EP0455258A1 - Verfahren zum Antrieb eines pneumatischen Motors und Vorrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zum Antrieb eines pneumatischen Motors und Vorrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0455258A1
EP0455258A1 EP91107221A EP91107221A EP0455258A1 EP 0455258 A1 EP0455258 A1 EP 0455258A1 EP 91107221 A EP91107221 A EP 91107221A EP 91107221 A EP91107221 A EP 91107221A EP 0455258 A1 EP0455258 A1 EP 0455258A1
Authority
EP
European Patent Office
Prior art keywords
pressure
working
cylinder
piston plate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91107221A
Other languages
English (en)
French (fr)
Other versions
EP0455258B1 (de
Inventor
Wolfgang Barth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904031324 external-priority patent/DE4031324A1/de
Application filed by Individual filed Critical Individual
Priority to AT91107221T priority Critical patent/ATE87351T1/de
Publication of EP0455258A1 publication Critical patent/EP0455258A1/de
Application granted granted Critical
Publication of EP0455258B1 publication Critical patent/EP0455258B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/047Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with rack and pinion

Definitions

  • the invention relates to a novel method for driving a pneumatic motor and a device for performing the method.
  • the novel method replaces conventional gasoline or diesel engines or internal combustion engines of all kinds. All previously known methods and devices for driving engines have the disadvantage that they have a relatively low efficiency.
  • the invention has for its object to provide a method and an apparatus for performing the method, which has a system with which a much larger power factor than that which was possible with previously known engines can be achieved and with which it is possible to drive energy to use in an economical and effective way.
  • the object is achieved by the characterizing features of method claim 1, further developments being achieved by method claims 2, 3 and 4; the object is also achieved by the characterizing features of claim 5, further configurations being achieved by the features of claims 5-10.
  • a table (A) is attached, which gives the percentages of pressure recovery that can be achieved after the start-up procedure has ended during the normal working phase.
  • the method for driving the pneumatic motor and using an energy-saving drive system is that the drive system includes a plurality of, for example, eight working cylinders I-VIII connected in series, as shown in FIG.
  • Each of these series-connected working cylinders I to VI contains, as shown in Fig. 1, a closed pressure expansion space 15, which contains a constant amount of compressed air throughout the working time, the chip pressure applied before the working thrust acts on the sliding piston plate 2, which acts with the Piston rod 5 is detachably connected via a locking lock 6 containing a locking device 3 to the piston rod 5 of the working cylinder which transmits the working power to the connecting rod device.
  • This clamping pressure applied before the working push moves the sliding piston plate after the working push by 50% of its originally opened clamping pressure value 2 by the path length of the expansion with simultaneous work performance.
  • a pressure bypass chamber 16 is arranged in the area below the sliding piston plate 2, which is connected on the one hand to an injection pressure line 27 connected to a compressed air source 29, which is connected via controllable relay valves to the pressure bypassing chamber of all other working pressure cylinders and the on the other hand, is connected to a pressure bypass line 28 connecting the pressure bypass rooms of all working pressure cylinders I-VIII to one another via controllable relay valves, such that the working fluid expanding from the pressure bypass room 16 after the working stroke via the pressure bypass line 28 controllable by relay valves in the individual pressure bypass rooms 16 of the subsequent working pressure Cylinder can be stored (see Table A in this regard) and for re-opening the pneumatic clamping pressure in the pressure expansion chamber 15 partly from the pressure flue which is stored back into the pressure bypass chamber 16 of all subsequent working pressure cylinders dum can be retracted into the pressure bypass chamber 16 via the relay-controlled energy pressure bypass line 28 and the pressure fluid still required for the application of the required clamping pressure
  • the residual pressure of the pressure bypass chamber 16 which is still required is passed into the subsequent container by means of a pressure fluid fed in from the compressed air source 29.
  • the large number of working cylinders connected in series can be used several times in parallel to ensure a continuous crankshaft drive.
  • the table assumes that the storable opening values within the pressure bypass chambers 16 and the missing residual values required for the following working stroke as injection energy after completion of the thrust via a compressor 30 from the free air of the compressed air source 29 and from this via the injection Pressure line can be supplied to the pressure bypass chamber 16.
  • the pressure is diverted from the pressure bypass chamber 16 before the relief takes place at a pressure of 10 bar in the pressure bypass chamber 16 of the subsequent container, which is prepared for work with the full power of 10 bar, with one circulating compressor or several circulating compressors in the form of small compressors 32 for the system can be used.
