general principle set out above with reference to FIG. 1 and using remote control means similar to the means described with reference to FIGS. 2A and 2B.
  • the implementation of these means for passing from an operating mode without azimuth adjustment to an operating mode with azimuth adjustment or vice versa is substantially analogous to the process which has just been described relating to the realization of FIGS. 2A and 2B.
  • FIGS. 2A and 2B on the one hand and 7 on the other hand bear the same references with, however, the exponent ′ (prime) for the elements represented in FIG. 7.
  • These elements constitute the junction device between the drill string and the tubular body and its control means which are produced in a similar manner in the case of the first embodiment and in the case of the second embodiment.
  • the tubular body 70 rotatably mounted on the drill string and integral in translation with this drill string is produced in the form of a stabilizer with a support blade of the type used to make trajectory corrections on drill string, by deformation of the drill string under the effect of lateral forces exerted by the stabilizer on the edge of the borehole.
  • the tubular body 70 is rotatably mounted on the drill string and the drill string can be integral in rotation with the tubular body 70 or, on the contrary, made free to rotate in the tubular body 70, by means of remote control means using drilling fluid of the type of those which have been described above.
  • the tubular body 70 is rotatably mounted on an intermediate part 72 of the drill string connected at one of its ends to a first screw connection 73 allowing the part 72 to be fixed to the part of the drill string having its first end emerging at the surface and, at its other end, to a second screw connection 74 making it possible to connect the intermediate piece 72 to the part of the drill string carrying the drilling tool.
  • the tubular body 70 is rotatably mounted on the intermediate piece 72 by means of roller bearings 76a and 76b and held integral in translation with the drill string between a shoulder of the piece 72 and a shoulder of the second fitting 74.
  • Ball bearings and seals 77a and 77b are interposed between the body 70 and the shoulders of the drill string.
  • the tubular body 70 comprises a support blade 71 and two guide blades 78a and 78b projecting radially outwards.
  • the outer edges of the guide blades 78a and 78b lie on a circular contour 79 returned on the axis of the drill string whose diameter corresponds to the diameter D of the borehole.
  • the outer edge of the support blade 71 is projecting relative to the contour 79 of a radial length e .
  • an alternative embodiment 70 ′ of the tubular body 70 which comprises two guide blades 78′a and 78′b and a support blade 71 ′ whose external edges lie on a circle 79 ′ whose radius has a length D / 2 - h slightly less than the radius of the borehole.
  • the circle 79 ′ is centered at a point located at a distance k from the axis of the drill string and from the intermediate piece 72.
  • the support blade 71 ′ is in its position d '' maximum offset.
  • the azimuth adjustment means shown in FIGS. 7, 7A and 7B can be controlled in a similar manner to the adjustment means shown in FIGS. 2A, 2B and 3 to 6, by means of maneuverable joining devices 36 ′ comprising locking fingers 38 ′ actuated by the ramps 35′a and 35′b of a piston 27 ′ and by return springs.
  • the piston 27 ′ is moved in one direction by the force created by the pressure drop at the opening 27′a cooperating with the frusto-conical needle 30 ′ and in the other direction by the return spring 28 ′.
  • the blade 71 (or 71 ′) is pressed against the edge of the borehole in a determined angular position, as described above.
  • the fingers 38 ′ are then unlocked by remote control, so as to allow rotation of the drill string inside the tubular part 70 or 70 ′.
  • the azimuth adjustment is carried out by angular misalignment of the lower part of the drill string carrying the tool such as the part 15 shown in FIG. 1, relative to the upper part 16 comprising the first end of the drill string, under the effect of the radial forces brought into play during drilling and acting on part 15 of the drill string.
  • the azimuth adjustment therefore depends on the angular position of the support blade and its eccentricity and on the geometric and mechanical characteristics of the part 15 of the drill string.
  • the device according to the invention therefore makes it possible to carry out an azimuth adjustment controlled remotely from the trajectory of a drilling tool, in the case of rotary drilling.
  • the drilling device operates with azimuth adjustment of the trajectory of the drilling tool, it is possible to return by remote control to an operating mode without azimuth adjustment of the trajectory.
  • the transition from one operating mode to the other is carried out quickly and safely, the control of the control means being able to be carried out from the surface, for example by measuring the pressure of the drilling fluid.
  • the invention therefore makes it possible to adjust the trajectory of a drilling tool in azimuth, without using a downhole motor.
  • control means for locking or unlocking the tubular body on the drill string can be achieved. in a form different from that which has been described.
  • These control means using the pressure or the flow rate of the drilling fluid are well known in the technique of directional drilling at great depth.
  • the joining means between the drill pipe and the tubular body can be produced in a form different from that which has been described using fingers placed in radial directions.
  • the tubular body can be produced in a form different from those which have been described, this tubular body being able to be produced in one or more pieces, with or without the possibility of adjusting the misalignment angle or the eccentricity of the blade. support.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

Le dispositif comporte un train de tiges ayant une première extrémité par l'intermédiaire de laquelle on transmet la rotation au train de tiges et la force axiale sur l'outil (3) pendant le forage et une seconde extrémité à laquelle est fixé l'outil (3). Le dispositif comporte des moyens de réglage en azimut de la trajectoire de l'outil de forage constitués par un corps tubulaire (10) comportant une lame d'appui (11) en saillie radiale, monté rotatif sur le train de tiges (2) et un moyen de jonction manoeuvrable à distance permettant de solidariser en rotation le train de tiges (2) et le corps tubulaire (10) dans sa position active. Dans la position inactive du moyen de jonction, le train de tiges (2) est libre en rotation à l'intérieur du corps tubulaire qui est maintenu immobile en rotation dans le trou de forage par la lame d'appui (11). La lame d'appui (11) est placée dans le trou de forage, dans une orientation angulaire permettant le réglage d'azimut dans la direction voulue.

