EP0546135A1 - Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary. - Google Patents

Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.

Info

Publication number
EP0546135A1
EP0546135A1 EP92912960A EP92912960A EP0546135A1 EP 0546135 A1 EP0546135 A1 EP 0546135A1 EP 92912960 A EP92912960 A EP 92912960A EP 92912960 A EP92912960 A EP 92912960A EP 0546135 A1 EP0546135 A1 EP 0546135A1
Authority
EP
European Patent Office
Prior art keywords
support
drill string
axis
drilling
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92912960A
Other languages
German (de)
English (en)
Other versions
EP0546135B1 (fr
Inventor
Jean Boulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0546135A1 publication Critical patent/EP0546135A1/fr
Application granted granted Critical
Publication of EP0546135B1 publication Critical patent/EP0546135B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • the invention relates to a device for adjusting the azimuth of the trajectory of a drilling tool in rotary mode.
  • the drilling tool In the case of rotary drilling, the drilling tool is driven in rotation by a drill string, one end of which is located on the surface and is connected to a means of rotary drive.
  • the axial force on the tool is also exerted via the drill string.
  • This adjustment can be relative to the inclination of the trajectory, that is to say to the angle of this trajectory with the vertical or to the azimuth of the trajectory, that is to say to the angular position of a vertical drilling plane containing the axis of the hole or well, with respect to a predetermined direction which is preferably the direction of magnetic north.
  • the devices and methods known to date for adjusting the azimuth of the trajectory of a rotary drilling tool use complex mechanical or electronic means comprising several moving parts and requiring either a mechanical anchoring of part of the device inside the hole for which drilling is carried out is an electronic identification of the adjustment means with respect to the vertical drilling plane containing the axis of the hole or well being drilled.
  • the devices according to the prior art which are used for adjusting the trajectory of a drilling tool include means making it possible to deflect the trajectory in the desired direction which are connected to the drill string and which have bearing surfaces on the surface of the hole or wellbore offset from the drill string. When the trajectory adjustment means are put into service, the bearing surfaces come into contact with the interior surface of the hole in a desired orientation.
  • the object of the invention is to propose a device for adjusting the azimuth of the trajectory of a drilling tool in rotary mode fixed to the end of a train of rods in rotation about its substantially arranged axis. along a vertical plane during the drilling of a hole, the azimuth of the trajectory being defined by the angular position of the vertical plane or drilling plane relative to a reference direction, this device requiring no anchoring in the well nor any identification of the adjustment means with respect to the drilling plan and making it possible to adjust the azimuth, both to the right and to the left of the drilling plan, in the direction of advancement of the drilling.
  • the device according to the invention consists of at least one rod train element integral with the rotating rod train and fixed on the drill string in the vicinity of the tool, comprising in cross section parts whose external support surfaces are arranged along a cylindrical surface having an axis coincident or substantially coincident with the axis of the drill string and a maximum diameter equal to or substantially equal to the nominal diameter of the hole, distributed around the axis of the drill string, so as to generate, during the rotation of the drill string, by reaction of the wall of the hole on the element, tilting forces of the tool drilling outside the drilling plan either to the right or to the left of the drilling plan, during part of a rotation of a full revolution of the drill string and to maintain the drill string substantially along the axis of the hole during the remaining part of the rotation.
  • Figure 1 is a schematic view of a rotary rotary drilling device.
  • FIG. 2 is a schematic perspective view of a rotary drilling tool with which an adjustment element according to the invention is associated.
  • FIG. 3 is a diagram showing the operating principle of the azimuth adjustment device according to the invention.
  • Figure 4 is a representation of the forces involved at the level of the adjusting element, in a plane perpendicular to the axis of the drill string.
  • Figure 5 is an elevational view of an adjusting element according to the invention.
  • Figure 6 is a cross-sectional view along 6-6 of Figure 5, in the case of an adjusting element for generating tilting forces of the drill string to the right.
  • Figure 7 is a cross-sectional view similar to the view of Figure 6 of an adjusting element for generating tilting forces of the drill string to the left.
  • FIG. 8 is a cross-sectional view similar to the views of FIGS. 6 and 7 of an adjustment element with variable diameter blades making it possible to generate tilting forces of the drill string either to the right or to the left.
  • FIG. 1 a rotary drilling device 1 can be seen, the drill string 2 of which carries a drilling tool 3 at its end in the process of advancing to produce the borehole 4.
  • the end of the drill string located opposite the tool 3 is connected to a rotary drive device 5 of the drill string 2 about its axis.
  • the rod 2a located at the upper part of the drill string 2 has a square section and the rotary drive means 5 of the drill string is constituted by a horizontal rotation table crossed by an opening allowing the engagement of the rod with square section.
  • the rotation of the table by a motor assembly makes it possible to drive the square cross-section rod 2a and the drill string 2 in rotation while allowing axial movement of the drill string to carry out the drilling.
  • the lower part of the drill string being mainte ⁇ naked in compression will exert an axial direction force on the drill string and on the tool allowing its application with sufficient pressure on the bottom of the borehole 4.
  • the upper end of the drill string constituting its first end, opposite the second end connected to the drilling tool 3, comprises a drilling fluid injection head 6 connected to the first rod 2a so as to inject into its internal bore the drilling fluid under pressure.
  • the drilling fluid flows in the axial direction, inside the drill string and over its entire length so as to reach the lower part of the drilling device, at the level of the tool 3.
  • the drilling fluid sweeps the bottom of the borehole 4 then rises to the surface in the annular space located between the drill string and the wall of the borehole by carrying out the driving of the rock debris torn off by the drilling tool 3.
  • the drilling fluid loaded with debris is collected bored on the surface, separated from debris and recycled in a tank 7.
  • a pump 8 allows the drilling fluid to be returned to the injection head 6.
  • the drilling device 1 comprises, in its lower part, a drill string element constituting an azimuth adjustment device 10 according to the invention which will be described in more detail with reference to FIG. 5 and to FIGS. 6 at 8.
  • the adjustment element 10 is connected directly to the drilling tool 3, by means of a junction zone 15 defining a bearing face of the lining 10 on the tool 3.
  • FIG. 2 we see the tool 3 connected to the adjustment element 10, via the junction zone 15, the element 10 itself being connected to the upper section 16 of the drill string, as shown in Figure 1.
  • the drilling tool 3 is rotated about the axis 14 of the drill string, so as to drill the hole 4.
  • the drill string is represented in a vertical position, but in the case of directional drilling, this drill string has a certain inclination relative to the vertical direction.
  • the tool 3, the element and the axis 14 of the drill string combined with the axis of the hole 4 have been shown in an inclined position.
  • the axis 14 of the drill string and the hole 4 is arranged in a vertical plane called "drilling plane".
  • transverse reactions include components located in the drilling plan, the result of which is shown diagrammatically in FIG. 2 by arrow 17. These transverse reactions also include components perpendicular to the drilling plan, the result of which is shown diagrammatically in FIG. 2 by arrow 18. These transverse components perpendicular to the drilling plane make it possible to adjust the azimuth of the trajectory, that is to say the angular position of the drilling plane with respect to a fixed reference. This result perpendicular to the drilling plane can be directed to the right or to the left, for an observer looking in the direction of advancement of the drilling.
  • the direction NM of the magnetic north is represented and the trace PF of the drilling plan which is the vertical plane containing the axis of the borehole or merged with the axis 14 of the drill string in position inclined by vertical when drilling, as shown in Figure 2.
  • the angle A determining the angular position of the drilling plan with respect to the magnetic north corresponds to the azimuth which is adjusted.
  • FIG. 4 represents the result of the transverse forces in the case where this resultant TD is directed upwards and to the right of the drilling plan and in the case where this resultant TG is directed upwards and to the left of the PF drilling plan.
  • the resulting forces TD and TG have an AN component in the vertical direction and upwardly directed drilling plane. This component allows adjustment of the inclination of the drill string and the hole.
  • the resultant TD has an azimuthal component ATD perpendicular to the drilling plane and directed to the right.
  • the resulting TG has an azi ⁇ mutual ATG component perpendicular to the drilling plane and directed to the left.
  • the azimuth adjustment device according to the invention consists of an element 10 integral with the rotating drill string and placed in the vicinity of the tool which is capable of generating, during the rotation of the drill string, by reaction of the wall of the hole on the element, a transverse force such as TD or TG having an azimuth component directed either to the right or to the left, according to the azimuth correction to be carried out at a given instant.
  • FIG 5 there is shown an element 10 whose profiled shape will be described below which is fixed to the drilling tool 3, at the bearing face 15, by its lower part, and to the upper section of the drill string by its upper end.
  • the element 10 has a profiled shape both in the axial direction 14 of the drill string and in the transverse planes 20 perpendicular to the axis 14.
  • the element can allow a tilting of the drill string and the tool to the right of the drilling plan (case of Figure 6), to the left of the drilling plan (case of Figure 7) or either to the right or to the left by controlling blades with variable diameter (case of Figure 8).
  • the maximum diameter of the element is substantially equal to the nominal diameter of the cross section of the hole 4.
  • the cross section of the element 10 has radial protrusions 21, 22, 23 and 24 separated by recessed portions 25.
  • the protrusions 21, 22 and 23 have surfaces external support located on a cylinder having an axis coincident or substantially coincident with the axis 14 of the drill string and the element and for diameter the diameter of the borehole 4.
  • the projecting portion 24 has an external surface in withdrawal of a distance e_ from the interior surface of the borehole 4.
  • the protruding parts 21, 22 and 23 constitute support blades comparable to the blades of a stabilizer for adjusting the trajectory of a drilling tool.
