EP0298828B1 - Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne - Google Patents

Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne Download PDF

Info

Publication number
EP0298828B1
EP0298828B1 EP88401619A EP88401619A EP0298828B1 EP 0298828 B1 EP0298828 B1 EP 0298828B1 EP 88401619 A EP88401619 A EP 88401619A EP 88401619 A EP88401619 A EP 88401619A EP 0298828 B1 EP0298828 B1 EP 0298828B1
Authority
EP
European Patent Office
Prior art keywords
axis
section
tubular
column
tubular element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401619A
Other languages
German (de)
English (en)
Other versions
EP0298828A1 (fr
Inventor
Pierre Morin
Jean Boulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
S M F International
Original Assignee
IFP Energies Nouvelles IFPEN
S M F International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, S M F International filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0298828A1 publication Critical patent/EP0298828A1/fr
Application granted granted Critical
Publication of EP0298828B1 publication Critical patent/EP0298828B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Definitions

  • the invention relates to a device for the remote adjustment of the orientation, relative to the axis of a first section of a column, of a second section arranged after the first.
  • the present invention can be applied to a drill string having a drill head disposed at the end of the drill string itself.
  • a drill string consists of a set of tubular rods fixed one at the end of the other, this column carrying at its end a drill head comprising a tool and a downhole motor.
  • the drilling head constitutes the lower section of the column which comes to the bottom of the hole during drilling.
  • the drilling column proper formed by a succession of tubular rods, constitutes the upper section, the end opposite to the drilling head being on the surface and allows, in particular, the supply of drilling column to the column.
  • the drilling fluid circulates inside the column over its entire length to the bottom of the hole, which it cleans and can also allow the drive of the downhole motor.
  • the downhole motor in turn drives the drill bit in rotation.
  • the elbow fitting is a rigid fitting whose angle is predetermined. Whenever it is desired to modify the drilling trajectory, it is necessary to raise the drilling column to the surface to adapt a new elbow fitting, the angle of which is chosen as a function of the desired deviation.
  • articulated elbow fittings consisting of two tubular parts which can be placed either in alignment with one another or in a position where their axes make an angle of determined value.
  • Such articulated couplings therefore make it possible to obtain only one orientation of the drilling head relative to the column.
  • variable angle elbow fitting comprises a first straight tubular element integral with the upper section of the column and a second straight tubular element integral with the end of the lower section of the drilling column.
  • the second tubular element is fixed on the first and rotatably mounted with respect to this first element around an axis making a non-zero angle a with the axis of the first tubular element which coincides with the axis of the upper section of the column with respect to which the orientation of the lower section is carried out.
  • the axis of the first tubular element, the axis of the second tubular element and the axis of rotation are concurrent at the same point.
  • the second tubular element has a reference position where its axis is aligned with the axis of the first tubular element and therefore with the axis of the drill string. In this position of the elbow fitting, the drill string is completely straight.
  • Remotely controlled means that is to say from the surface, make it possible to rotate the second tubular element with respect to the first, about its axis of rotation.
  • the second tubular element has a misalignment relative to the first tubular element which varies between 0 and a maximum value equal to 2a.
  • Maximum misalignment is obtained by rotating the second tubular element 180 ° around its axis of rotation, from its reference position.
  • the rotation is carried out in successive steps of determined amplitude, so that one obtains successively perfectly determined orientations of the second tubular element relative to the first.
  • the lower section of the drill string, integral with the second tubular element and disposed in the axial extension of this element, can therefore be oriented relative to the axis of the upper section coincident with the axis of the first tubular element.
  • the rotational displacement of the second tubular element and the lower section of the drill string can only be obtained after unlocking a shaft ensuring the rotational connection of the two elements of the elbow fitting and therefore of the two sections of the drill string .
  • the means for moving the second tubular element in rotation relative to the first are generally actuated by the motor effect of the drilling fluid and controlled from the surface by electrical or hydraulic means.
  • the mechanical design of the remote-controlled variable angle elbow fittings is made more difficult by the fact that the two tubular elements are mounted to rotate relative to one another about an axis of rotation distinct from the axes of the two tubular elements.
  • the elbow fitting must, moreover, ensure the continuity of passage of the drilling fluid in the column.
  • the elbow fitting is therefore a piece whose manufacture is delicate and the cost very high.
  • the elbow fitting must be designed to obtain a maximum misalignment determined by be the two sections of the drill string. In the case where it is desired to modify the characteristics of the elbow connection, that is to say for example in the case where it is desired to increase the maximum misalignment angle, it is necessary to design and to manufacture a new elbow fitting.
  • the object of the invention is therefore to propose a device for the remote adjustment of the orientation, relative to the axis of a first section of a column, in particular of a drilling column, of a second section disposed after the first, constituted by a variable angle elbow fitting inserted between the corresponding ends of the two sections of the column and comprising a first straight tubular element integral with the end of the first section and a second straight tubular element integral with the end of the second section of the column, fixed on the first element and rotatably mounted relative to this first element around an axis making a non-zero angle a with the axis of the first section of the column, the device further comprising mechanical means for securing in rotation the two tubular elements and means controlled remotely to move in rotation in a controlled manner the second element relative to the first, this disp ositif to simplify the design and construction of the elbow fitting which can be easily adapted to variable maximum misalignment angles, by using adaptation elements of simple structure.
  • the axis of the first straight tubular element makes a non-zero angle with the axis of the first section of the column and the end parts of the first and second straight tubular elements are connected to the corresponding end parts of the first and second sections of the column by means of removable rigid elbow tubular connections, each of these end parts of the tubular elements being offset in a radial direction relative to the axis of the first section of the column.
  • FIG. 1 we see a part of a drill string generally designated by the reference 1.
  • This drill string has an upper section 2 and a lower section 3 connected by means of an elbow connector 4 allowing orienting the lower section 3 carrying the drilling tool with respect to the axis 5 of the upper section 2 of the drilling column.
  • the elbow connector consists of two straight tubular elements 4a and 4b rigidly integral with the upper section 2 and the lower section 3, respectively.
  • the lower tubular element 4b of the elbow connector 4 is fixed on the upper tubular element 4a and rotatably mounted relative to this tubular element around an axis 6 intersecting the axis 5 common to the element 4a and to the section 2 in a point 0 and making with this axis 5 a non-zero angle a.
  • the rotary mounting of the element 4b on the element 4a is obtained by means of a conical bearing 8 shown diagrammatically.
  • the axis 7 of the element 4b which is also the axis of the section 3 of the drill string also passes through the point 0 common to the axes 5 and 6.
  • the maximum misalignment angle 2a therefore depends directly on the mounting structure of the tubular elements 4a and 4b via the bearing 8 .
  • the modification of the maximum deflection angle requires a complete change of the elbow connector 4, the structure of which is provided for a well defined maximum deflection angle.
  • FIGS. 3 and 3A we see an elbow fitting according to the invention generally designated by the reference 14.
  • the fitting 14 is interposed between the lower end of the upper section 12 of a drill string and the upper end of the lower section 13 of this drilling column comprising in particular the bottom motor 30 and the drilling tool 31.
  • the sections 12 and 13 are connected to the elbow fitting 14 by means of parts with conical thread.
  • the connector 14 consists of two rectilinear tubular elements 14a and 14b and two rigid elbow tubular connectors 15a and 15b. These various elements of the elbow fitting 14 are arranged one after the other in the axial direction 18 of the drill string and have matching bores allowing continuous circulation of the drilling fluid through the elbow fitting 14.
  • the upper tubular element 14a is rigidly connected to the upper section 12 of the drilling column by means of the elbow tubular connection 15a which has parts with conical thread 19 and 19 ′ allowing it to be connected to the section 12 and to the element 14a respectively.
  • the lower element 14b is rigidly connected to the lower section 13 of the drill string via the elbow tubular connector 15b which has conical threads 21 and 21 'allowing it to be connected respectively to the element 14b and section 13.
  • the connector 14 has been shown in its reference position where the axis 20 of the lower section 13 of the drill string is aligned with the axis 18 of the upper section 12 of this column.