Description

  • L'invention concerne un dispositif de forage rotary comportant des moyens de réglage en azimut de la trajectoire de l'outil de forage, ces moyens pouvant être commandés à distance.
  • Dans les techniques actuelles du forage et en particulier du forage pétrolier, on connaît des procédés et des dispositifs permettant d'effectuer un certain réglage à distance de la trajectoire de l'outil de forage.
  • Ce réglage peut être relatif à l'inclinaison de la trajectoire, c'est-à-dire à l'angle de cette trajectoire avec la verticale, cet angle pouvant être modifié par commande à distance, pendant le forage. Ce réglage peut également être relatif à l'azimut de la trajectoire, c'est-à-dire à la direction de cette trajectoire par rapport à la direction du nord magnétique.
  • L'outil de forage peut être entraîné en rotation par un train de tiges dont une extrémité située en surface est reliée à un moyen d'entraînement en rotation. L'effort axial sur l'outil, dans le cas de ce procédé connu sous le nom de forage rotary, est également exercé par l'intermédiaire du train de tiges.
  • En dehors du forage rotary, on connaît d'autres procédés de forage mettant en oeuvre un moteur ou une turbine de fond relié à l'extrémité d'un train de tiges et comportant un arbre d'entraînement solidaire de l'outil.
  • Dans le cas du forage rotary aussi bien que dans le cas du forage avec moteur de fond, les tiges du train de tiges sont réalisées sous forme tubulaire et permettent la circulation d'un fluide de forage dans la direction axiale du train de tiges, entre la surface et l'outil de forage.
  • Dans le cas de l'utilisation d'un moteur de fond, celui-ci peut être entraîné par le fluide de forage sous pression envoyé dans le train de tiges.
  • Jusqu'ici, le réglage en azimut de la trajectoire de l'outil de forage n'a pu être effectué que dans le cas du forage avec moteur de fond. Dans le cas du forage rotary, on ne connaissait pas de dispositif commandé à distance permettant de régler en azimut la direction du forage, dans le cas où une correction de trajectoire s'avère nécessaire, en fonction des données obtenues par télémesure.
  • Le but de l'invention est donc de proposer un dispositif de forage rotary comportant des moyens commandés à distance de réglage en azimut de la trajectoire de l'outil de forage et un train de tiges ayant une première extrémité reliée à des moyens de mise en rotation du train de tiges autour de son axe et d'application d'une force de direction axiale sur le train de tiges et à des moyens d'alimentation en fluide de forage du train de tiges assurant une circulation axiale du fluide de forage jusqu'à l'outil de forage fixé à la seconde extrémité du train de tiges, ce dispositif pouvant fonctionner à l'avancement, suivant les besoins, soit avec réglage en azimut de la trajectoire de forage, soit sans contrôle en azimut de cette trajectoire.
  • Dans ce but, les moyens de réglage en azimut de la trajectoire de l'outil de forage sont constitués par :
    • un corps tubulaire comportant au moins une lame d'appui en saillie radiale vers l'extérieur monté rotatif sur le train de tiges autour de son axe confondu avec l'axe du train de tiges et solidaire en translation du train de tiges,
    • et un moyen de jonction entre le train de tiges et le corps tubulaire porté par le train de tiges, mobile entre une position active et une position inactive et manoeuvrable à distance grâce à des moyens de commande actionnés par le fluide de forage en circulation dans le train de tiges, permettant, dans sa position active, l'entraînement en rotation du corps tubulaire par le train de tiges et, dans sa position inactive, la rotation du train de tiges à l'intérieur du corps tubulaire, le réglage en azimut de la trajectoire de l'outil de forage étant alors assuré par mise en appui de la lame du corps tubulaire sur la paroi du trou de forage dans une position déterminée et par désalignement angulaire, l'une par rapport à l'autre, de deux parties du train de tiges situées respectivement, entre la première extrémité du train de tiges et le corps tubulaire et, entre le corps tubulaire et la seconde extrémité du train de tiges.
  • Afin de bien faire comprendre l'invention, on va maintenant décrire à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, un mode de réalisation d'un dispositif de forage suivant l'invention.
  • La figure 1 est une vue schématique 4'un dispositif de forage rotary.
  • Les figures 2A et 2B sont des vues en coupe axiale de moyens de réglage en azimut de la trajectoire d'un outil de forage rotary selon un premier mode de réalisation.
  • La figure 2A est une vue en coupe axiale de la partie supérieure des moyens de réglage reliée à la partie du train de tiges comportant la première extrémité de ce train de tiges située en surface.
  • La figure 2B est une vue en coupe axiale de la partie inférieure des moyens de réglage reliée à l'outil de forage.
  • La figure 3 est une vue en coupe à plus grande échelle du détail 3 de la figure 2A montrant un moyen de jonction entre le train de tiges et le corps tubulaire des moyens de réglage d'azimut.
  • La figure 4 est une vue en bout suivant 4 de la figure 2B.
  • La figure 5 est une vue en coupe transversale suivant 5-5 de la figure 2A.
  • La figure 6 est une vue développée des rampes d'actionnement du dispositif.
  • La figure 7 est une vue en coupe axiale de moyens de réglage en azimut de la trajectoire d'un outil de forage, selon un second mode de réalisation.
  • La figure 7A est une vue en coupe transversale suivant A-A de la figure 7 montrant une première variante de réalisation du corps tubulaire des moyens de réglage.
  • La figure 7B est une vue analogue à la figure 7A montrant une seconde variante de réalisation du corps tubulaire des moyens de réglage représentés sur la figure 7.
  • La figure 8 est une vue schématique montrant le principe du réglage en azimut de la trajectoire d'un outil de forage.
  • La figure 9 est une représentation des variations en fonction du temps de la pression et du débit du fluide de forage dans le train de tiges, pendant une opération de manoeuvre de moyens de réglage suivant l'invention.
  • Sur la figure 1, on voit un dispositif de forage rotary 1 dont le train de tiges 2 porte à son extrémité l'outil de forage 3 en cours d'avancement pour réaliser le trou de forage 4.
  • L'extrémité du train de tiges située à l'opposé de l'outil 3 est reliée à un dispositif d'entraînement en rotation 5 du train de tiges 2 autour de son axe.
  • La tige 2a située à la partie supérieure du train de tiges 2 présente une section carrée et le moyen d'entraînement en rotation 5 du train de tiges est constitué par une table de rotation horizontale traversée par une ouverture permettant l'engagement de la tige à section carrée. La mise en rotation de la table par un ensemble moteur permet d'entraîner la tige à section carrée 2a et le train de tiges 2 en rotation tout en permettant le déplacement axial du train de tiges pour réaliser le forage.
  • Un poids est appliqué sur l'extrémité supérieure du train de tiges, afin d'exercer une force de direction axiale sur le train de tiges et sur l'outil permettant son application avec une pression suffisante sur le fond du trou de forage 4.
  • En outre, l'extrémité supérieure du train de tiges constituant sa première extrémité, opposée à la seconde extrémité reliée à l'outil de forage 3, comporte une tête d'injection de fluide de forage 6 reliée à la première tige 2a de manière à injecter dans son alésage intérieur le fluide de forage sous pression. Le fluide de forage circule dans la direction axiale, à l'intérieur du train de tiges et sur toute sa longueur de manière à parvenir jusqu'à la partie inférieure du dispositif de forage, au niveau de l'outil 3. Le fluide de forage réalise le balayage du fond du trou de forage 4 puis remonte vers la surface dans l'espace annulaire situé entre le train de tiges et la paroi du trou de forage 4, en réalisant l'entraînement des débris de roche arrachés par l'outil de forage 3.
  • Le fluide de forage chargé de débris est récupéré en surface, séparé des débris et recyclé dans un réservoir 7. Une pompe 8 permet de renvoyer le fluide de forage dans la tête d'injection 6.