  • the protruding parts of the lining 10 have a maximum diameter equal to or slightly less than the nominal diameter of the borehole and the tilting of the drill string relative to the drilling plane is obtained dynamically during rotation of the element, under the effect of the reaction of the wall of the borehole on the element whose projecting parts are distributed circumferentially around the axis of the lining, so as to create an asymmetry of the forces.
  • the element 10 comprises a central channel 26 of axial direction making it possible to ensure continuity of the circulation of the drilling fluid between the upper section of the drill string and the drilling tool.
  • the projecting parts of the element 10 such that the projecting part 22 can be placed so that their longitudinal axis such as 27 is inclined relative to the axis 14 of the element and drill string.
  • the element 10 comprises a central part 28 in which the support blades have a maximum diameter corresponding substantially to the nominal diameter of the borehole and two inclined parts 29 and 30 placed on either side of the part 28 in which the diameter of the support blades is gradually decreasing towards the ends of the packing.
  • This profiled shape in the axial direction 14 of the element makes it possible to facilitate the engagement and progression of the element inside the borehole. It is obvious that the various parameters (angles or dimensions) defining the geometrical shape of the element 10 will be chosen by a person skilled in the art, depending on the use of the drill string.
  • the support parts 22 and 23 which are placed substantially 90 e apart from each other around the axis 14 of the lining comprise external surfaces of substantially cylindrical shape, the cross section of which consists of an arc -circle seen at an angle ⁇ 2 (or ⁇ 3) from the axis 14 of the element.
  • the angles ⁇ 2 and ⁇ 3 are substantially equal.
  • the projecting part 21 has an external bearing surface constituted by an arc of a circle whose opening angle ⁇ 1 from the axis 14 of the element is substantially less than ⁇ 2 and ⁇ 3.
  • the projecting part 21 is offset by an angle ⁇ with respect to the diametrical direction passing through the center of the support part 23.
  • the element 10 has been shown in a determined position during its rotation inside the borehole 4 whose axis 14 is inclined relative to the vertical.
  • the protruding part 23 of the element 10 is located at the upper part of the hole 4 and the part 21 in the vicinity of the lower generatrix of the borehole 4.
  • the section of the element shown in FIG. 6 is seen in a direction opposite to the direction of advancement F of the drilling.
  • the trace of the vertical drilling plane PF corresponds to the diameter of the cross section of the element on which the projecting part 23 is centered.
  • the offset ⁇ of the projecting part 21 co-bearing the small-sized bearing surface ⁇ l is oriented to the right of the drilling plane PF (in the opposite direction of drilling).
  • the surface of the element 10, at the level of the projecting part 21 is machined in relief, so as to constitute a recessed part inclined at an angle ⁇ with respect to the perpendicular to the diameter corresponding to the trace of the drilling plan PF.
  • a tilting of the element, the drill rod and the tool therefore occurs to the right of the drilling plan, which makes it possible to carry out a certain correction of the azimuth which is determined by the shape of the element 10.
  • Tipping can only occur when the support part 21 has returned to the lower part of the borehole.
  • the azimuth correction is always made to the right, using the trim as shown in Figure 6.
  • the tilting of the element to the right during part of the rotation is made possible by the absence of a bearing zone of the element 10 on the wall of the borehole on one side of the axial plane of the passing lining. by the support area 21 having a small opening angle ⁇ 1 and by the presence of a support area 22 having a large opening angle ⁇ 2 on the other side of the axial plane passing through the support area 21.
  • the essential parameters of the element defining its geometric shape are the small opening angle ⁇ l of one of the support zones, the offset angle ⁇ of this zone with low support surface relative to the axial plane passing through a support zone with a large opening ⁇ 3 and the distance s between the external surface of the element and the wall of the borehole, in a zone which is appreciably diametrically opposite to a support zone 22 with large opening angle ⁇ 2 interspersed between zones 21 and 23.
  • the geometry of the support zone 21 with a small opening is also defined by the angle of inclination ⁇ of the connection surface of this support zone allowing tilting to the right of the item.
  • FIG. 7 an element 10 ′ has been shown making it possible to tilt the drill string and the drilling tool to the left of the drilling plan, during the rotation of the drill string and the element .
  • 10 ′ is symmetrical with the shape of the cross section of the element 10 shown in FIG. 6, with respect to trace 32 (or 32 *) of the drilling plan, the element being placed relative to the drilling plan, in its position shown in FIG. 6.
  • Element 10 * has protruding parts 21 " , 22 *, 23 'and 24'.
  • the parts 21 ′, 22 ′, 23 ′ are situated on a cylinder whose axis is coincident or substantially coincident with the axis of the element and whose diameter corresponds substantially to the nominal diameter of the borehole.
  • the support parts 22 ′, 23 ′ which are arranged substantially 90 e from one another around the axis of the element have a large external surface of contact with the wall of the hole.
  • the support part 21 ' has a small contact surface and is arranged with an angular offset on one side of the drilling plane with respect to the support part 23' with a large surface located in the upper part of the drilling hole. drilling 4.
  • the fourth projecting part 24 ′ of the element 10 ′ has an external bearing surface whose distance from the axis 14 ′ of the element is less by a length e_ than the radius of the nominal section of the hole.
  • the element is machined in clearance from the projecting part 21 ', so as to allow a tilt to the left of the element and of the tool, when the lining is in a position close to the position shown in figure 7.
  • an adjustment element 40 for carrying out an azimuth adjustment, either to the left or to the right of the drilling plane, in the direction of advance of the tool drilling.
  • the element 40 is interposed on the drill string and integral with this drill string, in the vicinity of the drilling tool, in the manner which has been described with regard to the element 10.
  • the element 40 has a body which is substantially symmetrical with respect to an axial plane such as the trace plane PF in FIG. 8 which corresponds to the drilling plane, when the element is in its position shown in FIG. 8.
  • the body of the element 40 has two radial projecting parts 41 and 43, the cross sections of which are placed in substantially diametrically opposite positions on the section of a cylinder having the axis of the element axis and the diameter the nominal diameter of the borehole 4.
  • One of the projecting parts 41 has an external bearing surface of small dimensions, the body of the element 40 being machined in clearance on either side of the projecting part 41, with angles of inclination cxD and aG substantially equal.
  • the support part 43 opposite the support part 41 has a cylindrical shape and a large surface.
  • the body of the element 40 also comprises two projecting parts 42 and 44 whose radius is less by a length e_G (or ⁇ D) than the nominal radius of the borehole 4.
  • Two movable blades 45 and 46 in the radial direction are mounted respectively inside the projecting parts 42 and 44 of the body of the element 40.
  • the blades 45 and 46 can be moved between a retracted position inside the body of the element 40 (blade 45) and an extracted position (blade 46).
  • the external bearing surface of the blade of substantially cylindrical shape is placed along a cylindrical surface having the axis 48 of the element as its axis and the nominal diameter of the borehole 4 as substantially the diameter.
  • the blade In its retracted position, the blade is entirely housed in the body of the element 40, so that there remains a distance ED or _ ⁇ G between the external surface of the element and the internal wall of the hole 4.
  • the blades 45 and 46 can be moved between their retracted position and their extracted position, by a remote actuation device as described in French patent 2,575,793 and which can be used to actuate the blades of a diameter stabilizer varia ⁇ ble, as described in French patent 2,579,662.
  • the control of such an actuation device is ensured remotely by fixing the flow rate of circulation of the drilling fluid in the drill string at a determined value.
  • the actuation device used in the case of the azimuth adjustment element shown in FIG. 8 is such that it allows either the extraction of the blade 46 and the holding in the retracted position of the blade 45, as shown in FIG. 8, or on the contrary the extraction of the blade 45 and the maintenance in the retracted position of the blade 46.
  • the adjustment element 40 allows a correction of the azimuth of the trajectory of a drilling tool to the left.
  • the second configuration of the adjustment element 40 (blade 45 extracted and blade 46 retracted) allows correction of the azimuth of the trajectory to the right.
  • the remote actuation device for the blades 45 and 46 it is therefore possible to make corrections to the trajectory, during the rotation of the drill string, to the right or to the left.
  • the adjustment device has the advantage of carrying out dynamic adjustment of the azimuth, during the rotation of the drill string and without having to set up and orient a complex mechanical device.
  • the geometric shape of the cross section of the adjusting element can be different from the shape which has been described.
  • This adjustment element may include a number of support blades diffé ⁇ rent three, the distribution, shape and size of these support blades may be different from those which have been described.
  • one of the support blades it is necessary for one of the support blades to have an external contact surface of a much smaller dimension than the other support blades. It is also necessary that the element does not have bearing parts against the wall of the borehole on one side of an axial tilting plane and on the contrary comprises at least one bearing zone of the other side of the plan. There is thus obtained a tilting of the element and of the drilling tool during part of the rotation of the element, when the support zone of small dimensions is located in the vicinity of the lower part of the borehole. .
  • the action of the transverse reaction forces of the wall of the hole on the element produces a displacement of the axis of this element either to the right or to the left, so that during the rotation of a complete revolution of the element, the axis of the latter preferably moves to the right or to the left of the drilling plane, causing a displacement of the tool and a correction of the trajectory in azimuth, either to the right or to the left.
  • the element according to the invention may consist of one or more materials such as steels used for the manufacture of drilling equipment.
  • the projecting and / or supporting parts as already described may have, as shown in FIG. 6, zones 51, 52, 53, 54 having densities pi, p2, p3, p4 which may be different in order to accentuate the dynamic tilting effects if necessary.
  • control of these blades can be carried out by any remote actuation device using the circulation of the drilling fluid or another means, such as the pressure of a liquid or a gas.
  • the invention applies generally to the adjustment of the azimuth of the trajectory of a drilling tool, in the case of any drilling process in rotary mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