  • This transfer corresponds to the power after the energy-free pressure circulation or equalization of a maximum of 20% of the energy to be delivered. Only about 1% wear energy is continuously supplied from the open air.
  • the pressure transfer takes place according to Table A from the pressure bypass chamber 16 of the working cylinder 1 in which the working thrust has just been completed, into the pressure bypass chamber 16, for example of the next cylinder III via the energy pressure bypass line 28, in which only the controllable control valves from Pressure bypass chamber 16 of this first working cylinder, in which the working thrust has just been completed, are opened to the bypass chamber 16, for example of the next but one cylinder III.
  • the compression effort is equal to the work effort of the flow compressor:
  • the pressure bypass chamber 16 of the working cylinder that has just completed the subsequent work boost is then connected in a subsequent process step via the pressure bypass line 28 with the corresponding setting of the controllable control valves to the pressure bypass chamber 16 of the next cylinder IV, after corresponding pressure equalization can be stored in the pressure range of this cylinder, and immediately according to table A.
  • the working cylinder has a sliding piston plate 2, which is in contact with the pressure expansion chamber 15, as the working piston, which can be locked by means of a locking means 3 of a locking lock 6 with the piston rod 5 running through a guide 4, with a certain distance below the sliding piston plate 2 a sliding piston plate 9 and one with an upward and in sliding seals and sliding openings 10 through the sliding piston plate 9 extending thrust supports 7 is provided sliding piston plate 11 which is provided with controllable valves c, the pressure evacuation space 16 being closed at the bottom by a lockable piston plate base plate 12, these thrust supports 7 being rigid with the sliding piston plate 11 are connected.
  • the guide 4, which is integrally connected to the sliding piston plate 2 can be locked by means of a locking device 3 '.
  • the sliding piston plate 9 can be replaced by two sliding piston plates 9A and 9B, the upper sliding piston plate 9A being rigidly connected to the cylinder housing 50 of a control cylinder 8 according to FIG. 6, the lower sliding piston plate 9B being connected to the piston rod 52 of a reversible piston 51 of this control cylinder 8 is rigidly connected.
  • the thrust supports extend through all the sliding piston plates 9A and 9B, but not through the sliding piston plate 2, but their downward branches 7 'also extend through the sliding piston plate base plate 12, which ensures that the rigid attachment of the sliding supports 7 to the sliding piston plate 11 contributes to Displacement of the sliding piston plate 11 no thrust or pressure build-up occurs. All valve, switching and locking systems are controlled electrically.
  • FIG. 7 shows a further exemplary embodiment of a control cylinder 41 which can be controlled on one side and is required to carry out the pressure transfer.
  • the sliding piston plate 2 rests continuously on a release ram 38 and presses a pair of scissors 39 acting as an expansion clamp apart because the release ram 38 is equipped with a spring 40 with a low spring tension.
  • the plungers 37 are retracted by the displacement of the sliding piston plates 9A and 9B and locked at the top dead center of the opened or contracted sliding piston plates 9A and 9B, the surface pressure of the sliding piston plate 2 on the release stamp 38 decreasing as soon as the sliding piston plate 11 together with its thrust supports 7 is moved vertically upwards after locking.
  • the spreading clamp-type scissors 39 then close and the piston of the pressure ram 37 is locked.
  • the pressure stamp 37 only extends when the pressure in the pressure bypass chamber 16 has dropped to a certain level.
  • the pressure rams 37 are retracted by sliding plate displacement and locked at the top dead center of the retracted sliding piston plates 9A and 9B.
  • the sliding piston plate 11 displaces the sliding piston plate 9B and, after it meets the sliding piston plate 9A, also vertically upwards; then the release die 38 is relieved of pressure, the scissors 39 and locks the stamp 37.
  • the pressure chamber 42 of the unilaterally controllable control cylinder 41 is connected by means of a pressure line to a pressure vessel 43, the volume of which is many times greater than the volume of the pressure chamber 42 in order to prevent a pressure drop in the pressure bypass chamber 16 during the pressure transfer.
  • a pressure feed pipe 12 Arranged in the housing wall of the cylinder is a pressure feed pipe 12 which opens into the pressure expansion chamber 15 and is connected to the injection pressure line 27 coming from the compressed air source 29.