  • the upper tubular element 14a has an axis 16 making a non-zero angle a with the axis 18 of the upper section 12.
  • the lower tubular element 14b is fixed on the upper element 14a and rotatably mounted on this element through of a conical bearing 23 whose axis 16 coincides with the axis of the tubular element 14a making an angle a with the axis 18 of the upper section 12 of the drill string.
  • the axis 22 of the lower tubular element 14b is also coincident with the axis 16 and thus forms an angle a with the axis 20 of the lower section of the drill string.
  • the ends of the elements 14a and 14b connecting to the elbow fittings 15a and 15b respectively are offset in a radial direction and in opposite directions, relative to the axis 18, 20 of the drill string.
  • FIG 3A there is shown schematically the tubular elements 14a and 14b as well as the elbow fittings 15a and 15b.
  • the lower tubular element 14b is rotatably mounted on the upper element 14a around the axis 16 common to these two tubular elements.
  • the axis 16 intersects the axis 18 at a point 0 and defines with the axis 18 a plane of symmetry of the fitting.
  • the upper section of the drill string shown schematically by its axis 18, the elbow fitting 15a and the upper tubular element 14a which are integral with each other constitute the fixed parts of the drill string during the orientation adjustment of the lower section represented schematically by its axis 20.
  • This orientation adjustment is obtained by rotating the lower tubular element 14b around the axis 16 of the bearing 23.
  • a stepwise rotation of amplitude e of the tubular element 14b relative to the element 14a can be obtained by a device as described in the IFP patents cited previously in the present application.
  • the elbow connector 14 may include, as described in these patents, a shaft allowing either to fasten the elements 14a and 14b in rotation or to move the element 14b in rotation relative to the element 14a.
  • the element 14b which is integral with the lower section 13 of axis 20, via the elbow connector 15b, rotates this lower section whose axis 20 is capable of successively occupying the positions represented by the points P2, P3, ... P9, from the reference position P0.
  • the axis 20 occupies the position 20 'represented by the point P5.
  • the axis 20 in its position 20 ' makes an angle equal to 2a with the initial direction 18, 20, that is to say with the axis of the upper section 12 of the drill string.
  • the lower section 13 of the drill string comprising the motor 30 and the drill bit 31 is therefore capable of being oriented at successive angles relative to the upper section 12, these misalignment angles being between 0 and 2a, a being the angle made by the axis of rotation 16 with the axis 18 of the upper section of the drill string.
  • the axis of rotation 16 of the element 14b relative to the element 14a is directed along the axis common to the two tubular elements 14a and 14b.
  • the design of these elements 14a and 14b is therefore much simpler than that of the elements 4a and 4b of the device according to the prior art shown in Figures 1 and 2.
  • this design does not fix the value of the angle a in turn defining the maximum misalignment that can be achieved using the fitting. This angle is determined by the shape given to the rigid elbow tubular connections 15a and 15b.
  • the axis 16 common to the elements 14a and 14b defines with the axis 18 of the drill string a plane of symmetry which is the plane of Figure 3A.
  • the axes of the elbow fittings 15a and 15b are in the plane and the elbow fittings 15a and 15b are symmetrical to each other with respect to the axis 18.
  • this is by no means limiting and these elements can be of different length, the rigid elbow fittings 15a and 15b being designed accordingly.
  • the connecting faces of the element 14a and 14b with the tubular connections 15a and 15b respectively are offset radially with respect to the axis 18 by the same length but in different directions.
  • FIGS. 4 and 4A a second embodiment of an elbow connection is shown, the tubular elements 24a and 24b of which are identical to the elements 14a and 14b of the device shown in FIGS. 3 and 3a.
  • the axis of rotation 26 of the tubular element 24b relative to the tubular element 24a is coincident with the axis common to the tubular elements 24a and 24b.
  • the rigid elbow tubular connections 25a and 25b have a shape and an arrangement such that the axis 26 makes a non-zero angle a with the axis 28 of the upper section of the drill string which is merged, in the reference position shown on Figure 4, with the axis 29 of the lower section of the drill string.
  • the axis 26 intersects the axis 28 at a point 0 'situated far below the tubular elements 24a and 24b mounted so that they can rotate relative to each other.
  • This point 0 ' is located in the vicinity of the downhole motor 30 and a little above the drilling tool 31.
  • This arrangement which is obtained by using an intermediate tubular connector 32 to connect the lower tubular element 24b and the connector bent 25b makes it possible to bring the pivot center 0 'closer to the lower section of the drill string, of the drilling tool 31. This arrangement makes it possible to facilitate the adjustment and the orientation efficiency of the drilling.
  • the intermediate tubular connection 32 may include the motor 30.
  • the rotational movement may be transmitted to the drilling tool by a shaft passing through this rigid elbow fitting, this shaft comprising a universal joint.
  • FIG. 4A the lower section of the drill string is shown diagrammatically by its axis 29.
  • the axis 29 of the lower section of the drill string goes from position 29 to position 29 '.
  • the axis of the lower section of the drill string makes an angle equal to 2a with the axis 28 of the upper section.
  • the connecting faces of the elements 24a and 24b are offset radially relative to the axis 28 in the same direction; the axis 26 which joins the center of these faces intersects the axis 28 at point 0 'located very below the elements 24a and 24b.
  • the axes 26 and 28 define a plane which is a plane of symmetry for the entire fitting and which is the plane of Figure 4A.
  • the elbow tubular connections 25a and 25b have, as before, inverted arrangements, these connections being placed on either side of the axis 28, thanks to the very long connection 32.
  • FIGS. 4 and 4A there is shown in dotted lines the position 33 'of the bearing 33 which it would be necessary to adopt to obtain a pivot center at 0', in the case where one wishes to use an elbow fitting of the type shown in Figures 3 and 3A where the pivot center is in the connection plane of the upper and lower tubular elements.
  • the tubular elements which would be necessary in the case of the use of a device as shown in FIGS. 3 and 3A have also been designated by 24'a and 24'b. It is therefore quite obvious that the arrangement of FIGS. 4 and 4A makes it possible to considerably simplify the design of the rotary tubular elements of the elbow connector, while moving the center of pivoting downwards.
  • FIGS. 5 and 5A show a third embodiment of an elbow fitting 44 comprising an upper element 44a and a lower element 44b rotatably mounted on the element 44a around the axis 46 common to the tubular elements 44a and 44b.
  • the connecting faces of the elements 44a and 44b with the corresponding elbow fittings 45a and 45b making it possible to connect the tubular elements 44a and 44b to the upper section and to the lower section of the drill string respectively are offset on the same side of the axis 48 of the drill string.
  • the axis of rotation 46 of the tubular element 44b with respect to the element 44a makes an angle a with the axis 48 and intersects this axis 48 at a point 0 'located in the vicinity of the bottom motor 30 of the column of drilling.
  • FIG 6 there is shown a fourth embodiment of a variable angle elbow fitting 54 according to the invention.
  • This elbow fitting is made up as before of two straight tubular elements 54a and 54b and two elbow fittings 55a and 55b.
  • the elbow fitting 55a allows mounting of the tubular element 54a at the end of the upper section of the drill string, so that the axis 52 of this tubular element 54a makes a certain angle a non-zero with the axis 58 of the upper section of the drill string .
  • the tubular element 54b is fixed on the element 54a and rotatably mounted thereon by means of a bearing 53 with an axis 56.
  • the axis 56 of the bearing 53 makes an angle a1 with the axis 52 of the tubular member 54a.
  • the axis 56 makes an angle a2 with the axis 58 of the upper section of the drill string.
  • the device according to the invention therefore makes it possible not only to produce an orientation with a connector comprising two tubular elements having a common axis around which one of the elements is rotatably mounted relative to the other, but also to modify the angle at will. maximum misalignment obtained from a device according to the prior art.
  • the device according to the invention makes it possible to obtain great flexibility as regards the adjustment of the maximum misalignment angle which can be obtained and as to the position of the pivot point of the section of the drill string whose we realize the orientation.
  • the two tubular elements of the elbow connector can be joined in rotation by a device controlled remotely.
  • any remote actuation device can be used to achieve the step-by-step rotation of one of the tubular elements for orientation relative to the other.
  • These actuation means can be of any type as described in the IFP patents mentioned above.
  • This device can also be a remote actuation device as described in French patent 2,575,793 of the Company SMF International.
  • the axis of rotation of the straight tubular elements can be not only coplanar with the axis of the drill string, as in the examples described where these axes intersect at the pivot point of the fitting, but also not coplanar. In the latter case, the two axes have no common point and the elbow tubular connections have no common plane of symmetry.
  • the connecting means between the rigid elbow fittings 15a; 25a; 45a; 55a; 15b; 25b; 45b or 55b and respectively the tubular elements 14a; 24a; 44a; 54a; 14b; 24b; 44b or 54b must allow identification and / or setting of the angular position of these two parts with respect to each other.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