  • Le dispositif de forage 1 comporte, dans sa partie inférieure, des moyens de réglage d'azimut comprenant un corps tubulaire 10 ayant une lame d'appui 11 en saillie radiale par rapport au corps tubulaire proprement dit.
  • Le train de tiges 2 est monté rotatif autour de son axe à l'intérieur du corps tubulaire 10 dont l'axe est confondu avec l'axe du train de tiges.
  • De plus le dispositif de forage rotary est suspendu, à sa partie supérieure, par l'intermédiaire d'un crochet 13 à un dispositif de levage permettant de libérer le poids exerçant une poussée sur le train de tiges 2 et sur l'outil 3, et de soulever le train de tiges et l'outil.
  • Le dispositif de forage comporte un moyen de liaison en rotation du train de tiges de forage 2 et du corps tubulaire 10 ; ce dispositif peut être manoeuvré pour être placé en position active ou en position inactive.
  • Lorsque le dispositif de liaison est dans sa position active, le corps tubulaire 10 est entraîné en rotation avec le train de tiges. Dans ce cas, le train de tiges de forage 2, le corps tubulaire 10 et l'outil 3 sont mis en rotation dans leur ensemble autour de l'axe du train de tiges. Le dispositif de forage fonctionne alors sans réglage de l'azimut de la trajectoire de forage, le forage étant effectué dans la direction de l'axe du train de tiges.
  • Lorsque le dispositif de liaison du train de tiges de forage 2 et du corps tubulaire 10 est en position inactive, le train de tiges 2 peut être mis en rotation à l'intérieur du corps tubulaire 10. L'application dune force axiale FPo sur l'outil par l'intermédiaire du train de tiges produit une force de réaction latérale FR₂ s'exerçant sur la paroi du trou de forage 4. La force FR₂ est reprise par la lame d'appui 11 du corps tubulaire 10 (force FR₁). La lame d'appui 11, sous l'effet de la force FR₁ est maintenue immobile en rotation contre la paroi du trou de forage 4.
  • La direction de la trajectoire de forage en azimut est alors déterminée par la position angulaire de la lame d'appui 11 dans le trou de forage, autour de l'axe du train de tiges et par l'angle de désalignement du tronçon inférieur 15 du train de tiges solidaire de l'outil 3 par rapport au tronçon supérieur 16 comportant la première extrémité du train de tiges située en surface.
  • Le choix de la position de la lame 11 et les caractéristiques du corps tubulaire 10 et/ou du train de tiges permettent de régler l'azimut à la valeur voulue.
  • On va maintenant décrire, en se référant aux figures 2A et 2B, un premier mode de réalisation des moyens suivant l'invention permettant d'effectuer un réglage en azimut de la direction de la trajectoire de forage du dispositif représenté sur la figure 1.
  • Sur les figures 2A et 2B, on a représenté l'ensemble 20 des moyens de réglage en azimut de la direction de la trajectoire d'un dispositif de forage suivant l'invention.
  • Le dispositif 20 est principalement constitué par un premier élément 21 du train de tiges de forage, par un second élément 22 du train de tiges relié de manière articulée à l'extrémité du premier élément et par un corps tubulaire 23 en deux parties 23a, 23b définissant deux tronçons successifs dont les axes font un angle α réglable, le premier élément 21 du train de tiges étant monté rotatif dans le premier tronçon du corps tubulaire et le second élément 22 du train de tiges étant monté rotatif dans le second tronçon du corps tubulaire 23.
  • Le premier élément 21 du train de tiges est constitué de deux parties successives 21a et 21b reliées entre elles par vissage de l'extrémité tronconique filetée 24 de la première partie 21a dans un alésage taraudé de forme correspondante de la seconde partie 21b.
  • La première partie 21a du premier élément 21 comporte un alésage taraudé tronconique 25 destiné à assurer la liaison rigide du premier élément 21 du train de tiges au tronçon supérieur comportant la première extrémité du train de tiges aboutissant en surface et coopérant avec le moyen d'entraînement en rotation du train de tiges de forage.
  • L'élément 21 est réalisé sous forme tubulaire et comporte dans sa partie 21b un alésage 26 à diamètre élargi dans lequel est monté l'ensemble des moyens de commande du dispositif de liaison entre le train de tiges et le corps tubulaire 23. Cet ensemble comporte un piston 27 monté mobile en translation et en rotation à l'intérieur de l'alésage 26 et rappelé vers la première extrémité du train de tiges, par un ressort hélicoïdal 28 monté à l'intérieur de la première partie 21a de l'élément 21 du train de tiges.
  • Le piston 27 est réalisé sous forme tubulaire et délimite un conduit central communiquant à ses deux extrémités avec l'alésage du train de tiges qui est parcouru, pendant le forage, par un débit Q de fluide de forage circulant suivant la direction axiale et dans le sens donné par la flèche 29.
  • L'extrémité du conduit central du piston 27 située du côté aval si l'on considère la circulation du fluide de forage est profilée de manière à constituer une partie étranglée 27a située en vis-à-vis et à proximité de la partie d'extrémité de forme tronconique d'une aiguille 30 fixée dans la direction axiale à l'intérieur de l'alésage 26, grâce à un dispositif de support 31 comportant des ouvertures de passage du fluide de forage à la périphérie de l'aiguille centrale 30.
  • En aval de l'aiguille 30 et du support 31, l'alésage central de l'élément 21 du train de tiges présente un diamètre réduit par rapport à l'alésage 26 et débouche, par des ouvertures 33, dans l'alésage intérieur du corps tubulaire 23, autour de la partie terminale de l'élément 21 à diamètre réduit et comportant à son extrémité une ouverture en forme de portion de sphère constituant la partie femelle dune rotule D'assemblage articulé du premier élément 21 et du second élément 22 du train de tiges. Le second élément 22 comporte à son extrémité située dans le prolongement de l'élément 21 une portée sphérique d'assemblage constituant la partie mâle de la rotule d'assemblage des éléments 21 et 22. La rotule d'assemblage 32 permet l'entraînement en rotation du second élément 22 par le premier élément 21 tout en permettant un désalignement angulaire du second élément 22 relié à l'outil de forage, par rapport au premier élément 21 relié au tronçon du train de tiges aboutissant en surface.
  • Le piston 27 comporte un corps 27b dans lequel sont usinés deux jeux de rampes 35a et 35b inclinées par rapport à l'axe du premier élément 21 du train de tiges.
  • Chacun des jeux de rampes 35a et 35b comporte plusieurs rampes disposées à la périphérie du piston 27, dans des positions angulaires régulièrement espacées autour de l'axe du piston 27 confondu avec l'axe de l'élément 21.
  • Les différentes parties des jeux de rampes 35a et 35b sont reliées entre elles par des rainures à profondeur constante usinées dans la surface périphérique du piston 27, de manière que les différentes parties des rampes et les rainures à profondeur constante constituent une piste continue autour de la surface périphérique du corps 27b du piston 27, comme il est visible sur les figures 5 et 6.
  • Sur chacune des pistes comportant le jeu de rampes 35a ou le jeu de rampes 35b, est appliqué, par l'intermédiaire de ressorts, un ou plusieurs ensembles de verrouillage 36 permettant de réaliser la jonction entre l'élément 21 du train de tiges et le corps tubulaire 23 de manière à rendre le train de tiges et le corps tubulaire solidaires en rotation ou, au contraire, à permettre une rotation du train de tiges à l'intérieur du corps tubulaire, par déverrouillage des ensembles 36.
  • Sur la figure 3, on voit que l'ensemble 36 est logé dans une lumière 37 traversant la paroi de l'élément tubulaire 21 dans une direction radiale.
  • Chacun des ensembles 36 comporte un doigt de verrouillage 38 et un doigt d'actionnement 39, l'extrémité du doigt de verrouillage 38 dirigée vers l'intérieur étant engagée dans un alésage borgne ménagé dans la direction axiale du doigt d'actionnement 39.
  • L'ouverture radiale 37 de l'élément 21 comporte une plaque de fermeture 40 disposée à son extrémité débouchant vers l'extérieur, la plaque 40 comportant une ouverture centrale 40a dans laquelle est engagée la tête 38a du doigt de verrouillage 38.
  • Entre la tête 38a du doigt de verrouillage 38 et le doigt d'actionnement 39 est intercalé un premier ressort de rappel 42 qui tend à repousser le doigt de verrouillage 38 vers l'extérieur.