  • the energy pressure bypass line 28 is connected to the pressure bypass chamber 16 by means of a connecting line 19, a connection connecting piece 17 connecting the space between the sliding piston plate 2 and the upper sliding piston plate 9A with the atmosphere being arranged in the lower region of this space in the side wall of each cylinder 1 .
  • the mode of operation and operating mode of the pneumatic motor are as follows:
  • the pressure circulation volume from pressure bypass chamber 16 to pressure bypass chamber 16 is represented with a partly pneumatic internal pressure circulation and partly the pneumatic pressure circulation of the same pressure volume takes place by means of small compressors 32 with a slight pressure increase.
  • the value of the pressure of the pressure expansion volume and the volume itself in the pressure expansion space 15 and its expansion value depend on the power of the engine.
  • This type of pneumatic motor is operated, for example, with an initial load on the area of expansion on the area of the sliding piston plate 2 from 10 bar to 100 cm 2 area.
  • the pressure volume in the pressure expansion chamber 15 is a dm3 at 10 bar.
  • the original clamping force i.e. To maintain the original pressure value of the pressure volume for a new work, a pressure volume of 1 dm3 with a pressure of 12.5 bar, which loads the plate of the sliding piston plate 9 on an area of 80 cm2, is stored in the cylinder in the pressure bypass chamber 16, which has to be renewed Work performance that is prepared in the system connected in series.
  • a pneumatic or hydropneumatic pressure in the control cylinder 8 can be used to control the circumferential torques of the pressure volume and for transferring residual volume pressure within the pressure bypass chambers of the individual cylinders.
  • This pressure can be applied via a hydraulic pump, since it is a residual pressure, or if higher pressures are used to achieve a high work rate, the control system of the control cylinder 8 is operated via a compressor.
  • the pressure present in the control line system according to FIG. 6, which is responsible for the control cylinder 8, is generally always approximately constant, because when the slide piston plate in the control cylinder 8 is shifted, the pressure volume, the volume of which is constant, is bypassed with a small circumferential deviation.
  • the pistons of the control cylinder 8 have an area of 15 cm2.
  • the load on the sliding piston surface 9B is 375 kg per 80 cm2 area.
  • a control pressure of 12.5 bar is applied to the piston of the control cylinder 8, with its 30 cm2 total area, which within the bypassing process of transferring the residual pressure in the pressure bypass rooms by means of the intermediate small compressor 32 up to a maximum of 15 bar is increased.
  • the thrust supports 7 have an area cross-section of 10 cm2 and in their vertical course in the pressure bypass space 16 which has a height of 10 cm, they consequently occupy 200 cm3 of the volume of the pressure space.
  • the pressure volume of the pressure bypass chamber is 16 1000 cm3 at a pressure of 12.5 bar.
  • a certain pressure filling quantity is injected in the pressure expansion spaces 15 from the compressor 30 via the pressure injection line 27. It is the same in all pressure bypass rooms 15.
  • the expansion size of the expansion spaces 15 has a different volume within each cylinder before the engine is started up. Therefore, the pressure is lowered at different heights according to the size of the room.
  • 1 dm3 is also filled to 10 bar.
  • filling is carried out to 5 bar in accordance with the control stand filling with a room volume of 2 dm3.
  • the pressure expansion chamber 15 of the cylinder IV has a room size of 3 dm3 which is filled with 3.75 bar of pneumatic volume.
  • the pressure expansion space of cylinder V is brought to 6.25 bar with 2 dm3 at 5 bar and the pressure expansion space 15 of cylinder VI with 1.75 dm3.
  • the pressure expansion chamber 15 of cylinder VII holds 1.20 dm3 at 8 bar and the pressure expansion chamber of cylinder VIII at 1 dm3 again has a pressure volume of 10 bar.
  • the pressure bypass chambers 16 of cylinders I and II are each filled with 1.6 dm3 and 12.5 bar. The same is in the pressure bypass chamber 16 of the cylinder III; the pressure bypass area of cylinder IV is in the retracted position and has no pressure or pressure volume.
  • the pressure bypass area of cylinder V is filled with 0.8 dm3 and 6.25 bar.
  • the pressure bypass chamber 16 of cylinder VI has a pressure of 7.8 bar with a room volume of 1.1 dm3.
  • the pressure bypass chamber 16 has a volume of 1.44 dm3 at 10 bar and cylinder VIII in the pressure bypass chamber 16 has a pressure chamber size of 1.6 dm3 at 12.5 bar.