  • L'invention concerne un dispositif de réglage à distance de l'orientation, par rapport à l'axe d'un premier tronçon d'une colonne, d'un second tronçon disposé à la suite du premier. La présente invention peut être appliquée à une colonne de forage comportant une tête de forage disposée à l'extrémité de la colonne de forage proprement dite.
  • Une colonne de forage est constituée par un ensemble de tiges tubulaires fixées l'une à l'extrémité de l'autre, cette colonne portant à son extrémité une tête de forage comportant un outil et un moteur de fond. La tête de forage constitue le tronçon inférieur de la colonne qui vient en fond de trou pendant le forage. La colonne de forage proprement dite, formée par une succession de tiges tubulaires, constitue le tronçon supérieur dont l'extrémité opposée à la tête de forage se trouve en surface et permet, en particulier, l'alimentation de la colonne en fluide de forage. Le fluide de forage circule à l'intérieur de la colonne sur toute sa longueur jusqu'au fond du trou dont il assure le nettoyage et peut permettre également l'entraînement du moteur de fond. Le moteur de fond entraîne à son tour le trépan en rotation.
  • Dans la technique du forage, il est devenu nécessaire de réaliser des forages dirigés, c'est-à-dire des forages avec modification et réglage de la trajectoire de l'outil de forage.
  • Pour cela, on a généralement proposé de régler l'orientation de la tête de forage par rapport à la colonne proprement dite, grâce à un raccord coudé déterminant l'orientation du forage.
  • Dans la technique la plus ancienne, le raccord coudé est un raccord rigide dont l'angle est prédéterminé. A chaque fois que l'on désire modifier la trajectoire du forage, il est nécessaire de remonter la colonne de forage en surface pour adapter un nouveau raccord coudé dont l'angle est choisi en fonction de la déviation désirée.
  • On a également proposé des raccords coudés articulés constitués de deux parties tubulaires qui peuvent être placées soit dans l'alignement l'une de l'autre soit dans une position où leurs axes font un angle de valeur déterminée. De tels raccords articulés ne permettent donc d'obtenir qu'une seule orientation de la tête de forage par rapport à la colonne. Lorsqu'on utilise de tels raccords articulés, il est également nécessaire de remonter en surface au moins un élément constitutif du raccord, lorsque la déviation désirée n'est pas compatible avec l'angle que peuvent former entre elles les deux parties du raccord.
  • Plus récemment, on a proposé dans les brevets Français 2.432.079, 2.453.268, 2.453.269, 2.491.989 et 2.519.686, déposés par l'institut Français du Pétrole, un raccord coudé à angle variable commandé à distance qui est intercalé entre deux tronçons de la colonne de forage et, généralement entre la colonne proprement dite et la tête de forage. Un tel raccord coudé permet de régler à distance l'orientation de la tête de forage constituant le tronçon inférieur de la colonne, par rapport à l'axe du tronçon supérieur dont l'extrémité se trouve en surface. Le raccord coudé à angle variable comporte un premier élément tubulaire rectiligne solidaire du tronçon supérieur de la colonne et un second élément tubulaire rectiligne solidaire de l'extrémité du tronçon inférieur de la colonne de forage. Le second élément tubulaire est fixé sur le premier et monté rotatif par rapport à ce premier élément autour d'un axe faisant un angle a non nul avec l'axe du premier élément tubulaire qui est confondu avec l'axe du tronçon supérieur de la colonne par rapport auquel est effectuée l'orientation du tronçon inférieur.
  • L'axe du premier élément tubulaire, l'axe du second élément tubulaire et l'axe de rotation sont concourants en un même point. Le second élément tubulaire présente une position de référence où son axe est aligné avec l'axe du premier élément tubulaire et donc avec l'axe de la colonne de forage. Dans cette position du raccord coudé, la colonne de forage est entièrement rectiligne.
  • Des moyens commandés à distance c'est-à-dire depuis la surface permettent de faire tourner le second élément tubulaire par rapport au premier, autour de son axe de rotation.
  • Au cours de cette rotation, depuis sa position de référence, le second élément tubulaire présente un désalignement par rapport au premier élément tubulaire qui varie entre 0 et une valeur maximale égale à 2a. Le désalignement maximal est obtenu en faisant tourner le second élément tubulaire de 180° autour de son axe de rotation, depuis sa position de référence.
  • La rotation est effectuée par pas successifs d'amplitude déterminée, si bien qu'on obtient des orientations successives parfaitement déterminées du second élément tubulaire par rapport au premier. Le tronçon inférieur de la colonne de forage, solidaire du second élément tubulaire et disposé dans le prolongement axial de cet élément, peut donc être orienté par rapport à l'axe du tronçon supérieur confondu avec l'axe du premier élément tubulaire.
  • Le déplacement en rotation du second élément tubulaire et du tronçon inférieur de la colonne de forage ne peut être obtenu qu'après déblocage d'un arbre assurant la liaison en rotation des deux éléments du raccord coudé et donc des deux tronçons de la colonne de forage.
  • Les moyens de déplacement en rotation du second élément tubulaire par rapport au premier sont généralement actionnés grâce à l'effet moteur du fluide de forage et commandés depuis la surface par voie électrique ou hydraulique.
  • La conception mécanique des raccords coudés à angle variable télécommandés est rendue plus difficile par le fait que les deux éléments tubulaires sont montés rotatifs l'un par rapport à l'autre autour d'un axe de rotation distinct des axes des deux éléments tubulaires.
  • Le raccord coudé doit, de plus, assurer la continuité de passage du fluide de forage dans la colonne.
  • Le raccord coudé est donc une pièce dont la fabrication est délicate et le coût très élevé.
  • En outre, le raccord coudé doit être conçu pour l'obtention d'un désalignement maximal déterminé entre les deux tronçons de la colonne de forage. Dans le cas où l'on désire modifier les caractéristiques du raccord coudé, c'est-à-dire par exemple dans le cas où l'on désire augmenter l'angle maximal de désalignement, il est nécessaire de concevoir et de mettre en fabrication un nouveau raccord coudé.
  • Il est difficile de prévoir a priori la fabrication d'une gamme étendue de raccords coudés, pour l'obtention de désalignements maximum variables.
  • Il est ainsi pratiquement impossible de prévoir une fabrication en série de raccords coudés utilisables dans un grand nombre d'applications.
  • Le but de l'invention est donc de proposer un dispositif de réglage à distance de l'orientation, par rapport à l'axe d'un premier tronçon d'une colonne notamment de forage, d'un second tronçon disposé à la suite du premier, constitué par un raccord coudé à angle variable intercalé entre les extrémités correspondantes des deux tronçons de la colonne et comportant un premier élément tubulaire rectiligne solidaire de l'extrémité du premier tronçon et un second élément tubulaire rectiligne solidaire de l'extrémité du second tronçon de la colonne, fixé sur le premier élément et monté rotatif par rapport à ce premier élément autour d'un axe faisant un angle a non nul avec l'axe du premier tronçon de la colonne, le dispositif comportant en outre des moyens mécaniques pour solidariser en rotation les deux éléments tubulaires et des moyens commandés à distance pour déplacer en rotation de manière réglée le second élément par rapport au premier, ce dispositif permettant de simplifier la conception et la réalisation du raccord coudé qui peut être facilement adapté à des angles de désalignement maximum variables, en utilisant des éléments d'adaptation de structure simple.