  • Entre la plaque de fermeture 40 et le doigt d'actionnement 39 est intercalé un second ressort de rappel hélicoïdal 43 qui tend à repousser le doigt 39 vers l'intérieur, c'est-à-dire en direction de l'axe du piston 27 et de l'élément 21.
  • Un pion ou une clavette 44 est fixé dans l'alésage du pion d'actionnement 39, en saillie radiale vers l'intérieur, de manière à venir s'engager dans une lumière axiale 38b ménagée dans la surface latérale du doigt de verrouillage 38. Le pion 44 permet d'assurer le rappel du doigt de verrouillage 38, sous l'effet du ressort 43, par l'intermédiaire du doigt d'actionnement 39.
  • La tête 38a du doigt de verrouillage 38 vient s'engager, en position active, comme représenté sur la figure 3, dans une ouverture 41 de profondeur h usinée dans la surface intérieure de la partie 23a du corps tubulaire 23. Dans sa position active, le pion de verrouillage 38 assure la liaison en rotation autour de leur axe commun de l'élément 21 du train de tiges et du corps tubulaire 23.
  • Les ensembles de doigts 36 tels que représentés sur la figure 3 sont actionnés par le piston 27 dont les rampes 35a et 35b sont susceptibles de venir se placer en face de l'extrémité coopérante du doigt d'actionnement 39, comme il est visible sur la figure 3.
  • Chacune des rampes 35a et 35b comporte une partie d'extrémité dont la profondeur H1 dans la direction radiale à partir de la surface externe du piston 27 est minimale et une partie d'extrémité dont la profondeur H2 sous la surface externe du piston 27 dans la direction radiale est maximale.
  • Les parties de jonction successives 60 du jeu de rampes 35a ou 35b sont constituées par des rainures dont le fond se trouve soit à la profondeur H1 soit à la profondeur H2.
  • Lorsque du fluide de forage circule dans l'alésage du piston 27, ce fluide de forage subit une perte de charge au niveau de l'étranglement 27a situé en vis-à-vis de l'aiguille tronconique 30. Lorsque le débit du fluide de forage augmente, la perte de charge de part et d'autre du piston 27 augmente jusqu'au moment où la force engendrée sur le piston par cette perte de charge est susceptible de déplacer le piston 27 dans la direction axiale, à l'encontre de la force de rappel du ressort 28. Le débit correspondant du fluide de forage est appelé débit d'actionnement.
  • Il est à remarquer que lorsque le piston 27 se déplace, sous l'effet de la force engendrée par la perte de charge dans le sens d'écoulement du fluide de forage (flèche 29), la perte de charge augmente de manière continue par coopération de l'étranglement 27a et de l'aiguille tronconique 30.
  • En fin de déplacement du piston 27, la partie d'extrémité du doigt d'actionnement 39 étant parvenue à une extrémité de la rampe, la perte de charge est maximale, si bien qu'une mesure de pression du fluide de forage réalisée en surface permet de contrôler la position du piston 27 et la réalisation d'un pas de déplacement des moyens de commande.
  • On diminue ou on annule le débit du fluide de forage de manière que le ressort 28 puisse ramener le piston dans sa position initiale, l'extrémité du doigt d'actionnement 39 venant se placer dans une rainure à profondeur constante pour revenir dans une position d'équilibre soit à la profondeur H₁ soit à la profondeur H₂.
  • Dans leur position d'équilibre, les extrémités des doigts d'actionnement 39 coopérant avec les rampes 35a et 35b sont donc susceptibles de se trouver à une profondeur H1 ou à une profondeur H2 sous la surface du piston 27, le ressort 43 assurant le rappel des doigts d'actionnement contre les rampes.
  • Lorsque le doigt 39 est à la profondeur H1, ce doigt exerce sur le doigt de verrouillage 38, par l'intermédiaire du ressort 42, une poussée vers l'extérieur qui se traduit par un déplacement du doigt 38 d'une longueur h, lorsque la tête 38a du doigt 38 vient en coïncidence avec une ouverture 41 du corps tubulaire 23.
  • Lorsque le doigt 39 est à la profondeur H2, ce doigt 39 assure le rappel du doigt de verrouillage 38 vers l'intérieur par l'intermédiaire du pion 44, sur une hauteur h, si bien que l'élément 21 est déverrouillé et que le train de tiges est susceptible de tourner à l'intérieur du corps tubulaire 23.
  • La première partie 23a du corps tubulaire 23 est montée rotative sur le premier élément 21 du train de tiges, par l'intermédiaire de paliers radiaux 46a, 46b et 47 et d'un palier axial 48, de manière que la première partie 23a du corps tubulaire 23 soit coaxiale au premier élément 21 dont l'axe est lui-même confondu avec l'axe de la partie du train de tiges comportant sa première extrémité débouchant en surface.
  • De plus, des joints d'étanchéité 49 et 51 sont intercalés entre l'élément 21 et le corps tubulaire 23, de manière à éviter le passage du fluide de forage entre ces deux pièces.
  • La seconde partie 23b du corps tubulaire 23 est montée sur la première partie 23a, par l'intermédiaire d'une portée d'assemblage tronconique 53 dont l'axe fait un certain angle (de l'ordre de quelques degrés) avec l'axe de l'élément 21.
  • La seconde partie 23b du corps tubulaire 23 engagée sur la première partie 23a par l'intermédiaire de la portée d'appui 53 peut être tournée autour de l'axe de cette portée d'appui et placée dans une orientation telle que l'axe de l'alésage de la seconde partie 23b du corps tubulaire 23 fasse un certain angle α avec l'axe de l'alésage de la première partie 23a du corps tubulaire 23 confondu avec l'axe de l'élément 21.
  • L'angle α est susceptible d'être réglé à une valeur comprise entre 0 et 2 fois l'angle de désalignement de la portée tronconique 53 par rapport à l'axe de l'alésage de la partie 23a du corps tubulaire.
  • Des vis de blocage 54 permettent de réaliser la fixation et le blocage en rotation de la seconde partie 23b du corps tubulaire 23 sur la première partie 23a.
  • Ce réglage de l'angle α est réalisé en surface, avant de commencer une opération de forage.
  • L'angle α est choisi en fonction de l'amplitude souhaitable des réglages en azimut de la direction de la trajectoire de forage.
  • Le corps tubulaire 23 constitue un élément tubulaire coudé comportant deux tronçons successifs dont les axes font un angle α.
  • La seconde partie 23b du corps tubulaire porte trois lames 55 en saillie radiale et dans des positions angulaires à 120° sur sa surface externe dont l'une (55a) se trouve du côté externe du coude du corps tubulaire 23.
  • Le second élément 22 du train de tiges de forage comporte une ouverture taraudée tronconique 22a permettant le montage de l'outil de forage ou d'une pièce d'adaptation de cet outil de forage à l'extrémité de l'élément 22 opposée à son extrémité montée articulée à l'extrémité de l'élément 21.
  • L'élément 22 comporte un alésage interne communiquant par des ouvertures 56 avec l'alésage intérieur du corps tubulaire 23.
  • L'élément 22 est monté rotatif à l'intérieur de l'alésage de la seconde partie 23b du corps tubulaire 23, par l'intermédiaire d'un palier radial 57 et d'un palier axial 58. Un joint d'étanchéité 59 est intercalé entre la surface intérieure de l'alésage du corps tubulaire et la surface extérieure du second élément du train de tiges. L'axe du second élément 22 du train de tiges disposé de manière coaxiale dans le second tronçon du corps tubulaire 23 fait donc un angle α avec l'axe du premier élément 21 du train de tiges disposé de manière coaxiale par rapport au premier tronçon 23a du corps tubulaire coudé 23.
  • On va maintenant décrire le fonctionnement du dispositif de forage suivant l'invention dans un premier mode de fonctionnement sans réglage en azimut de la trajectoire de forage et dans un second mode de fonctionnement avec réglage en azimut de la trajectoire de forage et le passage d'un mode de fonctionnement à l'autre.
  • Le dispositif de forage suivant l'invention présente la structure générale représentée sur la figure 1 et des moyens de commande du dispositif de réglage en azimut tels que représentés sur les figures 2A et 2B.
  • Comme indiqué plus haut, le corps tubulaire 23 est réglé de manière que l'angle α de désalignement de ses deux tronçons soit ajusté en fonction des réglages en azimut souhaitables.