Le dispositif de réglage est constitué par au moins un élément de train de tiges (40) solidaire en rotation du train de tiges de forage et fixé sur le train de tiges au voisinage de l'outil de foage. L'élément (40) comporte des parties (41, 43, 46) dont les surfaces externes d'appui sont disposées suivant une surface cylindrique ayant pour axe sensiblement l'axe du train de tiges (48) et pour diamètre sensiblement le diamètre nominal du trou (4), réparties autour de l'axe de manière à engendrer, pendant une partie de la rotation du train de tiges, par réaction de la paroi du trou (4) sur l'élément (40), des forces de basculement de l'outil de forage en dehors du plan de forage. Les parties d'appui (45, 46) peuvent être constituées en partie par des lames mobiles à diamètre variable.

Description

DISPOSITIF DE REGLAGE DE L ' AZIMUT DE LA TRAJECTOIRE D ' UN OUTIL DE FORAGE EN MODE ROTARY
L'invention concerne un dispositif de réglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.
Dans le cas du forage rotary, l'outil de forage est entraîné en rotation par un train de tiges dont une extrémité située en surface est reliée à un moyen d'en¬ traînement en rotation.
L'effort axial sur l'outil est également exercé par l'intermédiaire du train de tiges. Dans les techniques actuelles de forage et en particulier dans le cas du forage pétrolier, on connaît des procédés et des dispositifs permettant d'effectuer un certain réglage à distance de la trajectoire de l'outil de forage. Ce réglage peut être relatif à l'inclinaison de la trajectoire, c'est-à-dire à l'angle de cette trajec¬ toire avec la verticale ou à l'azimut de la trajectoire, c'est-à-dire à la position angulaire d'un plan de forage vertical contenant l'axe du trou ou puits, par rapport à une direction prédéterminée qui est de préférence la direction du nord magnétique.
Les dispositifs et procédés connus à ce jour pour réaliser un réglage de l'azimut de la trajectoire d'un outil de forage rotary font appel à des moyens mécaniques ou électroniques complexes comportant plusieurs pièces mobiles et imposant soit un ancrage mécanique d'une partie du dispositif à l'intérieur du trou dont on réalise le forage soit un repérage électronique des moyens de réglage par rapport au plan vertical de forage contenant l'axe du trou ou puits en cours de forage.
Les dispositifs selon l'art antérieur qui sont utilisés pour effectuer un réglage de trajectoire d'un outil de forage comportent des moyens permettant de dévier la trajectoire dans le sens voulu qui sont reliés au train de tiges et qui comportent des surfaces d'appui sur la surface du trou ou puits de forage désaxées par rapport au train de tiges. Lorsque les moyens de réglage de la trajectoire sont mis en service, les surfaces d'appui viennent en contact avec la surface intérieure du trou dans une orientation voulue.
La mise en place et 1'actionnement de tels dispositifs de réglage sont généralement complexes. Ils imposent une immobilisation desdits dispositifs par rapport à la proi du trou de forage et impliquent l'utili- sation d'un moteur de fond.
Le but de l'invention est de proposer un dis¬ positif de réglage de l'azimut de la trajectoire d'un outil de forage en mode rotary fixé à l'extrémité d'un train de tiges en rotation autour de son axe disposé sensiblement suivant un plan vertical pendant le forage d'un trou, l'azimut de la trajectoire étant défini par la position angulaire du plan vertical ou plan de forage par rapport à une direction de référence, ce dispositif ne nécessitant aucun ancrage dans le puits ni aucun repérage des moyens de réglage par rapport au plan de forage et permettant de réaliser un réglage de l'azimut, aussi bien vers la droite que vers la gauche du plan de forage, dans le sens d'avancement du forage.
Dans ce but, le dispositif suivant l'invention est constitué par au moins un élément de train de tiges solidaire du train de tiges en rotation et fixé sur le train de tiges au voisinage de l'outil, comportant en section transversale des parties dont les surfaces exter¬ nes d'appui sont disposées suivant une surface cylindrique ayant un axe confondu ou sensiblement confondu avec l'axe du train de tiges et un diamètre maximal égal ou sensible¬ ment égal au diamètre nominal du trou, réparties autour de l'axe du train de tiges, de manière à engendrer, pendant la rotation du train de tiges, par réaction de la paroi du trou sur l'élément, des forces de basculement de l'outil de forage en dehors du plan de forage soit à droite, soit à gauche du plan de forage, pendant une partie d'une rotation d'un tour complet du train de tiges et à mainte¬ nir le train de tiges sensiblement suivant 1'axe du trou pendant la partie restante de la rotation.
Afin de bien faire comprendre l'invention, on va maintenant décrire à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, plusieurs modes de réalisation d'un dispositif de réglage de l'azimut de la trajectoire d'un outil de forage en mode rotary, suivant l'invention.
La figure 1 est une vue schématique d'un dis¬ positif de forage rotary.
La figure 2 est une vue en perspective schéma- tique d'un outil de forage rotary auquel est associée un élément de réglage suivant l'invention.
La figure 3 est un diagramme montrant le prin¬ cipe de fonctionnement du dispositif de réglage d'azimut suivant l'invention. La figure 4 est une représentation des forces mises en jeu au niveau de l'élément de réglage, dans un plan perpendiculaire à l'axe du train de tiges.
La figure 5 est une vue en élévation d'un élément de réglage suivant l'invention. La figure 6 est une vue en coupe transversale suivant 6-6 de la figure 5, dans le cas d'un élément de réglage permettant d'engendrer des forces de basculement du train de tiges vers la droite.
La figure 7 est une vue en coupe transversale analogue à la vue de la figure 6 d'un élément de réglage permettant d'engendrer des forces de basculement du train de tiges vers la gauche.
La figure 8 est une vue en coupe transversale analogue aux vues des figures 6 et 7 d'un élément de réglage à lames à diamètre variable permettant d'engendrer des forces de basculement du train de tiges soit vers la droite soit vers la gauche.
Sur la figure 1, on voit un dispositif de forage rotary 1 dont le train de tiges 2 porte à son extrémité un outil de forage 3 en cours d'avancement pour réaliser le trou de forage 4.
L'extrémité du train de tiges située à l'opposé de l'outil 3 est reliée à un dispositif d'entraînement en rotation 5 du train de tiges 2 autour de son axe. La tige 2a située à la partie supérieure du train de tiges 2 présente une section carrée et le moyen d'entraînement en rotation 5 du train de tiges est cons¬ titué par une table de rotation horizontale traversée par une ouverture permettant 1'engagement de la tige à section carrée. La mise en rotation de la table par un ensemble moteur permet d'entraîner la tige à section carrée 2a et le train de tiges 2 en rotation tout en permettant le déplacement axial du train de tiges pour réaliser le forage. La partie basse du train de tiges étant mainte¬ nue en compression exercera une force de direction axiale sur le train de tiges et sur l'outil permettant son application avec une pression suffisante sur le fond du trou de forage 4. En outre, l'extrémité supérieure du train de tiges constituant sa première extrémité, opposée à la seconde extrémité reliée à l'outil de forage 3, comporte une tête d'injection de fluide de forage 6 reliée à la première tige 2a de manière à injecter dans son alésage intérieur le fluide de forage sous pression. Le fluide de forage circule dans la direction axiale, à l'intérieur du train de tiges et sur toute sa longueur de manière à parvenir jusqu'à la partie inférieure du dispositif de forage, au niveau de l'outil 3. Le fluide de forage réalise le balayage du fond du trou de forage 4 puis remonte vers la surface dans l'espace annulaire situé entre le train de tiges et la paroi du trou de forage en réalisant l'entraînement des débris de roche arrachés par l'outil de forage 3. Le fluide de forage chargé de débris est récu¬ péré en surface, séparé des débris et recyclé dans un réservoir 7. Une pompe 8 permet de renvoyer le fluide de forage dans la tête d'injection 6.