  • Dans ce but, l'axe du premier élément tubulaire rectiligne fait un angle non nul avec l'axe du premier tronçon de la colonne et les parties d'extrémité du premier et du second éléments tubulaires rectilignes sont reliées aux parties d'extrémité correspondantes du premier et du second tronçons de la colonne par l'intermédiaire de raccords tubulaires coudés rigides amovibles, chacune de ces parties d'extrémité des éléments tubulaires étant décalée dans une direction radiale par rapport à l'axe du premier tronçon de la colonne.
  • Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, plusieurs modes de réalisation d'un dispositif de réglage suivant l'invention.
    • La figure 1 est une vue schématique d'un raccord coudé à angle variable suivant l'art antérieur dans sa position de référence.
    • La figure 2 est une vue du raccord coudé de la figure 1 dans sa position de désalignement maximal.
    • La figure 3 est une vue en élévation d'un raccord coudé à angle variable d'un dispositif de réglage suivant l'invention et suivant un premier mode de réalisation.
    • La figure 3A est une vue schématique montrant la structure et le fonctionnement d'un raccord coudé tel que représenté sur la figure 3.
    • La figure 4 est une vue en élévation d'un raccord coudé d'un dispositif de réglage d'orientation suivant l'invention et suivant un second mode de réalisation.
    • La figure 4A est une vue schématique montrant la structure et le fonctionnement du raccord coudé représenté sur la figure 4.
    • La figure 5 est une vue en élévation d'un raccord coudé d'un dispositif de réglage d'orientation suivant l'invention et suivant un troisième mode de réalisation.
    • La figure 5A est une vue schématique montrant la structure et le fonctionnement d'un raccord coudé tel que représenté sur la figure 5.
    • La figure 6 est une vue en élévation d'un raccord coudé d'un dispositif de réglage suivant l'invention et suivant un quatrième mode de réalisation.
  • Sur la figure 1, on voit une partie d'une colonne de forage désignée de manière générale par le repère 1. Cette colonne de forage comporte un tronçon supérieur 2 et un tronçon inférieur 3 reliés par l'intermédiaire d'un raccord coudé 4 permettant d'orienter le tronçon inférieur 3 portant l'outil de forage par rapport à l'axe 5 du tronçon supérieur 2 de la colonne de forage.
  • Le raccord coudé selon l'art antérieur est constitué de deux éléments rectilignes tubulaires 4a et 4b rigidement solidaires du tronçon supérieur 2 et du tronçon inférieur 3, respectivement. L'élément tubulaire inférieur 4b du raccord coudé 4 est fixé sur l'élément tubulaire supérieur 4a et monté rotatif par rapport à cet élément tubulaire autour d'un axe 6 coupant l'axe 5 commun à l'élément 4a et au tronçon 2 en un point 0 et faisant avec cet axe 5 un angle a non nul. Le montage à rotation de l'élément 4b sur l'élément 4a est obtenu par l'intermédiaire d'un palier conique 8 représenté de façon schématique. L'axe 7 de l'élément 4b qui est également l'axe du tronçon 3 de la colonne de forage passe également par le point 0 commun aux axes 5 et 6.
  • Sur la figure 1, le raccord coudé 4 a été représenté dans sa position de référence où les axes 5 et 7 sont alignés.
  • Des moyens qui ne sont pas représentés mais qui sont décrits dans les brevets précités permettent de commander à distance le déplacement en rotation de l'élément 4b par rapport à l'élément 4a, autour de l'axe 6, comme représenté par la flèche 9.
  • En se reportant à la figure 2, on voit que la rotation de l'élément 4b autour de l'axe 6, par pas identiques de valeur e amène l'axe 7 dans des positions successives définies par les points P0, P1, ... P9. Dans chacune de ces positions, l'axe 7 de l'élément 4b et du tronçon inférieur 3 de la colonne de forage fait, avec l'axe 5 du tronçon supérieur 2 de la colonne de forage, un angle compris entre 0 et 2a. L'angle de désalignement maximum = 2a est obtenu pour un angle de rotation e = 180°, depuis la position de référence P0.
  • Dans le cas d'un dispositif selon l'art antérieur tel que représenté sur les figures 1 et 2, l'angle de désalignement maximum 2a dépend donc directement de la structure de montage des éléments tubulaires 4a et 4b par l'intermédiaire du palier 8.
  • La modification de l'angle de débattement maximum nécessite un changement complet du raccord coudé 4 dont la structure est prévue pour un angle de débattement maximal bien déterminé.
  • Sur les figures 3 et 3A, on voit un raccord coudé suivant l'invention désigné de manière générale par le repère 14. Le raccord 14 est intercalé entre l'extrémité inférieure du tronçon supérieur 12 d'une colonne de forage et l'extrémité supérieure du tronçon inférieur 13 de cette colonne de forage comportant en particulier le moteur de fond 30 et l'outil de forage 31. Les tronçons 12 et 13 sont reliés au raccord coudé 14 par l'intermédiaire de pièces à filetage conique.
  • Le raccord 14 est constitué par deux éléments tubulaires rectilignes 14a et 14b et deux raccords tubulaires coudés rigides 15a et 15b. Ces différents éléments du raccord coudé 14 sont disposés l'un à la suite de l'autre suivant la direction axiale 18 de la colonne de forage et comportent des alésages en concordance permettant une circulation continue du fluide de forage à travers le raccord coudé 14.
  • L'élément tubulaire supérieur 14a est relié rigidement au tronçon supérieur 12 de la colonne de forage par l'intermédiaire du raccord tubulaire coudé 15a qui comporte des parties à filetage conique 19 et 19' permettant de le relier au tronçon 12 et à l'élément 14a respectivement.
  • De la même façon, l'élément inférieur 14b est relié de façon rigide au tronçon inférieur 13 de la colonne de forage par l'intermédiaire du raccord tubulaire coudé 15b qui comporte des filetages coniques 21 et 21' permettant de le relier respectivement à l'élément 14b et au tronçon 13.
  • Sur la figure 3, le raccord 14 a été représenté dans sa position de référence où l'axe 20 du tronçon inférieur 13 de la colonne de forage est aligné avec l'axe 18 du tronçon supérieur 12 de cette colonne.
  • L'élément tubulaire supérieur 14a comporte un axe 16 faisant un angle a non nul avec l'axe 18 du tronçon supérieur 12. L'élément tubulaire inférieur 14b est fixé sur l'élément supérieur 14a et monté rotatif sur cet élément par l'intermédiaire d'un pallier conique 23 dont l'axe 16 est confondu avec l'axe de l'élément tubulaire 14a faisant un angle a avec l'axe 18 du tronçon supérieur 12 de la colonne de forage.
  • L'axe 22 de l'élément tubulaire inférieur 14b est également confondu avec l'axe 16 et fait ainsi un angle a avec l'axe 20 du tronçon inférieur de la colonne de forage.