  • Dans un premier mode de fonctionnement, le dispositif de forage peut fonctionner sans réglage en azimut, le train de tiges et le corps tubulaire étant solidarisés en rotation par des dispositifs de jonction tels que les dispositifs 36 représentés sur la figure 2A.
  • Le train de tiges, l'outil de forage et le corps tubulaire 23 tournent ensemble autour de l'axe de la partie supérieure du train de tiges confondu avec l'axe du premier élément du train de tiges engagé dans le premier tronçon du corps tubulaire. Un effort axial est transmis par le train de tiges, de manière à effectuer le forage suivant la direction de l'axe de la première partie du train de tiges.
  • La présence du corps tubulaire coudé 23 fonctionnant comme un raccord rigide se traduit, pendant le fonctionnement suivant le premier mode, par un simple élargissement du trou de forage de faible amplitude, l'angle α ayant une valeur faible.
  • Comme il est visible sur la figure 8 où l'on a représenté de manière très schématique le train de tiges 2 engagé dans un corps tubulaire comportant une lame d'appui 11, un repère Z permet de déterminer par télémesure la position angulaire du train de tiges et de la lame 11 du corps tubulaire, autour de l'axe du train de tiges et par rapport à la direction du nord magnétique (NM).
  • La position en azimut du repère Z (définie par l'angle Az) peut être contrôlée depuis la surface, par télémesure, de manière à déterminer les réglages ou corrections à effectuer sur la direction en azimut de la trajectoire de forage.
  • L'angle A entre la direction du repère Z et la direction radiale Y de la lame 11 est fixé à une valeur déterminée, dans le premier mode de fonctionnement, l'engagement des doigts de verrouillage dans des ouvertures déterminées du corps tubulaire définissant un indexage angulaire du corps tubulaire par rapport au train de tiges.
  • Le réglage en azimut de la trajectoire de forage (deuxième mode de fonctionnement du dispositif) est obtenu, comme indiqué plus haut, par réglage de la position angulaire de la lame d'appui 11 dans le trou de forage et par déverrouillage du train de tiges de forage, de manière à permettre sa mise en rotation à l'intérieur du corps tubulaire, après mise en appui de la lame 11 contre la paroi du trou de forage, dans une position déterminée, sous l'effet des forces latérales mises en jeu et résultant de la force axiale sur le train de tiges.
  • Le passage du premier mode de fonctionnement sans réglage d'azimut au deuxième mode de fonctionnement avec réglage d'azimut est donc réalisé par libération des moyens de verrouillage du corps tubulaire sur le train de tiges et par orientation du corps tubulaire de manière que la lame d'appui soit dans la position voulue, comme il sera décrit ci-dessous.
  • Le dispositif de forage étant en fonctionnement suivant le premier mode sans réglage d'azimut, pour passer au second mode de fonctionnement avec réglage d'azimut, on relâche, dans un premier temps, l'effort axial sur l'outil exercé par l'intermédiaire du train de tiges, sans décoller l'outil du fond du trou de forage et on arrête la rotation du train de tiges assurant le forage.
  • On règle la position angulaire de la lame 11 (ou 55a) par rapport au nord magnétique, de manière à effectuer le réglage d'azimut dans la direction voulue, en tournant le train de tiges depuis la surface d'un angle déterminé. Cette rotation du train de tiges entraîne la même rotation du corps tubulaire solidaire du premier élément du train de tiges et la mise en position angulaire de la lame d'appui.
  • On applique à nouveau l'effort axial sur le train de tiges de manière à engendrer une force de réaction FR₁ (voir figure 1) au niveau de la lame d'appui, ce qui fixe la position angulaire de la lame d'appui et du corps tubulaire 10.
  • Dans le cas d'un dispositif de commande tel que représenté sur les figures 2A et 2B utilisant le débit du fluide de forage, on augmente le débit de manière à le faire passer à la valeur d'activation des moyens de commande.
  • Sur la figure 9, on a représenté, dans la partie inférieure de la figure, les variations du débit au cours du temps. Le débit Q passe de la valeur pendant le forage QF à la valeur d'activation des moyens de commande QACT avec un palier à une valeur intermédiaire.
  • Lorsque le débit atteint la valeur QACT, le piston 27 se déplace dans la direction de circulation du fluide de manière que la perte de charge augmente à la sortie du piston 27, par coopération de l'étranglement 27a et de l'aiguille 30 de forme tronconique.
  • Comme il est visible sur la figure 9, pendant la phase de déplacement du piston, le débit est maintenu à la valeur QACT (partie inférieure de la figure 9) mais la perte de charge δP augmente depuis la valeur 0 jusqu'à la valeur maximale δPACT qui est atteinte lorsque le piston a terminé son déplacement dans le sens de circulation du fluide (partie supérieure de la figure 9). La courbe de variation de la pression du fluide de forage en fonction du temps présente un maximum au moment où la partie de contact des doigts d'actionnement parvient à l'extrémité de la rampe ayant le niveau le plus bas (niveau H2 figure 3).
  • L'enregistrement de la pression permet de suivre les déplacement du piston et la position des doigts d'actionnement depuis la surface.
  • Lorsque les doigts d'actionnement sont en contact avec la rampe à une profondeur H2, les têtes 38a des doigts de verrouillage sont rappelées dans la position h = 0 par les pions 44 des doigts d'actionnement. Le train de tiges est alors libre en rotation par rapport au corps tubulaire.
  • On interrompt la circulation du fluide de forage dans le train de tiges, de sorte que le piston 27 est rappelé par le ressort 28, dans le sens inverse de la circulation du fluide de forage. Les extrémités des doigts d'actionnement se déplacent en contact avec une rainure 60 à profondeur constante H2 joignant deux rampes successives. Les doigts d'actionnement passent de la rampe à la rainure à profondeur constante par une rotation du piston 27 autour de son axe, lorsque les doigts d'actionnement viennent en contact à l'extrémité des rampes avec des parties de jonction courbes entre les rampes 35 et les rainures 60 à profondeur constante.
  • Le piston est alors dans sa position d'équilibre et les doigts 38 sont déverrouillés.
  • On rétablit le débit du fluide de forage à la valeur QF, ce qui n'entraîne aucun déplacement du piston 27, le débit QF étant inférieur au débit d'actionnement QACT.
  • La pression du fluide de forage après être passée de sa valeur maximale à la valeur nulle remonte à une valeur intermédiaire correspondant à la valeur sensiblement constante de la pression pendant le forage.
  • On remet le train de tiges en rotation afin de redémarrer le forage.
  • Le train de tiges est libre en rotation dans le corps tubulaire 23, si bien que le premier élément 21 du train de tiges entraîne le second élément 22 en rotation, ce second élément solidaire de l'outil de forage ayant un axe faisant un angle α avec le premier élément disposé dans le premier tronçon du corps tubulaire 23.
  • On effectue ainsi une correction d'azimut de la direction de la trajectoire de forage, cette correction d'azimut étant réalisée dans la direction voulue grâce à la position angulaire de la lame 55 en appui sur le bord du trou et ayant une amplitude déterminée par la valeur de l'angle α.
  • Le train de tiges disposé à l'intérieur du corps tubulaire coudé présente un désalignement identique au désalignement des deux tronçons du corps tubulaire ; pendant le forage, l'avancement de l'outil de forage entraîne un avancement du train de tiges et du corps tubulaire solidaire en translation de ce train de tiges, la lame d'appui 55a étant entraînée en contact frottant avec la paroi du trou de forage.
  • Pour passer du second mode de fonctionnement au premier, c'est-à-dire pour passer d'un mode de fonctionnement avec réglage d'azimut de la trajectoire de forage à un mode de fonctionnement sans réglage d'azimut, on libère l'effort axial exercé par l'intermédiaire du train de tiges sur l'outil de forage et on décolle l'outil du fond du trou.
  • On augmente le débit du fluide de forage jusqu'à la valeur d'activation QACT, de manière à faire passer l'extrémité des doigts d'actionnement en contact avec les rampes à profondeur variable, du niveau H2 au niveau H1 où les doigts de verrouillage 38 sont repoussés vers l'extérieur par les ressorts de rappel 42 et 43.