Le dispositif de forage 1 comporte, dans sa partie inférieure, un élément de train de tiges de forage constituant un dispositif de réglage d'azimut 10 suivant l'invention qui sera décrit plus en détail en se référant à la figure 5 et aux figures 6 à 8.
L'élément de réglage 10 est relié directement à l'outil de forage 3, par l'intermédiaire d'une zone de jonction 15 définissant une face d'appui de la garniture 10 sur l'outil 3.
Sur la figure 2, on voit l'outil 3 relié à l'élément de réglage 10, par l'intermédiaire de la zone de jonction 15, l'élément 10 étant lui-même relié au tronçon supérieur 16 du train de tiges, comme représenté sur la figure 1. L'outil de forage 3 est mis en rotation autour de l'axe 14 du train de tiges, de manière à effectuer le forage du trou 4. Sur la figure 1, le train de tiges est repré¬ senté dans une position verticale mais, dans le cas d'un forage directionnel, ce train de tiges présente une certaine inclinaison par rapport à la direction verticale. Sur la figure 2, l'outil 3, l'élément et l'axe 14 du train de tiges confondu avec 1*axe du trou 4 ont été représentés dans une position inclinée. L'axe 14 du train de tiges et du trou 4 est disposé dans un plan vertical appelé "plan de forage".
Pendant le forage, des forces sont exercées sur la surface du trou de forage en particulier par l'outil et se traduisent par des réactions transversales qui sont transmises à l'outil et qui permettent de régler la tra¬ jectoire de l'outil 3.
Ces réactions transversales comportent des composantes situées dans le plan de forage dont la ré¬ sultante est schématisée sur la figure 2 par la flèche 17. Ces réactions transversales comportent également des composantes perpendiculaires au plan de forage dont la résultante est schématisée sur la figure 2 par la flèche 18. Ces composantes transversales perpendiculaires au plan de forage permettent de régler l'azimut de la trajectoire, c'est-à-dire la position angulaire du plan de forage par rapport à une référence fixe. Cette résultante perpendicu¬ laire au plan de forage peut être dirigée vers la droite ou vers la gauche, pour un observateur regardant dans la direction d'avancement du forage.
Cette résultante permet de réaliser un bascu¬ lement du train de tiges vers la droite ou vers la gauche par rapport au plan de forage et donc un réglage de l'azimut de la trajectoire de l'outil par contrôle de la composante transversale 18.
Sur la figure 3, on a représenté la direction NM du nord magnétrique et la trace PF du plan de forage qui est le plan vertical contenant 1'axe du trou de forage ou confondu avec 1'axe 14 du train de tiges en position inclinée par rapport à la verticale pendant le forage, comme il est représenté sur la figure 2.
L'angle A déterminant la position angulaire du plan de forage par rapport au nord magnétique correspond à l'azimut dont on effectue le réglage.
Les forces transversales mises en jeu pendant le forage ont été représentées sur la figure 4, dans un plan perpendiculaire au plan et à la direction de forage, pour un observateur regardant dans la direction F opposée à la direction d'avancement du forage. On a représenté sur la figure 4 la résultante des forces transversales dans le cas où cette résultante TD est dirigée vers le haut et vers la droite du plan de forage et dans le cas où cette résultante TG est dirigée vers le haut et vers la gauche du plan de forage PF. Les forces résultantes TD et TG ont une composante AN dans le plan de forage de direction verticale et dirigée vers le haut. Cette composante permet un réglage d'inclinaison du train de tiges et du trou. La résultante TD présente une composante azimutale ATD perpendiculaire au plan de forage et dirigée vers la droite.
La résultante TG présente une composante azi¬ mutale ATG perpendiculaire au plan de forage et dirigée vers la gauche. Le dispositif de réglage d'azimut suivant l'invention est constitué par un élément 10 solidaire du train de tiges en rotation et placé au voisinage de l'outil qui est susceptible d'engendrer, pendant la rotation du train de tiges, par réaction de la paroi du trou sur l'élément, une force transversale telle que TD ou TG ayant une composante azimutale dirigée soit vers la droite soit vers la gauche, suivant la correction d'azimut à réaliser à un instant donné.
Sur la figure 5, on a représenté un élément 10 dont la forme profilée sera décrite ci-après qui est fixé à l'outil de forage 3, au niveau de la face d'appui 15, par sa partie inférieure, et au tronçon supérieur du train de tiges par son extrémité supérieure.
L'élément 10 présente une forme profilée aussi bien dans la direction axiale 14 du train de tiges que dans les plans transversaux 20 perpendiculaires à l'axe 14.
La forme de la section transversale de l'élément 10 a été représentée sur les figures 6, 7 et 8 dans trois cas différents. Dans le cas d'un élément de réglage donné, les sections transversales de 1'élément par les plans 20 suc¬ cessifs ont des formes similaires modifiées de manière progressive du fait du profilage de l'élément dans la direction axiale 14.
Suivant la forme des sections transversales, l'élément peut permettre de réaliser un basculement du train de tiges et de l'outil vers la droite du plan de forage (cas de la figure 6), vers la gauche du plan de forage (cas de la figure 7) ou encore soit vers la droite soit vers la gauche par commande de lames à diamètre variable (cas de la figure 8).
Dans tous les cas, le diamètre maximal de l'élément est sensiblement égal au diamètre nominal de la section transversale du trou 4.
Comme il est visible sur la figure 6, la section transversale de l'élément 10 présente des parties en saillie radiales 21, 22, 23 et 24 séparées par des parties en creux 25. Les parties en saillie 21, 22 et 23 comportent des surfaces externes d'appui situées sur un cylindre ayant un axe confondu ou sensiblement confondu avec l'axe 14 du train de tiges et de 1'élément et pour diamètre le diamètre du trou de forage 4. La partie en saillie 24 comporte une surface externe en retrait d'une distance e_ par rapport à la surface intérieure du trou de forage 4.
Les parties en saillie 21, 22 et 23 constituent des lames d'appui comparables aux lames d'un stabilisateur de réglage de la trajectoire d'un outil de forage. Cepen¬ dant, les parties en saillie de la garniture 10 présentent un diamètre maximal égal ou légèrement inférieur au diamètre nominal du trou de forage et le basculement du train de tiges par rapport au plan de forage est obtenu de manière dynamique, lors de la rotation de l'élément, sous l'effet de la réaction de la paroi du trou de forage sur l'élément dont les parties en saillie sont réparties circonférentiellement autour de l'axe de la garniture, de manière à créer une dissymétrie des efforts. Dans le cas des stabilisateurs de type classique utilisés avec moteur de fond pour le contrôle de l'azimut, des efforts statiques transversaux sont créés par l'excen¬ trâtion permanente de 1'axe des saillies par rapport à l'axe du train de tiges, ce qui impose donc une immobili- sation dudit train de tiges pour effectuer le contrôle.