  • Les extrémités des éléments 14a et 14b se raccordant aux raccords coudés 15a et 15b respectivement sont décalées dans une direction radiale et dans des sens opposés, par rapport à l'axe 18, 20 de la colonne de forage.
  • Sur la figure 3A, on a représenté de façon schématique les éléments tubulaires 14a et 14b ainsi que les raccords coudés 15a et 15b. L'élément tubulaire inférieur 14b est monté rotatif sur l'élément supérieur 14a autour de l'axe 16 commun à ces deux éléments tubulaires. De plus, l'axe 16 coupe l'axe 18 en un point 0 et définit avec l'axe 18 un plan de symétrie du raccord.
  • Le tronçon supérieur de la colonne de forage représenté de façon schématique par son axe 18, le raccord coudé 15a et l'élément tubulaire supérieur 14a qui sont solidaires les uns des autres constituent les parties fixes de la colonne de forage pendant le réglage d'orientation du tronçon inférieur représenté de façon schématique par son axe 20.
  • Ce réglage d'orientation est obtenu en faisant tourner l'élément tubulaire inférieur 14b autour de l'axe 16 du palier 23. Une rotation pas à pas d'amplitude e de l'élément tubulaire 14b par rapport à l'élément 14a peut être obtenue par un dispositif tel que décrit dans les brevets de l'IFP cités précédemment dans la présente demande.
  • Le raccord coudé 14 peut comporter, comme il est décrit dans ces brevets, un arbre permettant soit de solidariser en rotation les éléments 14a et 14b soit de déplacer en rotation l'élément 14b par rapport à l'élément 14a.
  • L'élément 14b qui est solidaire du tronçon inférieur 13 d'axe 20, par l'intermédiaire du raccord coudé 15b, entraîne en rotation ce tronçon inférieur dont l'axe 20 est susceptible d'occuper successivement les positions représentées par les points P2, P3, ... P9, à partir de la position de référence P0. Lorsque l'élément 14b a tourné d'un angle e = 180°, l'axe 20 occupe la position 20' représentée par le point P5. L'axe 20 dans sa position 20' fait un angle égal à 2a avec la direction 18, 20 initiale, c'est-à-dire avec l'axe du tronçon supérieur 12 de la colonne de forage.
  • Le tronçon inférieur 13 de la colonne de forage comportant le moteur 30 et le trépan de forage 31 est donc susceptible d'être orienté suivant des angles successifs par rapport au tronçon supérieur 12, ces angles de désalignement étant compris entre 0 et 2a, a étant l'angle que fait l'axe de rotation 16 avec l'axe 18 du tronçon supérieur de la colonne de forage.
  • Dans le mode de réalisation des figures 3 et 3A, l'axe de rotation 16 de l'élément 14b par rapport à l'élément 14a est dirigé suivant l'axe commun aux deux éléments tubulaire 14a et 14b. La conception de ces éléments 14a et 14b est donc beaucoup plus simple que celle des éléments 4a et 4b du dispositif selon l'art antérieur représenté sur les figures 1 et 2. De plus, cette conception ne fixe pas la valeur de l'angle a définissant à son tour le désalignement maximal qui peut être obtenu en utilisant le raccord. Cet angle est déterminé par la forme donnée aux raccords tubulaires coudés rigides 15a et 15b.
  • Dans le cas du dispositif représenté sur les figures 3 et 3A, l'axe 16 commun aux éléments 14a et 14b définit avec l'axe 18 de la colonne de forage un plan de symétrie qui est le plan de la figure 3A. Les axes des raccords coudés 15a et 15b se trouvent dans le plan et les raccords coudés 15a et 15b sont symétriques l'un de l'autre par rapport à l'axe 18. Le centre de pivotement 0 autour duquel pivote le tronçon inférieur 13 de la colonne de forage qui est à l'intersection de l'axe 18 et de l'axe 16 se trouve à égale distance des faces de raccordement des éléments 14a et 14b, c'est-à-dire dans leur plan de jonction, ces éléments étant de même longueur. Bien entendu ceci n'est nullement limitatif et ces éléments peuvent être de longueur différente, les raccords coudés rigides 15a et 15b étant conçus en conséquence.
  • Dans le cas représenté aux figures 3 et 3A il est bien évident qu'en changeant les dimensions des raccords tubulaires coudés 15a et 15b et en gardant leur position symétrique par rapport à l'axe 18, on peut soit augmenter soit diminuer l'angle a tout en maintenant la position du point 0 dans le plan de jonction des éléments 14a et 14b.
  • Dans ce cas, les faces de raccordement des élément 14a et 14b avec les raccords tubulaires 15a et 15b respectivement sont décalées radialement par rapport à l'axe 18 d'une même longueur mais dans des sens différents.
  • Sur les figures 4 et 4A, on a représenté un second mode de réalisation d'un raccord coudé dont les éléments tubulaires 24a et 24b sont identiques aux éléments 14a et 14b du dispositif représenté sur les figures 3 et 3a. L'axe de rotation 26 de l'élément tubulaire 24b par rapport à l'élément tubulaire 24a est confondu avec l'axe commun aux éléments tubulaires 24a et 24b.
  • Les raccords tubulaires coudés rigides 25a et 25b ont une forme et une disposition telles que l'axe 26 fasse un angle a non nul avec l'axe 28 du tronçon supérieur de la colonne de forage qui est confondu, dans la position de référence représentée sur la figure 4, avec l'axe 29 du tronçon inférieur de la colonne de forage.
  • De plus, comme il est visible sur les figures 4 et 4A, l'axe 26 coupe l'axe 28 en un point 0' situé très en dessous des éléments tubulaires 24a et 24b montés rotatifs l'un par rapport à l'autre. Ce point 0' est situé au voisinage du moteur de fond 30 et un peu au-dessus de l'outil de forage 31. Cette disposition qui est obtenue en utilisant un raccord tubulaire intermédiaire 32 pour relier l'élément tubulaire inférieur 24b et le raccord coudé 25b permet de rapprocher sensiblement le centre de pivotement 0' du tronçon inférieur de la colonne de forage, de l'outil de forage 31. Cette disposition permet de faciliter le réglage et l'efficacité d'orientation du forage. Le raccord tubulaire intermédiaire 32 pourra comporter le moteur 30.
  • Lorsque le moteur de fond est situé au-dessus d'un raccord coudé rigide 25b, le mouvement de rotation pourra être transmis à l'outil de forage par un arbre traversant ce raccord coudé rigide, cet arbre comportant un joint universel.
  • Sur la figure 4A, on a représenté de manière schématique le tronçon inférieur de la colonne de forage, par son axe 29.
  • Lors de la rotation de 180° de l'élément tubulaire 24b par rapport à l'élément tubulaire 24a autour de l'axe 26, à partir de la position de référence représentée sur la figure 4, l'axe 29 du tronçon inférieur de la colonne de forage passe de la position 29 à la position 29'. Dans sa position 29', l'axe du tronçon inférieur de la colonne de forage fait un angle égal à 2a avec l'axe 28 du tronçon supérieur.
  • Dans la disposition représentée sur les figures 4 et 4A, les faces de raccordement des éléments 24a et 24b sont décalées radialement par rapport à l'axe 28 dans le même sens ; l'axe 26 qui joint le centre de ces faces recoupe l'axe 28 au point 0' situé très en dessous des éléments 24a et 24b.
  • Les axes 26 et 28 définissent un plan qui est un plan de symétrie pour l'ensemble du raccord et qui est le plan de la figure 4A.
  • Les raccords tubulaires coudés 25a et 25b ont, comme précédemment, des dispositions inversées, ces raccords étant placés de part et d'autre de l'axe 28, grâce au raccord de grande longueur 32.