  • On annule le débit du fluide de forage, de manière à replacer le piston dans sa position d'équilibre.
  • On fait tourner le train de tiges à l'intérieur du corps tubulaire pour réaliser l'enclenchement des doigts de verrouillage 38, les têtes 38a des doigts 38 repoussées par les ressorts 43 venant s'engager dans les ouvertures 41 correspondantes lorsque les têtes et les ouvertures sont venues en coïncidence.
  • On peut alors reprendre le forage, la solidarisation en rotation des éléments 21 et 22 de la tige de forage et du corps tubulaire 23 annulant l'effet du désalignement α introduit par le corps tubulaire coudé 23.
  • Sur les figures 7, 7A et 7B, on a représenté un second mode de réalisation des moyens de réglage en azimut de la trajectoire d'un outil de forage fonctionnant suivant le principe général exposé plus haut en regard de la figure 1 et en utilisant des moyens de commande à distance analogues aux moyens décrits en regard des figures 2A et 2B. De même, la mise en oeuvre de ces moyens pour passer d'un mode de fonctionnement sans réglage d'azimut à un mode de fonctionnement avec réglage d'azimut ou inversement est sensiblement analogue au processus qui vient d'être décrit relatif au mode de réalisation des figures 2A et 2B.
  • Les éléments analogues sur les figures 2A et 2B d'une part et 7 d'autre part portent les mêmes repères avec cependant l'exposant (prime) pour les éléments représentés sur la figure 7. Ces éléments constituent le dispositif de jonction entre le train de tiges et le corps tubulaire et ses moyens de commande qui sont réalisés de manière analogue dans le cas du premier mode et dans le cas du second mode de réalisation.
  • Dans le cas du second mode de réalisation représenté sur la figure 7, le corps tubulaire 70 monté rotatif sur le train de tiges et solidaire en translation de ce train de tiges est réalisé sous la forme d'un stabilisateur à lame d'appui du type utilisé pour effectuer des corrections de trajectoires sur des trains de tiges, par déformation du train de tiges sous l'effet des forces latérales exercées par le stabilisateur sur le bord du trou de forage.
  • Cependant, à la différence des stabilisateurs connus et utilisés pour effectuer des corrections de trajectoire, le corps tubulaire 70 est monté rotatif sur le train de tiges et le train de tiges peut être solidaire en rotation du corps tubulaire 70 ou, au contraire, rendu libre en rotation dans le corps tubulaire 70, grâce à des moyens de commande à distance utilisant le fluide de forage du type de ceux qui ont été décrits plus haut.
  • Le corps tubulaire 70 est monté rotatif sur une pièce intermédiaire 72 du train de tiges reliée à l'une de ses extrémités à un premier raccord vissé 73 permettant de fixer la pièce 72 à la partie du train de tiges comportant sa première extrémité débouchant en surface et, à son autre extrémité, à un second raccord vissé 74 permettant de relier la pièce intermédiaire 72 à la partie du train de tiges portant l'outil de forage.
  • Le corps tubulaire 70 est monté rotatif sur la pièce intermédiaire 72 grâce à des roulements à rouleaux 76a et 76b et maintenu solidaire en translation du train de tiges entre un épaulement de la pièce 72 et un épaulement du second raccord 74.
  • Des butées à billes et des joints d'étanchéité 77a et 77b sont intercalés entre le corps 70 et les épaulements du train de tiges.
  • Comme il est visible sur la figure 7A, le corps tubulaire 70 comporte une lame d'appui 71 et deux lames de guidage 78a et 78b en saillie radiale vers l'extérieur. Les bords externes des lames de guidage 78a et 78b se trouvent sur un contour circulaire 79 rentré sur l'axe du train de tiges dont le diamètre correspond au diamètre D du trou de forage. Le bord externe de la lame d'appui 71 est saillant par rapport au contour 79 d'une longueur radiale e.
  • Sur la figure 7B, on a représenté une variante de réalisation 70′ du corps tubulaire 70 qui comporte deux lames de guidage 78′a et 78′b et une lame d'appui 71′ dont les bords externes se trouvent sur un cercle 79′ dont le rayon a une longueur D/2 - h légèrement inférieure au rayon du trou de forage. Le cercle 79′ est centré en un point situé à une distance k de l'axe du train de tiges et de la pièce intermédiaire 72. Dans sa position représentée sur la figure 7B, la lame d'appui 71′ est dans sa position d'excentration maximale.
  • Le moyen de réglage en azimut représenté sur les figures 7, 7A et 7B peut être commandé d'une manière analogue au moyen de réglage représenté sur les figures 2A, 2B et 3 à 6, grâce à des dispositifs de jonction manoeuvrables 36′ comportant des doigts de verrouillage 38′ actionnés par les rampes 35′a et 35′b d'un piston 27′ et par des ressorts de rappel.
  • Ces moyens de commande ont été décrits dans le cas du premier mode de réalisation.
  • Le piston 27′ est déplacé dans un sens par la force créée par la perte de charge au niveau de l'ouverture 27′a coopérant avec l'aiguille tronconique 30′ et dans l'autre sens par le ressort de rappel 28′.
  • On peut ainsi, comme précédemment décrit, commander à distance le verrouillage ou le déverrouillage en rotation du train de tiges et de la pièce tubulaire 70, au niveau de la pièce intermédiaire 72. Lorsque les pièces 70 et 72 sont solidarisées en rotation, l'ensemble constitué par le train de tiges, la pièce tubulaire 70 et l'outil de forage tourne autour de l'axe du train de tiges. Le forage est réalisé sans réglage d'azimut, la présence de la lame d'appui excentrée se traduisant par un léger élargissement du trou de forage.
  • Pour effectuer un réglage d'azimut, on réalise la mise en appui de la lame 71 (ou 71′) sur le bord du trou de forage dans une position angulaire déterminée, comme décrit précédemment.
  • On déverrouille ensuite les doigts 38′ par commande à distance, de manière à permettre la rotation du train de tiges à l'intérieur de la pièce tubulaire 70 ou 70′.
  • Le réglage en azimut est réalisé par désalignement angulaire de la partie inférieure du train de tiges portant l'outil telle que la partie 15 représentée sur la figure 1, par rapport à la partie supérieure 16 comprenant la première extrémité du train de tiges, sous l'effet des forces radiales mises en jeu pendant le forage et s'exerçant sur la partie 15 du train de tiges. Le réglage en azimut dépend donc de la position angulaire de la lame d'appui et de son excentration et des caractéristiques géométriques et mécaniques de la partie 15 du train de tiges.
  • Le dispositif suivant l'invention permet donc d'effectuer un réglage en azimut commandé à distance de la trajectoire d'un outil de forage, dans le cas du forage rotary.
  • Dans le cas où le dispositif de forage fonctionne avec réglage en azimut de la trajectoire de l'outil de forage, on peut revenir par commande à distance à un mode de fonctionnement sans réglage en azimut de la trajectoire.
  • Le passage d'un mode de fonctionnement à l'autre est effectué de manière rapide et sûre, le contrôle des moyens de commande pouvant être effectué depuis la surface, par exemple par mesure de pression du fluide de forage.
  • L'invention permet donc de régler en azimut la trajectoire d'un outil de forage, sans utiliser de moteur de fond.
  • L'invention ne se limite pas au mode de réalisation qui a été décrit.
  • C'est ainsi que les moyens de commande pour réaliser le verrouillage ou le déverrouillage du corps tubulaire sur le train de tiges peuvent être réalisés sous une forme différente de celle qui a été décrite. Ces moyens de commande utilisant la pression ou le débit du fluide de forage sont bien connus dans la technique du forage directionnel à grande profondeur.
  • Les moyens de jonction entre la tige de forage et le corps tubulaire peuvent être réalisés sous une forme différente de celle qui a été décrite utilisant des doigts placés dans des directions radiales.
  • Le corps tubulaire peut être réalisé sous une forme différente de celles qui ont été décrites, ce corps tubulaire pouvant être réalisé en une seule ou plusieurs pièces, avec ou sans possibilité de réglage de l'angle de désalignement ou de l'excentration de la lame d'appui.
  • Enfin, l'invention s'applique de manière générale à tout dispositif de forage rotary.