L'élément 10 comporte un canal central 26 de direction axiale permettant d'assurer une continuité de la circulation du fluide de forage entre le tronçon supérieur du train de tiges et l'outil de forage. Comme il est visible sur la figure 5, les par¬ ties en saillie de l'élément 10 telles que la partie en saillie 22 peuvent être placées de manière que leur axe longitudinal tel que 27 soit incliné par rapport à l'axe 14 de l'élément et du train de tiges. L'élément 10 comporte une partie centrale 28 dans laquelle les lames d'appui présentent un diamètre maximal correspondant sensiblement au diamètre nominal du trou de forage et deux parties inclinées 29 et 30 placées de part et d'autre de la partie 28 dans lesquelles le dia- mètre des lames d'appui est progressivement décroissant vers les extrémités de la garniture. Cette forme profilée dans la direction axiale 14 de l'élément permet de facili¬ ter 1'engagement et la progression de 1'élément à 1'inté¬ rieur du trou de forage. II est bien évident que les différents paramè¬ tres (angles ou dimensions) définissant la forme géomé¬ trique de l'élément 10 seront choisies par l'homme du métier, en fonction de l'utilisation du train de tiges.
Les caractéristiques essentielles de l'élément de réglage relatives à la forme et à la répartition des parties d'appui en saillie sont visibles sur la section transversale de cet élément représenté sur la figure 6.
Les parties d'appui 22 et 23 qui sont placées sensiblement à 90e l'une de l'autre autour de l'axe 14 de la garniture comportent des surfaces externes de forme sensiblement cylindrique dont la section transversale est constituée par un arc-de-cercle vu sous un angle β2 (ou β3) depuis l'axe 14 de l'élément. Les angles β2 et β3 sont sensiblement égaux. La partie en saillie 21 présente une surface externe d'appui constituée par un arc de cercle dont l'angle d'ouverture βl depuis l'axe 14 de l'élément est sensiblement inférieur à β2 et β3.
En outre, la partie en saillie 21 est décalée d'un angle γ par rapport à la direction diamétrale passant par le centre de la partie d'appui 23.
Sur la figure 6, l'élément 10 a été représenté dans une position déterminée pendant sa rotation à 1'inté¬ rieur du trou de forage 4 dont l'axe 14 est incliné par rapport à la verticale.
La partie en saillie 23 de l'élément 10 se trouve à la partie supérieure du trou 4 et la partie 21 au voisinage de la génératrice inférieure du trou de forage 4. La section de l'élément représenté sur la figure 6 est vue dans une direction opposée à la direction d'avancement F du forage. La trace du plan de forage vertical PF cor¬ respond au diamètre de la section transversale de l'élé¬ ment sur lequel est centrée la partie en saillie 23.
Le décalage γ de la partie en saillie 21 co - portant la surface d'appui de petite dimension βl est orienté vers la droite du plan de forage PF (suivant le sens inverse du forage).
La surface de l'élément 10, au niveau de la partie en saillie 21 est usinée en dépouille, de manière à constituer une partie en retrait inclinée d'un angle α par rapport à la perpendiculaire au diamètre correspondant à la trace du plan de forage PF.
Lorsque le train de tiges et l'élément sont mis en rotation, par exemple dans le sens de la flèche 31, les réactions de la paroi du trou sur l'élément 10 sont réparties de manière dissymétrique par rapport à l'axe 14 de l'élément, du fait de la répartition circonférentielle dissymétrique des surfaces externes d'appui des parties en saillie. La résultante des forces transversales de réaction sera dirigée vers la droite du plan de forage PF si l'on considère la direction d'avancement du forage.
Un basculement de l'élément, de la tige de forage et de 1'outil se produit donc vers la droite du plan de forage, ce qui permet de réaliser une certaine correction de 1'azimut qui est déterminée par la forme de l'élément 10.
Au cours de la rotation du train de tiges et de l'élément de réglage dans le sens de la flèche 31, le basculement de 1'élément et de la tige de forage vers la droite diminue progressivement alors que le basculement de la tige vers le bas augmente au cours de la rotation.
Lorsque 1'élément a tourné d'un angle sensible¬ ment égal à 90e, depuis sa position représentée sur la figure 6, le basculement de l'élément ne se produit plus que dans la direction verticale et vers le bas, c'est-à- dire dans le plan de forage.
Aucune correction d'azimut n'est effectuée pendant cette partie de la rotation. Lorsque la partie d'appui 21 de l'élément se trouve au voisinage de la génératrice supérieure du trou de forage 4, après un demi-tour de l'élément, la partie en saillie 23 de l'élément est en appui sur la partie infé¬ rieure du trou et l'élément et le train de tiges sont maintenus parfaitement dans une direction correspondant à l'axe du trou.
Un basculement ne peut se produire que lorsque la partie d'appui 21 est revenue dans la partie inférieure du trou de forage. La correction d'azimut s'effectue toujours vers la droite, en utilisant la garniture telle que représentée sur la figure 6.
Le basculement de l'élément vers la droite pendant une partie de la rotation est rendu possible par l'absence de zone d'appui de l'élément 10 sur la paroi du trou de forage d'un côté du plan axial de la garniture passant par la zone d'appui 21 ayant un faible angle d'ouverture βl et par la présence d'une zone d'appui 22 ayant un grand angle d'ouverture β2 de 1'autre côté du plan axial passant par la zone d'appui 21.
Les paramètres essentiels de l'élément définis¬ sant sa forme géométrique sont l'angle d'ouverture faible βl de l'une des zones d'appui, l'angle de décalage γ de cette zone à faible surface d'appui par rapport au plan axial passant par une zone d'appui à grande ouverture β3 et la distance s entre la surface externe de l'élément et la paroi du trou de forage, dans une zone opposée sensi¬ blement diamétralement à une zone d'appui 22 à grand angle d'ouverture β2 intercalée entre les zones 21 et 23. La géométrie de la zone d'appui 21 à faible ouverture est définie également par l'angle d'inclinaison α de la surface de raccordement de cette zone d'appui permettant le basculement vers la droite de l'élément.
Sur la figure 7, on a représenté un élément 10' permettant de réaliser un basculement du train de tiges et de l'outil de forage vers la gauche du plan de forage, au cours de la rotation du train de tiges et de l'élément.
La forme de la section transversale de l'élément
10' est symétrique de la forme de la section transversale de l'élément 10 représenté sur la figure 6, par rapport à la trace 32 (ou 32*) du plan de forage, l'élément étant placé par rapport au plan de forage, dans sa position représentée sur la figure 6.
L'élément 10* comporte des parties en saillie 21», 22*, 23' et 24'.
Les parties 21' , 22' , 23' sont situées sur un cylindre dont l'axe est confondu ou sensiblement confondu avec 1'axe de 1'élément et dont le diamètre correspond sensiblement au diamètre nominal du trou de forage. Les parties d'appui 22', 23' qui sont disposées sensiblement à 90e l'une de l'autre autour de l'axe de l'élément ont une grande surface externe de contact avec la paroi du trou. La partie d'appui 21' présente une faible surface de contact et se trouve disposée avec un décalage angulaire d'un côté du plan de forage par rapport à la partie d'appui 23' à grande surface située dans la partie supérieure du trou de forage 4.