  • Sur la figure 4, on a représenté en pointillés la position 33' du palier 33 qu'il serait nécessaire d'adopter pour obtenir un centre de pivotement en 0', dans le cas où l'on voudrait utiliser un raccord coudé du type représenté sur les figures 3 et 3A où le centre de pivotement se trouve dans le plan de raccordement des éléments tubulaires supérieur et inférieur. On a également désigné par 24'a et 24'b les éléments tubulaires qui seraient nécessaires dans le cas de l'utilisation d'un dispositif tel que représenté sur les figures 3 et 3A. Il est donc tout-à- fait évident que la disposition des figures 4 et 4A permet de simplifier considérablement la conception des éléments tubulaires rotatifs du raccord coudé, tout en déplaçant vers le bas le centre de pivotement.
  • Ce résultat peut être obtenu, comme indiqué, en utilisant des éléments 24a et 24b identiques aux éléments 14a et 14b utilisés précédemment.
  • Sur les figures 5 et 5A, on a représenté un troisième mode de réalisation d'un raccord coudé 44 comportant un élément supérieur 44a et un élément inférieur 44b monté rotatif sur l'élément 44a autour de l'axe 46 commun aux éléments tubulaires 44a et 44b. Les faces de raccordement des éléments 44a et 44b avec les raccords coudés correspondants 45a et 45b permettant de relier les éléments tubulaires 44a et 44b au tronçon supérieur et au tronçon inférieur de la colonne de forage respectivement sont décalées d'un même côté de l'axe 48 de la colonne de forage. L'axe de rotation 46 de l'élément tubulaire 44b par rapport à l'élément 44a fait un angle a avec l'axe 48 et coupe cet axe 48 en un point 0' situé au voisinage du moteur de fond 30 de la colonne de forage. On obtient ainsi des avantages similaires à ceux obtenus dans le cas du dispositif représenté sur les figures 4 et 4A.
  • On a représenté, comme précédemment, sur la figure 5, en pointillés, la position 43' du palier 43 qu'il serait nécessaire d'utiliser pour obtenir des résultats équivalents avec un dispositif du type représenté sur les figures 3 et 3A. De même, on a représenté en pointillés la position et la forme du raccord coudé 45'b qui devrait se substituer au raccord 45b. Les éléments 44a et 44b seraient alors remplacés par les éléments tubulaires 44'a et 44'b. La disposition représentée sur les figures 5 et 5A nécessite simplement l'utilisation d'un raccord tubulaire rectiligne 42 pour relier le raccord coudé 45b au tronçon inférieur de la colonne de forage.
  • Sur la figure 6, on voit un quatrième mode de réalisation d'un raccord coudé à angle variable 54 suivant l'invention.
  • Ce raccord coudé est constitué comme précédemment de deux éléments tubulaires rectilignes 54a et 54b et de deux raccords coudés 55a et 55b.
  • Le raccord coudé 55a permet un montage de l'élément tubulaire 54a à l'extrémité du tronçon supérieur de la colonne de forage, de façon que l'axe 52 de cet élément tubulaire 54a fasse un certain angle a non nul avec l'axe 58 du tronçon supérieur de la colonne de forage.
  • L'élément tubulaire 54b est fixé sur l'élément 54a et monté rotatif sur celui-ci par l'intermédiaire d'un palier 53 d'axe 56. L'axe 56 du palier 53, comme dans le cas du dispositif représenté sur les figures 1 et 2, fait un angle a1 avec l'axe 52 de l'élément tubulaire 54a.
  • D'autre part, l'axe 56 fait un angle a2 avec l'axe 58 du tronçon supérieur de la colonne de forage.
  • Sur la figure 6, le raccord coudé a été représenté dans sa position de référence où l'axe 58 du tronçon supérieur de la colonne de forage est aligné avec l'axe 60 du tronçon inférieur de cette colonne.
  • Lors de la mise en rotation de l'élément tubulaire inférieur 54b par rapport à l'élément supérieur 54a, autour de l'axe 56, le tronçon inférieur de la colonne de forage sera susceptible de s'orienter par rapport au tronçon supérieur, avec un axe de désalignement maximal égal à 2a 2.
  • Le fait d'avoir disposé l'axe 52 de l'élément tubulaire supérieur 54a avec un angle a non nul par rapport à l'axe 58 du tronçon supérieur de la colonne de forage en utilisant des raccords de rattrapage coudés 55a et 55b a permis de transformer un dispositif selon l'art antérieur d'angle a1 en un dispositif selon l'invention d'angle a2 = a1 - a, dont le désalignement maximal est 2 a 2 = 2 (a1 - a).
  • Le dispositif suivant l'invention permet donc non seulement de réaliser une orientation avec un raccord comportant deux élément tubulaires ayant un axe commun autour duquel l'un des éléments est monté rotatif par rapport à l'autre mais encore de modifier à volonté l'angle maximal de désalignement obtenu à partir d'un dispositif selon l'art antérieur.
  • Il est donc bien évident que le dispositif suivant l'invention permet d'obtenir une grande souplesse quant au réglage de l'angle maximal de désalignement qui peut être obtenu et quant à la position du point de pivotement du tronçon de la colonne de forage dont on réalise l'orientation. Comme dans les dispositifs selon l'art antérieur, les deux éléments tubulaires du raccord coudé peuvent être solidarisés en rotation par un dispositif commandé à distance.
  • Il est bien évident également qu'on peut utiliser tout dispositif d'actionnement à distance pour réaliser la mise en rotation pas à pas de l'un des éléments tubulaires d'orientation par rapport à l'autre. Ces moyens d'actionnement pourront être d'un type quelconque tel que décrit dans les brevets de l'IFP mentionnés ci-dessus.
  • Ce dispositif peut être également un dispositif d'actionnement à distance tel que décrit dans le brevet Français 2.575.793 de la Société SMF International.
  • L'axe de rotation des éléments tubulaires rectilignes peut être non seulement coplanaire à l'axe de la colonne de forage, comme dans les exemples décrits où ces axes se coupent au point de pivotement du raccord, mais encore non coplanaires. Dans ce dernier cas, les deux axes n'ont pas de point commun et les raccords tubulaires coudés n'ont pas de plan de symétrie commun.
  • Il est bien évident qu'on pourra associer à un ensemble constitué par deux éléments tubulaires rectilignes montés rotatifs l'un par rapport à l'autre autour de leur axe commun, tout type de raccord coudé et de raccord rectiligne, pour obtenir un angle d'orientation voulu de l'axe de rotation relatif des éléments tubulaires par rapport à l'axe de la colonne de forage et une position voulue du point de pivotement du tronçon orientable de la colonne de forage, en fonction du résultat recherché.
  • On pourra donc concevoir une fabrication en série des éléments tubulaires rectilignes montés rotatifs l'un par rapport à l'autre, ces éléments pouvant être totalement standardisés et la fourniture de raccords coudés appropriés permettant l'obtention de différentes configurations à partir des éléments rectilignes standard. Ces éléments rectilignes montés à rotation pourront constituer des mécanismes complets comportant les moyens de blocage et de mise en rotation relative.
  • Les moyens de liaisons entre les raccords coudés rigides 15a ; 25a ; 45a ; 55a ; 15b ; 25b ; 45b ou 55b et respectivement les éléments tubulaires 14a ; 24a ; 44a ; 54a ; 14b ; 24b ; 44b ou 54b devront permettre un repérage et/ou un calage de la position angulaire de ces deux pièces l'une par rapport à l'autre.