  • control line there is an opened control pressure for controlling the control cylinder 8 of 12.5 bar.
  • the control line which was not drawn in for reasons of space, is operated in the control system approximately as the pressure bypass line shown in the system.
  • FIG. 2 shows this cylinder I with the pneumatic clamping pressure in the pressure expansion chamber 15 before the working thrust.
  • the sliding piston plate 2 is locked by means of the locking device 3 'on the wall of the working pressure cylinder.
  • Fig. 2 of the drawing shows the cylinder II with opened pneumatic clamping pressure with the sliding piston plate 11 retracted downwards together with the thrust supports 7 rigidly connected to them, so that these thrust supports 7 within the subsequent relief process in the pressure expansion chamber 15 the pneumatic pressure relief process by being placed on the Can not affect sliding piston plate 2 (before the working push).
  • the space between the sliding piston plate 2 and the sliding piston plate 9A is connected to the atmosphere via the connector 17.
  • the relay-controlled valves c embedded in the sliding piston plate 11 are open. The sliding piston plate 11 is moved within the pressure bypass chamber 16 without energy by the value of the spatial tension of the pressure expansion chamber 15 in relation to the relaxation path length.
  • Fig. 2 of the drawing shows the cylinder III in the position of the sliding piston plate 2 at the end of the working thrust, the locking mechanism 3 'being released and the working sliding piston plate 2 downward into the space cleared by the pushing supports 7 initially by the path length downwards is moved until it rests on the thrust supports 7. It now inserts the pressure transfer from the pressure bypass chamber 16 into the subsequent containers or into the following cylinders. This is done via the constant energy pressure bypass line 28 (see the table).
  • Fig. 2 of the drawing shows the cylinder IV, in the position of the sliding piston at the end of the relief process.
  • the valves C are open during the lowering process of the sliding piston plate 11.
  • the pressure from the pressure bypass chamber 16 is passed into the following containers or into the following cylinders.
  • the remaining pneumatic pressure in the pressure bypass chamber 16 between the sliding piston plate 9 and the sliding piston plate 11 either remains in this space during the entire working process of the entire system connected in series during the bypassing process and is transferred into this space or, due to its small pressure size, it is by means of drive over a control cylinder 8 which can be driven by a compressor 30 into the subsequent containers or cylinders.
  • Cylinder V shows the position of the sliding piston plate in which the pressure fluid is completely transferred to the successive container or cylinder and a renewed loading of the pressure bypass chamber with pressure fluid can begin.
  • Cylinder V of FIG. 2 of the drawing shows the thrust piston rod 5, which is idle again via the crankshaft and connecting rods, the pressure-relieved pressure bypass chamber 16, the adjoining sliding piston plates 9 and 11 in the pressure bypass chamber 16, and the expanded pressure expansion chamber 15.
  • the thrust supports 7 of the sliding piston plate 11 lie on the underside of the sliding piston plate 2 and it can after the pressure expansion of the subsequent container, ie after its work and its beginning relief in this container or cylinder via the constant pressure bypass line 28 in the pressure bypass chamber 16 again injected pneumatic pressure (see table of the constant pressure circulation).
  • Fig. 2 of the drawing shows the cylinder VI shortly before the renewed work thrust.
  • the sliding piston plate 2 which acts as a working piston, is pressed up to the upper detent 3 'by means of pressure fluid running over it to the detent 3', and the sliding piston plate 2 is arrested at the top dead center.
  • the locking also takes place on the piston rod 5 by means of the locking 3 on the sliding piston plate 2.
  • cylinders VII and VIII are not shown in Fig. 2 of the drawing in order not to unnecessarily complicate the drawing. All subsequent containers have the same volume and are exposed to the same pressure. This ensures uniform pneumatic pressure transfer and pressure build-up in each working pressure vessel or cylinder with regard to pressure force and pressure volume.
  • the pneumatic pressure relief process with pressure transfer by means of the constant energy pressure bypass line 28 into the following cylinders takes place by the expansion of the pneumatic pressure in the pressure expansion space 15 and the associated steady expansion of the pneumatic pressure in the pressure bypass space 16, with simultaneous pneumatic pressure transfer and the energy saving of 80%.
  • the residual pneumatic volume, which is transferred by means of compression, is very small in relation to its volume and pressure. The transfer uses very little energy. In terms of design, care should be taken that the pneumatic pressure in the pressure expansion chamber 15 before the average 50% relaxation for the purpose of relieving work is equal to the pneumatic pressure in the pressure bypass chamber 16.