Claims (12)

1.- Dispositif de forage rotary comportant des moyens de réglage en azimut commandés à distance de la trajectoire de l'outil de forage et constitué par un train de tiges (2) ayant une première extrémité reliée à des moyens (5) de mise en rotation du train de tiges autour de son axe et d'application d'une force de direction axiale sur le train de tiges et à des moyens d'alimentation (6) en fluide de forage du train de tiges assurant une circulation axiale du fluide jusqu'à l'outil de forage (3) relié à une seconde extrémité du train de tiges, caractérisé par le fait que les moyens de réglage en azimut de la trajectoire de l'outil de forage (3) sont constitués par :
- un corps tubulaire (10, 23, 70, 70′) comportant au moins une lame d'appui (11, 55a, 71, 71′) en saillie radiale vers l'extérieur monté rotatif sur le train de tiges (2) autour de son axe confondu avec l'axe du train de tiges (2) et solidaire en translation du train de tiges,
- et un moyen de jonction (36, 36′) entre le train de tiges (2) et le corps tubulaire (10, 23, 70) porté par le train de tiges (2), mobile entre une position active et une position inactive et manoeuvrable à distance grâce à des moyens de commande (27, 30, 27′, 30′) actionnés par le fluide de forage en circulation dans le train de tiges (2), permettant, dans sa position active, l'entraînement en rotation du corps tubulaire (10, 23, 70) par le train de tiges (2) et, dans sa position inactive, la rotation du train de tiges (2) à l'intérieur du corps tubulaire, le réglage en azimut de la trajectoire de l'outil de forage (3) étant alors assuré par mise en appui de la lame ( 11, 55a, 71, 71′) du corps tubulaire sur la paroi du trou de forage (4) dans une position déterminée et par désalignement angulaire, l'une par rapport à l'autre, de deux parties (15, 16) du train de tiges (2) situées respectivement, entre la première extrémité du train de tiges (2) et le corps tubulaire (10, 23, 70) et, entre le corps tubulaire (10, 23, 70) et la seconde extrémité du train de tiges (2).
2.- Dispositif de forage suivant la revendication 1, caractérisé par le fait que le train de tiges (2) comporte deux éléments (21, 22) disposés l'un à la suite de l'autre, reliés entre eux de manière articulée à l'une de leurs extrémités et solidaires à leurs autres extrémités, pour l'un, ou premier élément (21), d'une partie du train de tiges comportant la première extrémité et, pour l'autre, ou second élément (22), de l'outil de forage (3), et que le corps tubulaire (23) comporte deux tronçons successifs (23a, 23b) dont les axes font un angle α entre eux,
le premier élément (21) du train de tiges étant monté rotatif autour de son axe dans un premier tronçon (23a) du corps tubulaire (23) et le second élément (22) étant monté rotatif autour de son axe dans le second tronçon (23b) du corps tubulaire coudé (23), le réglage d'azimut de la trajectoire de l'outil de forage (3) étant assuré par immobilisation en rotation du corps tubulaire coudé (23) dont la lame (55a) est mise en appui sur la paroi du trou de forage dans une position déterminée et par le désalignement angulaire des deux éléments (21, 22) du train de tiges, à l'intérieur du corps tubulaire coudé (23).
3.- Dispositif de forage suivant la revendication 2, caractérisé par le fait que le corps tubulaire (23) comporte deux parties (23a, 23b) de forme tubulaire, l'une de ces parties (23a) ayant une portée d'appui (53) dont l'axe de symétrie de révolution est disposé angulairement par rapport à l'axe de la partie (23a), l'élément (23b) comportant une portée d'appui correspondante et pouvant être tourné autour de l'axe de la portée d'appui, de manière à régler l'angle de désalignement α entre les parties tubulaires (23a, 23b) constituant les deux tronçons successifs du corps tubulaire (23), à une valeur déterminée.
4.- Dispositif de forage suivant la revendication 1, caractérisé par le fait que le corps tubulaire (70, 70′) est réalisé sous la forme d'un stabilisateur ayant une lame d'appui (71, 71′) excentrée par rapport à l'axe du train de tiges (2) afin de produire le désalignement angulaire des deux parties (15, 16) du train de tiges.
5.- Dispositif de forage suivant l'une quelconque des revendications 1 à 4, caractérisé par le fait que le moyen de jonction (36, 36′) entre le train de tiges (2) et le corps tubulaire coudé (23, 70, 70′) est constitué par au moins un doigt de verrouillage (38, 38′) disposé dans une direction radiale rappelé vers l'extérieur par un ressort (42), de manière à venir s'engager dans une ouverture (41) ménagée dans la surface intérieure du corps tubulaire (23, 70, 70′).
6.- Dispositif de forage suivant la revendication 5, caractérisé par le fait que les moyens de commande du moyen de jonction (36, 36′) sont constitués par un doigt (39) d'actionnement du doigt de verrouillage (38, 38′) assurant l'actionnement du doigt (38, 38′) par l'intermédiaire du ressort (42) intercalé entre le doigt (39) et le doigt (38, 38′) et d'un pion (44) engagé dans une ouverture (38b) du doigt (38), un ressort (43) assurant le rappel vers l'intérieur dans la direction radiale du doigt d'actionnement (39), de manière à mettre en contact une extrémité du doigt (39) avec une surface d'actionnement (35a, 35b) d'un moyen de commande (27, 27′) des doigts d'actionnement (39), pour leur déplacement dans la direction radiale, par déplacement axial du moyen de commande (27, 27′) entraîné par le fluide de forage en circulation dans le train de tiges ou par un moyen de rappel (28, 28′).
7.- Dispositif de forage suivant la revendication 6, caractérisé par le fait que le moyen de commande (27, 27′) est constitué par un piston tubulaire monté glissant et rotatif dans l'alésage du train de tiges comportant à l'une de ses extrémités une partie profilée (27a, 27′a) destinée à coopérer avec une partie profilée de forme correspondante (30, 30′) afin d'augmenter la perte de charge sur la circulation du fluide de forage, de part et d'autre du piston (27, 27′) lors des déplacements du piston dans le sens de circulation du fluide de forage, le piston comportant, sur sa surface externe, des rampes d'actionnement (35a, 35b, 35′a, 35′b) inclinées par rapport à l'axe commun au piston (27, 27′) et au train de tiges et reliées entre elles par des rainures à profondeur constante dont le fond est parallèle à l'axe du piston (27, 27′) pour constituer une piste continue autour du piston (27, 27′) sur laquelle l'extrémité du doigt (39) est mise en appui par le ressort (43) intercalé entre des surfaces d'appui du train de tiges et du doigt d'actionnement (39).
8.- Dispositif de forage suivant l'une quelconque des revendications 2 et 3, caractérisé par le fait que le premier élément (21) et le second élément (22) du train de tiges comportent, dans leur partie d'extrémité assurant leur jonction articulée, des ouvertures (33, 56) faisant communiquer leur alésage central avec le volume intérieur du corps tubulaire (23), de manière à réaliser une circulation de fluide de forage à la périphérie des parties d'extrémité assurant la jonction articulée des éléments (21, 22) du train de tiges, pour obtenir une circulation continue de fluide de forage jusqu'à l'outil de forage (3).
9.- Procédé de forage rotary avec réglage en azimut de la trajectoire de l'outil de forage, en utilisant un dispositif suivant l'une des revendications 1 à 8, caractérisé par le fait, qu'entre deux phases du forage, on actionne le moyen de jonction (36, 36′) entre le train de tiges et le corps tubulaire (10, 23, 70, 70′), par l'intermédiaire du fluide de forage, soit dans le sens faisant passer le moyen de jonction (36, 36′) de sa position active à sa position inactive, le dispositif de forage passant alors d'un mode de fonctionnement sans réglage en azimut de la direction de la trajectoire de forage à un mode de fonctionnement avec réglage d'azimut, soit dans le sens faisant passer le moyen de jonction (36, 36′) de sa position inactive à sa position active, le dispositif de forage passant alors d'un mode de fonctionnement avec réglage en azimut de la trajectoire de forage, à un mode de fonctionnement sans réglage en azimut de la trajectoire de forage.
10.- Procédé suivant la revendication 9, caractérisé par le fait que pour le passage d'un mode de fonctionnement du dispositif de forage sans réglage en azimut de la trajectoire de forage à un mode de fonctionnement avec réglage en azimut, on annule la force axiale sur l'outil de forage (3) et on arrête la rotation du train de tiges,
- on règle la position angulaire de la lame d'appui (11, 55a, 71, 71′) du corps tubulaire (10, 23, 70, 70′) en tournant le train de tiges depuis sa première extrémité,
- on applique à nouveau la force axiale sur le train de tiges,
- on actionne le moyen de jonction (36, 36′) pour le faire passer de sa position active à sa position inactive, par l'intermédiaire du fluide de forage,
- on remet en rotation le train de tiges pour reprendre le forage, le corps (10, 23, 70, 70′) en appui par sa lame (11, 55a, 71, 71′) sur le trou de forage restant immobile en rotation et le train de tiges tournant à l'intérieur du corps tubulaire (10, 23, 70, 70′) réalisant le réglage en azimut de la trajectoire de forage.
11.- Procédé de forage suivant la revendication 9, caractérisé par le fait que pour réaliser le passage du mode de fonctionnement avec réglage en azimut de la trajectoire de forage au mode de fonctionnement sans réglage de la trajectoire en azimut,
- on annule la force axiale sur le train de tiges,
- on commande le moyen de jonction (36, 36′) entre le train de tiges et le corps tubulaire (10, 23, 70, 70′), de manière à le faire passer de sa position inactive à sa position active, par actionnement par le fluide de forage en circulation et par rotation commandée depuis sa première extrémité, du train de tiges autour de son axe, à l'intérieur du corps tubulaire (10, 23, 70, 70′),
- et on remet en rotation continue le train de tiges, l'ensemble constitué par le train de tiges (2) et par le corps tubulaire (10, 23, 70, 70′) étant solidarisé en rotation.
12.- Procédé suivant l'une quelconque des revendications 9 à 11, caractérisé par le fait que la commande du moyen de jonction (36, 36′) pour son déplacement entre ses positions active et inactive est assurée par augmentation du débit du fluide de forage au-dessus d'une valeur d'activation QACT, le débit du fluide de forage étant ensuite annulé, le moyen de jonction (36, 36′) étant dans sa nouvelle position.
EP91400524A 1990-03-07 1991-02-26 Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif Expired - Lifetime EP0456526B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9002876 1990-03-07
FR9002876A FR2659383B1 (fr) 1990-03-07 1990-03-07 Dispositif de forage rotary comportant des moyens de reglage en azimut de la trajectoire de l'outil de forage et procede de forage correspondant.