Claims (8)

1.- Dispositif de réglage à distance de l'orientation par rapport à l'axe d'un premier tronçon (12) d'une colonne, d'un second tronçon (13) disposé à la suite du premier, constitué par un raccord coudé à angle variable (14) intercalé entre les extrémités correspondantes des deux tronçons (12, 13) de la colonne et comportant un premier élément tubulaire rectiligne (14a) solidaire de l'extrémité du premier tronçon (12) et un second élément tubulaire rectiligne (14b) solidaire de l'extrémité du second tronçon (13) de la colonne de forage, fixé sur le premier élément (14a) et monté rotatif par rapport à ce premier élément (14a) autour d'un axe (16) faisant un angle a non nul avec l'axe (18) du premier tronçon (12) de la colonne, le dispositif comportant en outre des moyens commandés à distance pour solidariser en rotation les deux éléments tubulaires (14a, 14b) et des moyens commandés à distance pour déplacer en rotation, de manière réglée, le second élément (14b) par rapport au premier (14a), caractérisé par le fait que l'axe (16) du premier élément tubulaire rectiligne (14a) fait un angle non nul avec l'axe (18) du premier tronçon (12) de la colonne de forage et que les parties d'extrémité du premier et du second éléments tubulaires rectilignes (14a, 14b) sont reliées aux parties d'extrémité correspondantes du premier et du second tronçons (12, 13) de la colonne par l'intermédiaire de raccords tubulaires coudés rigides (15a, 15b) amovibles, chacune de ces parties d'extrémité des éléments tubulaires (14a, 14b) étant décalée dans une direction radiale par rapport à l'axe (18) du premier tronçon de la colonne.
2.- Dispositif de réglage d'orientation suivant la revendication 1, caractérisé par le fait que l'axe (16, 26, 46) du premier élément tubulaire rectiligne (14a, 24a, 44a) et l'axe (22) du second élément rectiligne (14b, 24b, 44b) sont placés dans l'alignement l'un de l'autre et que le second élément tubulaire (14b, 24b, 44b) est monté rotatif sur le premier élément tubulaire (14a, 24a, 44a) autour de l'axe commun (16, 26, 46) des deux éléments.
3. Dispositif de réglage d'orientation suivant la revendication 2, caractérisé par le fait que les parties d'extrémité du premier élément tubulaire (14a) et du second élément tubulaire (14b) sont décalées radialement, de part de d'autre de l'axe (18) du premier tronçon (12) de la colonne de forage, l'axe (16, 22) commun aux deux éléments tubulaires (14a, 14b) qui constitue l'axe de rotation de l'élément tubulaire (14b) par rapport à l'élément tubulaire (14a) coupant l'axe (18) du premier tronçon en un point (0) situé entre les parties d'extrémité des éléments tubulaires (14a, 14b).
4. Dispositif de réglage d'orientation suivant la revendication 2, caractérisé par le fait que les parties d'extrémité de l'élément tubulaire (24a, 44a) et de l'élément tubulaire (24b, 44b) sont décalées radialement par rapport à l'axe (28, 48) du premier tronçon de la colonne, d'un même côté de l'axe (28, 48) de la colonne, l'axe (26, 46) commun aux deux éléments tubulaires qui constitue l'axe de rotation du second élément tubulaire (24b, 44b) par rapport au premier (24a, 44a) coupant l'axe (28, 48) de la colonne en un point (0') situé dans une position éloignée des éléments tubulaires (24a, 44a) et (24b, 44b).
5. Dispositif de réglage d'orientation suivant la revendication 4, dans le cas où le premier tronçon de la colonne est un tronçon supérieur d'une colonne de forage et le second tronçon un tronçon inférieur comportant un moteur de fond (30) et un outil de forage (31) à son extrémité inférieure, caractérisé par le fait que le point (0') commun à l'axe (26) des éléments tubulaires (24a, 24b) et à l'axe (28) du tronçon supérieur de la colonne de forage est situé au voisinage du moteur de fond (30) et de l'outil de forage (31), ce point (0') constituant le centre de pivotement du tronçon inférieur de la colonne de forage par rapport au tronçon supérieur.
6. Dispositif de réglage d'orientation suivant l'une quelconque des revendications 4 et 5, caractérisé par le fait que le raccord tubulaire coudé (25b) assurant la liaison avec le second tronçon de la colonne est relié au second élément tubulaire rectiligne (24b), par l'intermédiaire d'un raccord tubulaire rectiligne (32) ayant pour axe, l'axe (26) commun aux éléments tubulaires (24a, 24b) et une longueur supérieure à la distance entre la partie d'extrémité du second élément tubulaire (24b) et le point de pivotement (0') situé sur l'axe (28), les raccords tubulaires coudés (25a, 25b) étant disposés de part et d'autre de l'axe (28) du premier tronçon de la colonne, dans le plan de symétrie défini par les axes (26, 28).
7.- Dispositif de réglage d'orientation suivant l'une quelconque des revendications 4 et 5, caractérisé par le fait que les raccords tubulaires coudés (45a, 45b) de raccordement des éléments tubulaires (44a, 44b) avec le premier tronçon et avec le second tronçon de la colonne respectivement sont disposés d'un même côté de l'axe (48) du premier tronçon de la colonne, dans le plan de symétrie défini par l'axe (48) du premier tronçon et l'axe (46) commun aux deux éléments tubulaires (14a, 44b).
8.- Dispositif de réglage d'orientation suivant la revendication 1, caractérisé par le fait que le second élément tubulaire (54b) est monté rotatif par rapport au premier élément tubulaire (54a) autour d'un axe (56) différent de l'axe (52) du premier élément tubulaire (54a) et de l'axe du second élément tubulaire (54b) faisant un angle a 2 non nul avec l'axe (58) du premier tronçon de la colonne.
EP88401619A 1987-06-30 1988-06-24 Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne Expired - Lifetime EP0298828B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8709230 1987-06-30
FR8709230A FR2617533B1 (fr) 1987-06-30 1987-06-30 Dispositif de reglage a distance de l'orientation relative de deux troncons d'une colonne de forage