  • the cylinder system can be connected in parallel several times in order to achieve better rotational movements of the crankshaft.
  • Fig. 3 of the drawing shows a complete working phase of the cylinder III, with pressure transfer after the working stroke.
  • the last three representations of the cylinder concern the cylinder III a in its first position, then the cylinder III b in its subsequent position and the cylinder III c in its final position, in which the residual pressure from the pressure bypass chamber 16 by means of the lowerable sliding piston plate 9B from the Pressure bypass chamber 16 of the same has been transferred via the energy pressure bypass line 28 into the other storing pressure bypass rooms.
  • the sliding piston plate 9 can remain locked until the pressure volume from the pressure bypass chamber 16 of the cylinder III, which is first transferred into the cylinder VII, then into the cylinders VI-V and into the cylinder IV, has a pressure, which is less than the expanding pressure in the expansion space 15.
  • the locking of the sliding piston plate 9 is released, so that the thrust of the expansion pressure still present in the pressure expansion chamber 15 can transfer the pressure in the pressure bypass chamber 16 within the transfer to equalize a residual volume of 400 dm3.
  • the remaining transfer takes place by extending the pistons 51 of the control cylinder 8 according to FIG. 3 of the drawing in the cylinder position according to cylinder III c.
  • the control pressure in the control cylinder 8 is 12.5 bar by means of a small compressor or hydraulic pump, depending on the type of application of the corresponding pressure medium, up to a pressure of max. 15 bar brought, the pressure bypass chamber 16 is emptied.
  • the cylinder II due to its pressure volume in connection with the mechanical position of its parts, can do work by the expansion pressure in the pressure expansion space 15 expanding from 10 bar to 5 bar over a path length of 10 cm. At this moment, work on the piston rod is released in the form of an average force that is 750 kp over a path length of 10 cm.
  • the cylinder III according to FIG. 2 relieves the drawing, which its pressure bypass chamber 16 in which the cylinders VII-VI-V and IV within the pressure bypass chambers 16 are raised in the pressure volume, corresponding to the pressure volume in the pressure bypass chamber 16 of the cylinder III percentage decreases.
  • the constantly constant driving values which are approximately constant, can be seen from FIG. 2 of the drawing.
  • the cylinder I has meanwhile completed the process just described, and can now do work by means of pressure expansion in the pressure expansion chamber 15, the cylinder II initiating the relief process of the pressure bypass chamber 16, starting with the transfer of pressure into the cylinder VI and this to 90% of the required pressure volume brings in the pressure bypass chamber 16, so that in turn a residual pressure of 10% of the 10% pressure volume of cylinder II and cylinder VI must be returned in the reversing process.
  • the pressure volume required for a working stroke is 1000 cm3 at a pressure of 12.5 bar in the pressure bypass chamber 16, taking into account the one-off, initial filling torque of the pneumatic motor, 80-90% of which are generated by self-circulation and approx. 20-10% by small compressor 32 must be returned.
  • This corresponds to a rise in pressure of 3.75 bar and approximately 980 cm3 volume to 12.5 bar at 320 cm3 volume, based on the expansion phase of the work performed within a working stroke approx. 40% energy expenditure for this process.
  • the active and operating variant of the pneumatic motor is shown without pneumatic internal pressure circulation within the pressure bypass chambers 16.
  • the sliding piston plate 9 can be divided horizontally into a sliding piston plate 9A and a sliding piston plate 9B.
  • a ratchet lock 18 (FIG. 6) is arranged on the sliding piston plate 9A, in which the cylinder housing 5o of the controllable control cylinder 8 is fastened in a vertically movable manner, the piston 51 of which is fixedly attached to the sliding piston plate 9B with its piston rod 52.
  • the thrust supports 7 are slidable and run through all sliding piston plates and through the piston plate base plate 12.
  • the stroke length of the commute is 4o cm. Due to this stroke length, the expansion space volume in the expansion pressure space 15 has a pressure volume of 14 dm3 at 8o bar.
  • the plate of the sliding piston plate 9 is loaded with 122 bar on an area of 80 cm 2. This corresponds to the initial loading of the sliding piston plate 2 on the part of the expansion pressure space 15. However, this also guarantees that the sliding piston plate 2 is returned to the original tension value in order to obtain a new work performance.