La quatrième partie en saillie 24' de l'élément 10' présente une surface d'appui externe dont la distance à l'axe 14' de l'élément est inférieure d'une longueur e_ au rayon de la section nominale du trou.
L'élément est usiné en dépouille à partir de la partie en saillie 21' , de manière à permettre un bascule¬ ment vers la gauche de l'élément et de l'outil, lorsque la garniture est dans une position voisine de la position représentée sur la figure 7.
Sur la figure 8, on a représenté un élément de réglage 40 suivant l'invention permettant de réaliser un réglage d'azimut, soit vers la gauche, soit vers la droite du plan de forage, dans le sens d'avancement de l'outil de forage.
L'élément 40 est intercalé sur le train de tiges et solidaire de ce train de tiges, au voisinage de l'outil de forage, de la manière qui a été décrite en ce qui concerne l'élément 10. L'élément 40 comporte un corps sensiblement symétrique par rapport à un plan axial tel que le plan de trace PF sur la figure 8 qui correspond au plan de forage, lorsque l'élément est dans sa position représentée sur la figure 8.
Le corps de 1'élément 40 comporte deux parties en saillie radiales 41 et 43 dont les sections transversa¬ les sont placées dans des positions sensiblement opposées diamétralement sur la section d'un cylindre ayant pour axe 1'axe de l'élément et pour diamètre le diamètre nominal du trou de forage 4.
L'une des parties en saillie 41 comporte une surface externe d'appui de faibles dimensions, le corps de l'élément 40 étant usiné en dépouille de part et d'autre de la partie en saillie 41, avec des angles d'inclinaison cxD et aG sensiblement égaux.
La partie d'appui 43 opposée à la partie d'appui 41 présente une forme cylindrique et une surface importan¬ te. Le corps de 1'élément 40 comporte également deux parties en saillie 42 et 44 dont le rayon est inférieur d'une longueur e_G (ou ÊD) au rayon nominal du trou de forage 4.
Deux lames mobiles 45 et 46 dans la direction radiale sont montées respectivement à l'intérieur des parties en saillie 42 et 44 du corps de l'élément 40.
Les lames 45 et 46 peuvent être déplacées entre une position rétractée à 1'intérieur du corps de 1'élément 40 (lame 45) et une position extraite (lame 46). Dans sa position extraite, la surface extérieure d'appui de la lame de forme sensiblement cylindrique se trouve placée suivant une surface cylindrique ayant pour axe l'axe 48 de l'élément et pour diamètre sensiblement le diamètre nominal du trou de forage 4. Dans sa position rétractée, la lame se trouve entièrement logée dans le corps de l'élément 40, de manière qu'il subsiste une distance ÊD ou _≥G entre la surface externe de 1'élément et la paroi intérieure du trou 4.
Les lames 45 et 46 peuvent être déplacées entre leur position rétractée et leur position extraite, par un dispositif d'actionnement à distance tel que décrit dans le brevet français 2.575.793 et qui peut être utilisé pour actionner les lames d'un stabilisateur à diamètre varia¬ ble, comme décrit dans le brevet français 2.579.662. La commande d'un tel dispositif d'actionnement est assurée à distance en fixant le débit de circulation du fluide de forage dans le train de tiges à une valeur déterminée. Le dispositif d'actionnement utilisé dans le cas de l'élément de réglage d'azimut représenté sur la figure 8 est tel qu'il permette de réaliser soit l'extraction de la lame 46 et le maintien en position rétractée de la lame 45, comme représenté sur la figure 8, ou au contraire l'extraction de la lame 45 et le maintien en position rétractée de la lame 46.
Dans sa configuration représentée sur la figure 8, l'élément de réglage 40 permet de réaliser une correc¬ tion de l'azimut de la trajectoire d'un outil de forage vers la gauche.
La seconde configuration de l'élément de réglage 40 (lame 45 extraite et lame 46 rétractée) permet de réaliser une correction de l'azimut de la trajectoire vers la droite. En utilisant le dispositif d'actionnement à distance des lames 45 et 46, on peut donc effectuer des corrections de la trajectoire, pendant la rotation du train de tiges, vers la droite ou vers la gauche.
Le dispositif de réglage suivant l'invention présente l'avantage d'effectuer un réglage dynamique de l'azimut, pendant la rotation du train de tiges et sans avoir à mettre en place et à orienter un dispositif mécanique complexe.
Dans le cas d'un élément comportant des lames qui peuvent être placées dans une position rétractée ou dans une position extraite, on peut réaliser des correc¬ tions d'azimut, successivement à droite et à gauche du plan de forage, pour maintenir la trajectoire de l'outil de forage, suivant une direction déterminée. L'invention ne se limite pas au mode de réali¬ sation qui a été décrit.
C'est ainsi que la forme géométrique de la section transversale de 1*élément de réglage peut être différente de la forme qui a été décrite. Cet élément de réglage peut comporter un nombre de lames d'appui diffé¬ rent de trois, la répartition, la forme et la dimension de ces lames d'appui pouvant être différentes de celles qui ont été décrites.
Cependant, il est nécessaire que l'une des lames d'appui présente une surface de contact externe d'une dimension beaucoup plus faible que les autres lames d'appui. Il est nécessaire également que 1'élément ne comporte pas de parties d'appui contre la paroi du trou de forage d'un côté d'un plan axial de basculement et com- porte au contraire au moins une zone d'appui de l'autre côté du plan. On obtient ainsi un basculement de l'élément et de l'outil de forage pendant une partie de la rotation de l'élément, lorsque la zone d'appui de petites dimen¬ sions se trouve au voisinage de la partie inférieure du trou de forage.
Il est bien évident que la forme et les dimen¬ sions de l'élément sont définies par les conditions d'utilisation du train de tiges et que l'homme de métier pourra concevoir un tel élément en utilisant les connais- sances habituelles relatives aux éléments de train de tiges de forage.
L'action des forces transversales de réaction de la paroi du trou sur 1'élément produit un déplacement de 1'axe de cet élment soit vers la droite soit vers la gau¬ che, de sorte que pendant la rotation d'un tour complet de l'élément, l'axe de celui-ci se déplace préférentiellement à droite ou à gauche du plan de forage, entraînant un déplacement de l'outil et une correction de la trajectoire en azimut, soit vers la droite soit vers la gauche.
Il est bien évident également que l'élément suivant 1'invention peut être constituée par un ou plu¬ sieurs matériaux tels que des aciers utilisés pour la fabrication des équipements de forage. De plus, les parties en saillie et/ou d'appui telles que déjà décrites pourront présenter, comme repré¬ senté sur la figure 6, des zones 51, 52, 53, 54 ayant des masses volumiques pi, p2, p3, p4 qui pourront être diffé¬ rentes afin d'accentuer si nécessaire les effets dynami- ques de basculement.
Dans le cas d'une garniture comportant des lames à diamètre variable, la commande de ces lames peut être effectuée par tout dispositif d'actionnement à distance utilisant la circulation du fluide de forage ou un autre moyen, tel que la pression d'un liquide ou d'un gaz.
L'invention s'applique de manière générale au réglage de l'azimut de la trajectoire d'un outil de forage, dans le cas de tout procédé de forage en mode rotary.