Publications (2)

Publication Number Publication Date
EP0298828A1 EP0298828A1 (fr) 1989-01-11
EP0298828B1 true EP0298828B1 (fr) 1990-10-03

Family

ID=9352689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401619A Expired - Lifetime EP0298828B1 (fr) 1987-06-30 1988-06-24 Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne

Country Status (6)

Country Link
US (1) US4836303A (fr)
EP (1) EP0298828B1 (fr)
CA (1) CA1294604C (fr)
DE (1) DE3860741D1 (fr)
FR (1) FR2617533B1 (fr)
NO (1) NO302428B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641316B1 (fr) * 1988-12-30 1995-09-08 Inst Francais Du Petrole Garniture pour forage a trajectoire controlee comportant un element coude a angle variable et utilisation de cette garniture
US5139094A (en) * 1991-02-01 1992-08-18 Anadrill, Inc. Directional drilling methods and apparatus
US5117927A (en) * 1991-02-01 1992-06-02 Anadrill Downhole adjustable bent assemblies
US5673765A (en) * 1993-10-01 1997-10-07 Wattenburg; Willard H. Downhole drilling subassembly and method for same
US5445230A (en) * 1993-10-01 1995-08-29 Wattenburg; Willard H. Downhole drilling subassembly and method for same
CA2154135C (fr) * 1995-07-18 2000-08-15 Paul Noe Reduction fond de trou pour forage dirige
GB9523901D0 (en) * 1995-11-22 1996-01-24 Astec Dev Ltd Bend and orientation apparatus
US6394193B1 (en) 2000-07-19 2002-05-28 Shlumberger Technology Corporation Downhole adjustable bent housing for directional drilling
CA2353249A1 (fr) * 2001-07-18 2003-01-18 Maurice William Slack Centreur de tuyau et methode de fixation
US8453767B2 (en) * 2005-05-13 2013-06-04 Smith International, Inc. Angular offset PDC cutting structures
US20080142268A1 (en) * 2006-12-13 2008-06-19 Geoffrey Downton Rotary steerable drilling apparatus and method
GB201112104D0 (en) 2011-07-14 2011-08-31 Tercel Ip Ltd An improved directional drilling tool
CA2904774A1 (fr) 2013-03-15 2014-09-18 Tercel Ip Limited Systeme de forage directionnel de fond de trou
USD831077S1 (en) * 2017-03-20 2018-10-16 Klx Inc. Venturi jet basket
US11072998B2 (en) * 2019-11-26 2021-07-27 Halliburton Energy Services, Inc. Downhole tools, multi-lateral intervention systems and methods to deploy a tubular into a lateral borehole of a multi-lateral well
AU2021427194A1 (en) 2021-02-12 2023-06-22 Halliburton Energy Services, Inc. Lateral locating assembly for lateral intervention

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303135A (en) * 1977-08-18 1981-12-01 Benoit Lloyd F Directional drilling sub
US4220214A (en) * 1977-08-18 1980-09-02 Benoit Lloyd F Directional drilling sub
FR2453269A2 (fr) * 1979-04-06 1980-10-31 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2432079A1 (fr) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2453268A2 (fr) * 1978-07-24 1980-10-31 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2491989A2 (fr) * 1980-10-13 1982-04-16 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2519686A2 (fr) * 1978-07-24 1983-07-18 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2575793B1 (fr) * 1985-01-07 1987-02-27 Smf Int Dispositif d'actionnement a distance d'un equipement associe a un conduit dans lequel circule un fluide incompressible
FR2585760B1 (fr) * 1985-07-30 1987-09-25 Alsthom Dispositif deviateur pour forage, colonne de forage pour forage a deviations et procede de forage de puits avec deviations
US4745982A (en) * 1986-11-28 1988-05-24 Wenzel Kenneth H Adjustable bent sub

Also Published As

Publication number Publication date
FR2617533B1 (fr) 1994-02-11
NO302428B1 (no) 1998-03-02
DE3860741D1 (de) 1990-11-08
NO882909L (no) 1989-01-02
FR2617533A1 (fr) 1989-01-06
CA1294604C (fr) 1992-01-21
EP0298828A1 (fr) 1989-01-11
US4836303A (en) 1989-06-06
NO882909D0 (no) 1988-06-29

Similar Documents

Publication Publication Date Title
EP0298828B1 (fr) Dispositif de réglage à distance de l'orientation relative de deux tronçons d'une colonne
EP0456526B1 (fr) Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif
EP0517874B1 (fr) Dispositif comportant deux elements articules dans un plan, applique a un equipement de forage
CA2470081C (fr) Dispositif de calage variable de deux etages d'aubes fixe sur un turboreacteur
CA1132900A (fr) Connecteur a anneau tournant, en particulier pour colonne montante utilisee dans l'exploration ou la production petroliere en mer
CA2006939C (fr) Garniture de forage a trajectoire controlee comportant un stabilisateur a geometrie variable et utilisation de cette garniture
EP0068559B1 (fr) Roue destinée à coopérer avec un fluide
EP0212316B1 (fr) Colonne de forage pour forage à déviations, procédé d'utilisation de cette colonne et dispositif déviateur utilisé dans cette colonne
EP2004946A1 (fr) Dispositif d'orientation d'outils de forage
FR2627542A1 (fr) Dispositif de transfert de fluide entre le fond sous-marin et la surface
FR2579170A1 (fr) Organe de centrage d'un plateau oscillant, a bielles tangentielles, pour la commande du pas des pales d'un rotor d'helicoptere
FR2888859A1 (fr) Installation de realisation de paroi enterree par melange du sol avec un liant et procede de correction de trajectoire de la tete de forage d'une telle installation
FR2485675A1 (fr) Dispositif differentiel de mise en action a vis
EP0377373B1 (fr) Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture
FR2647873A1 (fr) Vanne pour la commande du debit d'un fluide
FR2495898A1 (fr) Dispositif pour couper simultanement deux tiges continues de cigarettes produites par une machine de fabrication de cigarettes
WO2011064467A1 (fr) Composants de garniture de forage et train de composants
CA1177055A (fr) Raccord coude a angle variable pour forages diriges
EP1498646A1 (fr) Dispositif de vanne
FR2743359A1 (fr) Treuil pour un element flexible continu
FR2579662A1 (fr) Dispositif de forage a trajectoire controlee
EP0546135A1 (fr) Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.
FR2473668A1 (fr) Liaison entre un fil de reaction et le tiroir d'un distributeur
EP0109905B1 (fr) Machine à cintrer les tubes
FR2645328A1 (fr) Dispositif de centrage d'un outil d'intervention dans un tube de generateur de vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19881222

17Q First examination report despatched

Effective date: 19890901

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3860741

Country of ref document: DE

Date of ref document: 19901108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020522

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020612

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020618

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030624

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050624