Publications (2)

Publication Number Publication Date
EP0456526A1 true EP0456526A1 (fr) 1991-11-13
EP0456526B1 EP0456526B1 (fr) 1994-05-18

Family

ID=9394470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400524A Expired - Lifetime EP0456526B1 (fr) 1990-03-07 1991-02-26 Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif

Country Status (5)

Country Link
US (1) US5131479A (fr)
EP (1) EP0456526B1 (fr)
CA (1) CA2037409C (fr)
FR (1) FR2659383B1 (fr)
NO (1) NO303350B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023652A1 (fr) * 1992-05-21 1993-11-25 Baroid Technology, Inc. Appareil d'orientation pour trepan

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059910C (fr) * 1992-01-23 2001-10-30 Paul Lee Mecanisme ajustable pour forages
US5253721A (en) * 1992-05-08 1993-10-19 Straightline Manufacturing, Inc. Directional boring head
US5547031A (en) * 1995-02-24 1996-08-20 Amoco Corporation Orientation control mechanism
US6736226B2 (en) * 1998-02-03 2004-05-18 Cutting Edge Technologies, Llc Method and apparatus for boring through a solid material
US6092610A (en) * 1998-02-05 2000-07-25 Schlumberger Technology Corporation Actively controlled rotary steerable system and method for drilling wells
US6158529A (en) * 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
US6109372A (en) * 1999-03-15 2000-08-29 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing hydraulic servo-loop
WO2001034935A1 (fr) 1999-11-10 2001-05-17 Schlumberger Holdings Limited Procede de commande pour systeme de forage orientable
US9482055B2 (en) * 2000-10-11 2016-11-01 Smith International, Inc. Methods for modeling, designing, and optimizing the performance of drilling tool assemblies
US7693695B2 (en) 2000-03-13 2010-04-06 Smith International, Inc. Methods for modeling, displaying, designing, and optimizing fixed cutter bits
US7251590B2 (en) * 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
US8589124B2 (en) * 2000-08-09 2013-11-19 Smith International, Inc. Methods for modeling wear of fixed cutter bits and for designing and optimizing fixed cutter bits
FR2813340B1 (fr) * 2000-08-29 2002-12-06 Geoservices Dispositif pour deplacer radialement deux organes l'un par rapport a l'autre et dispositif de forage en comportant application
GB0101633D0 (en) * 2001-01-23 2001-03-07 Andergauge Ltd Drilling apparatus
US6550548B2 (en) 2001-02-16 2003-04-22 Kyle Lamar Taylor Rotary steering tool system for directional drilling
US7147065B2 (en) * 2003-01-14 2006-12-12 Tt Technologies, Inc. Connection design and sonde housing assembly for a directional drill
US20050098355A1 (en) * 2003-03-03 2005-05-12 Broom Gilbert R. Method and apparatus for boring through a solid material
US20040195008A1 (en) * 2003-03-03 2004-10-07 Broom Gilbert R. Method and apparatus for tapping a blast furnace
GB2419014B (en) * 2003-07-09 2008-10-15 Smith International Methods of manufacturing fixed cutter drill bits
US7441612B2 (en) * 2005-01-24 2008-10-28 Smith International, Inc. PDC drill bit using optimized side rake angle
GB2498479B (en) * 2008-12-18 2013-11-13 Smith International Method of designing a bottom hole assembly and a bottom hole assembly
US9500031B2 (en) 2012-11-12 2016-11-22 Aps Technology, Inc. Rotary steerable drilling apparatus
WO2015117151A2 (fr) 2014-02-03 2015-08-06 Aps Technology, Inc. Systeme, appareil et procede pour guider un trepan en fonction des forces appliquees au trepan
US10113363B2 (en) 2014-11-07 2018-10-30 Aps Technology, Inc. System and related methods for control of a directional drilling operation
US10233700B2 (en) 2015-03-31 2019-03-19 Aps Technology, Inc. Downhole drilling motor with an adjustment assembly
US11255136B2 (en) * 2016-12-28 2022-02-22 Xr Lateral Llc Bottom hole assemblies for directional drilling
US10890030B2 (en) 2016-12-28 2021-01-12 Xr Lateral Llc Method, apparatus by method, and apparatus of guidance positioning members for directional drilling
CN107313739B (zh) * 2017-09-06 2020-07-17 成都百胜野牛科技有限公司 流体分隔装置、井道结构及石油或天然气的生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819040A (en) * 1956-07-13 1958-01-07 Eastman Oil Well Survey Co Deflecting tool
US3156310A (en) * 1959-12-07 1964-11-10 Eastman Oil Well Survey Co Stabilized knuckle joint
FR1486421A (fr) * 1966-05-16 1967-06-30 Drilco Oil Tools Appareil pour le forage du sol
US4076084A (en) * 1973-07-16 1978-02-28 Amoco Production Company Oriented drilling tool
US4476943A (en) * 1981-01-23 1984-10-16 Coal Industry (Patents) Limited Drilling equipment with adaptor for steering long boreholes
WO1986000111A1 (fr) * 1984-06-12 1986-01-03 Universal Downhole Controls, Ltd. Outil de forage directionnel commande au fond du puits
FR2622920A1 (fr) * 1987-11-09 1989-05-12 Smf Int Dispositif de reglage de la direction d'avancement d'un outil de forage et procede de reglage correspondan
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
EP0377378A1 (fr) * 1988-12-30 1990-07-11 Institut Français du Pétrole Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637032A (en) * 1970-01-22 1972-01-25 John D Jeter Directional drilling apparatus
US4813274A (en) * 1987-05-27 1989-03-21 Teleco Oilfield Services Inc. Method for measurement of azimuth of a borehole while drilling
US4804051A (en) * 1987-09-25 1989-02-14 Nl Industries, Inc. Method of predicting and controlling the drilling trajectory in directional wells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819040A (en) * 1956-07-13 1958-01-07 Eastman Oil Well Survey Co Deflecting tool
US3156310A (en) * 1959-12-07 1964-11-10 Eastman Oil Well Survey Co Stabilized knuckle joint
FR1486421A (fr) * 1966-05-16 1967-06-30 Drilco Oil Tools Appareil pour le forage du sol
US4076084A (en) * 1973-07-16 1978-02-28 Amoco Production Company Oriented drilling tool
US4476943A (en) * 1981-01-23 1984-10-16 Coal Industry (Patents) Limited Drilling equipment with adaptor for steering long boreholes
WO1986000111A1 (fr) * 1984-06-12 1986-01-03 Universal Downhole Controls, Ltd. Outil de forage directionnel commande au fond du puits
FR2622920A1 (fr) * 1987-11-09 1989-05-12 Smf Int Dispositif de reglage de la direction d'avancement d'un outil de forage et procede de reglage correspondan
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
EP0377378A1 (fr) * 1988-12-30 1990-07-11 Institut Français du Pétrole Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023652A1 (fr) * 1992-05-21 1993-11-25 Baroid Technology, Inc. Appareil d'orientation pour trepan
GB2281332A (en) * 1992-05-21 1995-03-01 Baroid Technology Inc Drill Bit Steering
GB2281332B (en) * 1992-05-21 1995-09-13 Baroid Technology Inc Drill Bit Steering
AU666373B2 (en) * 1992-05-21 1996-02-08 Halliburton Energy Services, Inc. Drill bit steering

Also Published As

Publication number Publication date
US5131479A (en) 1992-07-21
NO910856L (no) 1991-09-09
NO303350B1 (no) 1998-06-29
FR2659383B1 (fr) 1992-07-10
FR2659383A1 (fr) 1991-09-13
NO910856D0 (no) 1991-03-05
EP0456526B1 (fr) 1994-05-18
CA2037409C (fr) 2001-07-03
CA2037409A1 (fr) 1991-09-08

Similar Documents

Publication Publication Date Title
EP0456526B1 (fr) Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif
EP0190529B1 (fr) Dispositif d'actionnement à distance à commande de débit, en particulier pour l'actionnement d'un stabilisateur d'un train de tiges de forage
CA2276851C (fr) Dispositif et methode de controle de la trajectoire d'un forage
CA1128925A (fr) Raccord coude a angle variable pour forages diriges
EP0388315B1 (fr) Procédé et dispositif de diagraphie utilisant un capteur effectuant un balayage circonférentiel de la paroi d'un puits de forage, notamment afin d'étalonner ce capteur
EP0212316B1 (fr) Colonne de forage pour forage à déviations, procédé d'utilisation de cette colonne et dispositif déviateur utilisé dans cette colonne
EP1876472B1 (fr) Poulis d'assistance au reploiement/déploiement d'un système hétérogène se comportant différemment selon deux états successifs et dispositif correspondant
FR2888859A1 (fr) Installation de realisation de paroi enterree par melange du sol avec un liant et procede de correction de trajectoire de la tete de forage d'une telle installation
FR2761660A1 (fr) Dispositif de commande individuelle des pales de rotor de voilures tournantes d'aeronefs avec plateaux cycliques multiples
EP0388296B1 (fr) Dispositif d'intervention, notamment pour le contrôle, l'inspection et la maintenance des échangeurs de chaleur
FR2538777A1 (fr) Atterrisseur pour aeronef
EP0298828B1 (fr) Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne
EP2304190B1 (fr) Systeme simplifie de commande de calage de pale d'une helice d'un turbomoteur pour aeronef
CH711021A1 (fr) Propulseur pour bateau.
EP2906822B1 (fr) Éolienne à axe vertical
CA1177055A (fr) Raccord coude a angle variable pour forages diriges
FR2579662A1 (fr) Dispositif de forage a trajectoire controlee
EP0546135B1 (fr) Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary
FR2458719A1 (fr) Dispositif de transmission pour relier un element effectuant une rotation et une giration excentrique a un autre element tournant sur son axe
FR2607107A1 (fr) Rotor d'helicoptere
EP2206876B1 (fr) Tête de forage pour machine de forage
FR2622920A1 (fr) Dispositif de reglage de la direction d'avancement d'un outil de forage et procede de reglage correspondan
EP2918494A1 (fr) Atterrisseur d'aéronef
FR2519686A2 (fr) Raccord coude a angle variable pour forages diriges
EP0600797A1 (fr) Dispositif de verrouillage des pales du rotor d'un hélicoptère à l'encontre d'un battement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17P Request for examination filed

Effective date: 19911011

17Q First examination report despatched

Effective date: 19921208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020219

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030901

REG Reference to a national code

Ref country code: IT

Ref legal event code: SPCF

Ref document number: 501994900368950

Country of ref document: IT

Spc suppl protection certif: 132004901189862

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050226

REG Reference to a national code

Ref country code: IT

Ref legal event code: SPCG

Ref document number: 501994900368950

Country of ref document: IT

Spc suppl protection certif: 132004901189862

Extension date: 20150807