Claims

REVENDICATIONS 1.- Dispositif de réglage de l'azimut de la trajectoire d'un outil de forage en mode rotary (3) fixé à l'extrémité d'un train de tiges (2) en rotation autour de son axe disposé sensiblement suivant un plan vertical pendant le forage d'un trou (4), l'azimut de la trajec¬ toire étant défini par la position angulaire du plan vertical ou plan de forage par rapport à une direction de référence, caractérisé par le fait qu'il est constitué par au moins un élément de train de tiges (10) solidaire du train de tiges (2) en rotation et fixé sur le train de tiges au voisinage de l'outil (3), comportant en section transversale des parties (21, 22, 23 ; 21', 22', 23' ; 41, 43, 45, 46) dont les surfaces externes d'appui sont disposées suivant une surface cylindrique ayant un axe confondu ou sensiblement confondu avec l'axe (14) du train de tiges et un diamètre maximal égal ou sensiblement égal au diamètre nominal du trou (4), réparties autour de 1'axe (14) du train de tiges de manière à engendrer, pendant la rotation du train de tiges (2), par réaction de la paroi du trou (4) sur 1'.élément (10), des forces de basculement de l'outil de forage (3) en dehors du plan de forage soit à droite, soit à gauche du plan de forage, pendant une partie d'une rotation d'un tour complet du train de tiges (2) et à maintenir le train de tiges (2) sensiblement suivant 1'axe du trou pendant la partie restante de la rotation.
2.- Dispositif suivant la revendication 1, caractérisé par le fait que l'élément (10, 10') comporte au moins trois parties en saillie radiales (21, 22, 23 ; 21', 22', 23') dirigées vers l'extérieur et disposées sensiblement à 90° les unes des autres autour de l'axe (14) de la garniture (10, 10'), l'une des parties d'appui (21, 21') comportant une surface externe d'appui d'une dimension sensiblement inférieure à la dimension des surfaces externes d'appui des deux autres parties en saillie (22, 23 ; 22', 23*) et la partie d'appui (21, 21') ayant une surface externe d'appui de petite dimension étant placée dans une position sensiblement opposée diamétralement par rapport à 1'une des parties d'appui (23, 23' ) comportant une surface externe d'appui de grande dimension, de telle sorte que l'élément comporte une partie d'appui (22, 22') d'un côté d'un plan axial de basculement passant par la partie d'appui (21, 21') ayant une surface externe d'appui de petite dimension et aucune surface d'appui sur la paroi du trou de forage (4) de l'autre côté du plan de basculement.
3.- Dispositif suivant la revendication 2, caractérisé par le fait que l'élément comporte d'un côté du plan de basculement où l'élément ne comporte pas de partie d'appui sur la paroi du trou de forage (4), une partie en saillie (24) de forme sensiblement cylindrique ayant pour axe l'axe (14) de l'élément dont le rayon est inférieur d'une longueur e_ au rayon nominal du trou de forage.
4.- Dispositif suivant l'une quelconque des revendications 2 et 3, caractérisé pa le fait que l'élé¬ ment (10, 10') comporte un usinage en contre-dépouille incliné d'un angle α vers 1'intérieur délimitant la partie d'appui ayant une surface externe d'appui de petite dimension.
5.- Dispositif suivant l'une quelconque des revendications 2 à 4, caractérisé par le fait que la partie d'appui (21, 21' ) ayant une surface externe d'appui de petite dimension est décalée d'un angle γ, soit vers la droite soit vers la gauche, par rapport à un plan diamé¬ tral passant par le centre de la surface d'appui de la partie d'appui (23, 23') de grande dimension disposée sensiblement dans une position diamétralement opposée par rapport à la partie d'appui (21, 21') ayant une surface externe d'appui de petite dimension.
6.- Dispositif suivant la revendication 1, caractérisé par le fait que 1'élément de réglage (40) comporte un corps ayant deux parties (41, 43) en saillie radiale vers l'extérieur dont les sections par un plan transversal perpendiculaire à l'axe (48) de l'élément sont placées sensiblement dans des positions diamétralement opposées l'une par rapport à l'autre, l'une de ces parties d'appui en saillie ayant une surface externe d'appui de petite dimension par rapport à la surface externe d'appui de la seconde d'appui (43), et deux lames d'appui à diamètre variable (45, 46) placées dans des positions sensiblement diamétralement opposées dans la section transversale de l'élément et à sensible¬ ment 90° par rapport aux parties d'appui (41, 43), les lames d'appui (45, 46) étant associées à un moyen d'ac¬ tionnement permettant d'obtenir alternativement leur extraction ou leur rétraction de manière indépendante.
7.- Dispositif suivant la revendication 6, caractérisé par le fait que le corps de l'élément de réglage (40) est usiné pour constituer des dépouilles inclinées d'un angle aG, αD de part et d'autre de la partie d'appui (41) ayant une surface externe d'appui de faibles dimensions.
8.- Dispositif suivant l'une quelconque des revendications 6 et 7, caractérisé par le fait que les lames d'appui (45, 46) sont mobiles dans une direction radiale entre leur position rétractée à 1'intérieur du corps de l'élément (40) et leur position extraite, d'une distance _≥G,e.D, de manière que la surface extérieure de chacune des lames (45, 46) dans leur position extraite se trouve suivant un cylindre ayant pour axe sensiblement l'axe (48) de la garniture et pour diamètre sensiblement le diamètre du trou de forage et dans une position en retrait de la distance radiale e_G, ÊD, dans leur position rétractée.
9.- Dispositif suivant l'une quelconque des revendications 1 à 8, caractérisé par le fait que les parties d'appui (21, 22, 23, 21', 22', 23', 41, 4243, 44) et les parties en saillie (24, 24') comportent des zones (51, 52, 53, 54) en des matériaux ayant des masses volumi- ques différents.
EP92912960A 1991-07-04 1992-06-24 Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary Expired - Lifetime EP0546135B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9108405 1991-07-04
FR9108405A FR2678678A1 (fr) 1991-07-04 1991-07-04 Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.
PCT/FR1992/000578 WO1993001390A1 (fr) 1991-07-04 1992-06-24 Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary

Publications (2)

Publication Number Publication Date
EP0546135A1 true EP0546135A1 (fr) 1993-06-16
EP0546135B1 EP0546135B1 (fr) 1996-02-21

Family

ID=9414729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912960A Expired - Lifetime EP0546135B1 (fr) 1991-07-04 1992-06-24 Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary

Country Status (6)

Country Link
US (1) US5350028A (fr)
EP (1) EP0546135B1 (fr)
CA (1) CA2090676A1 (fr)
FR (1) FR2678678A1 (fr)
NO (1) NO304034B1 (fr)
WO (1) WO1993001390A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429869A (en) * 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
FR2747427B1 (fr) * 1996-04-15 1998-07-03 Elf Aquitaine Stabilisateur recompacteur pour le forage de puits petroliers
US6758116B2 (en) * 2001-06-28 2004-07-06 Porter-Cable/Delta Depth adjusting system for a screw gun
CN110847822A (zh) * 2019-12-24 2020-02-28 西南石油大学 一种遥控可变径稳定器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092188A (en) * 1961-07-31 1963-06-04 Whipstock Inc Directional drilling tool
US3825081A (en) * 1973-03-08 1974-07-23 H Mcmahon Apparatus for slant hole directional drilling
US3851719A (en) * 1973-03-22 1974-12-03 American Coldset Corp Stabilized under-drilling apparatus
NO820347L (no) * 1981-02-07 1982-08-09 Drilling & Service Uk Ltd Verktoey for undergrunnsformasjoner
ATE15927T1 (de) * 1982-02-02 1985-10-15 Shell Int Research Verfahren und vorrichtung zum regeln der bohrlochrichtung.
FR2544375B1 (fr) * 1983-04-18 1985-10-25 Alsthom Atlantique Procede de forage avec deviation par sabot excentreur
FR2579662B1 (fr) * 1985-04-02 1989-11-10 Smf Int Dispositif de forage a trajectoire controlee
GB8708791D0 (en) * 1987-04-13 1987-05-20 Shell Int Research Assembly for directional drilling of boreholes
GB8709229D0 (en) * 1987-04-16 1987-05-20 Shell Int Research Tubular element
US4804051A (en) * 1987-09-25 1989-02-14 Nl Industries, Inc. Method of predicting and controlling the drilling trajectory in directional wells
US4982802A (en) * 1989-11-22 1991-01-08 Amoco Corporation Method for stabilizing a rotary drill string and drill bit
DE4017761A1 (de) * 1990-06-01 1991-12-05 Eastman Christensen Co Bohrwerkzeug zum abteufen von bohrungen in unterirdische gesteinsformationen
US5181576A (en) * 1991-02-01 1993-01-26 Anadrill, Inc. Downhole adjustable stabilizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9301390A1 *

Also Published As

Publication number Publication date
CA2090676A1 (fr) 1993-01-05
US5350028A (en) 1994-09-27
FR2678678A1 (fr) 1993-01-08
WO1993001390A1 (fr) 1993-01-21
NO304034B1 (no) 1998-10-12
NO930777D0 (no) 1993-03-03
EP0546135B1 (fr) 1996-02-21
NO930777L (no) 1993-05-03

Similar Documents

Publication Publication Date Title
CA1277975C (fr) Procede pour la realisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procede
EP0506689B1 (fr) Outil de forage destine a elargir un puits
CA2276851C (fr) Dispositif et methode de controle de la trajectoire d'un forage
EP0456526B1 (fr) Dispositif et procédé pour le réglage en azimut de la trajectoire d'un outil de forage rotatif
CA2006939C (fr) Garniture de forage a trajectoire controlee comportant un stabilisateur a geometrie variable et utilisation de cette garniture
EP0136935B1 (fr) Dispositif de forage et de mise en production pétrolière multidrains
FR2493908A1 (fr) Stabilisateur pour ensemble tubulaire allonge pour entrainer en rotation un trepan dans un sondage
CA2006920C (fr) Equipement pour garniture de forage comportant un element a actionner, un moteur et des moyens de commande
EP0072072A1 (fr) Dispositif de forage
EP0212316B1 (fr) Colonne de forage pour forage à déviations, procédé d'utilisation de cette colonne et dispositif déviateur utilisé dans cette colonne
EP1525371A1 (fr) Conduite de guidage telescopique de forage en mer
EP3645823A1 (fr) Systeme de forage vertical de type tariere muni d'un dispositif de correction de trajectoire
FR2641316A1 (fr) Garniture pour forage a trajectoire controlee comportant un element coude a angle variable et utilisation de cette garniture
CA1294604C (fr) Dispositif de reglage a distance de l'orientation relative de deux troncons d'une colonne
FR2607183A1 (fr) Appareil de forage, notamment elargisseur, et bras de coupe pour un tel appareil
EP0546135B1 (fr) Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary
FR2580720A1 (fr) Systeme de forage de puits par vibrations
FR2579662A1 (fr) Dispositif de forage a trajectoire controlee
EP1514995B1 (fr) Installation de forage à tête rotative
FR2997439A1 (fr) Dispositif stabilisateur pour garniture de fond de puits
FR2622920A1 (fr) Dispositif de reglage de la direction d'avancement d'un outil de forage et procede de reglage correspondan
EP1085166A1 (fr) Fleuret hélicoidal
WO1997027379A1 (fr) Outil de forage
BE886147A (fr) Stabilisateur de forage.
FR2819850A1 (fr) Outil de forage a jet de liquide sous pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL

17Q First examination report despatched

Effective date: 19940601

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960221

ITF It: translation for a ep patent filed

Owner name: CONCESSA PROROGA DI 6 MESI A PARTIRE DA:;MARIETTI

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000407

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000630

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050624