  • a pneumatic or hydropneumatic pressure of 225-235 bar is used to prevent pressure relief within the pressure circulating spaces 16 during the pressure circulating process.
  • the control cylinders 8 have a cross-sectional size of 20 cm2 per stamp on their printing plate surfaces.
  • control cylinders 8 Two of these control cylinders 8 are stored in each working cylinder, so that a control pressure of approx. 9 t is applied to the pressure volume within the pressure bypassing spaces 16 during the pressure bypassing process at a 4o cm 2 high-pressure surface load.
  • the high-pressure control line is also switched via a flow compressor and pressure vessel. With the piston 51 of the control cylinder 8, it guarantees the presence of a constant high pressure during a change of control of the control cylinder, this pressure being increased by a few bar in order to be able to bypass the pressure volume in the working cylinder within the pressure bypass chamber 16.
  • control line which is connected to the control cylinder 8 is not shown for reasons of clarity.
  • the work involved over a 40 cm path length is 9 t. 4 of the drawing, 2 dm3 pressure volume at a pressure of 122 bar is injected into cylinders I and II and IV, III.
  • the stamps of the control cylinder 8 are due to the control position in the cylinder I and II in the retracted position, in the cylinder III and IV in the extended position.
  • the sliding piston plate 9 is slidably movable up to its uppermost locking position when the pressure and its volume are bypassed from the pressure bypass chamber 16 to the pressure bypass chamber 16.
  • the result of this is that the stamps of the control cylinders 8 move freely in the vertical direction when the pressure position is extended in the opening moment of the pressure opening spaces 16, as can be seen in the cylinder IV.
  • the control high pressure is switched to the control cylinder 8
  • the sliding piston plate 9A remains freely movable, the sliding piston plate 9B is locked and the sliding piston plate 9A moves vertically downwards to the sliding piston plate 9B, with the sliding piston plate 11 simultaneously the thrust supports 7 moves vertically downwards.
  • the vertical downward movement of these parts is 40 cm path length to ensure a working stroke.
  • the high-pressure stamp 8 moves by this difference, so that the expanding pressure means once on the cylinder housing 50 of the control cylinder 8 the surface of the sliding piston plate 2 generates a pressure effect from the pressure expansion space 15 and, on the other hand, the extending piston rods 52 of the control cylinder 8 are exposed to an equivalent counter-pressure effect by means of the surface of the sliding piston plate 9B if the pressure volume from the pressure bypass chamber 16 of the cylinder II is now in the by means of the small compressor 32 Pressure evacuation space 16 of the cylinder III is transferred.
  • the pressure expansion chamber 15 of the cylinder III compresses its expansion pressure volume from 14 dm 3 and 80 bar to 10 dm3 and 100 bar in this time sequence when the tension value is restored to achieve renewed work, the mechanical locks locking the sliding point when these sizes are reached.
  • the line 20 in the cylinder IV was switched from the compressor 30 'to the room b of the control cylinder 8 and the control cylinder 8 was retracted, the sliding piston plate 9A, as already explained, moving vertically downwards and resting on the locked sliding piston plate 9B .
  • the cylinder housing 50 of the control cylinder 8 are thus also moved vertically downwards.
  • the thrust supports 7 are also retracted mechanically when the valve "c" of the sliding piston plate 11 is open.
  • the expansion stroke of the cylinder IV begins, that is to say that work is carried out in the cylinder IV in that the sliding piston plate 2 is released from its locking.
  • the workflow just described completely within all cylinders is now shifted to the left by one cylinder in the following work phase according to FIG. 4 of the drawing.
  • the current pressure expansion phase within one cylinder is faster within the phase than the pressure circulation within the other cylinders. This is due to the corresponding cross-sectional sizes of the pressure bypass line 28 and the correspondingly lower printing speeds in relation to the expansion force.
  • the cross-section of all line systems should therefore be kept as large as possible and the row of cylinders of an engine block according to FIG. 4 of the drawing should be connected in parallel several times, it being possible to offset the individual pressure expansion stages in order to ensure a continuous crankshaft drive.
  • the pressure volume required for a working stroke is dm3 or 4000 cm3, taking into account the one-time-sensitive filling torque within the pneumatic motor, at a pressure of 122 bar and must be max. be bypassed once.
  • the energy expenditure for this working stroke within the control cylinder 8 is approximately equivalent to that just described.
  • the efficiency factor of the pneumatic motor increases by at least 700 to 800% in contrast to the conventional type of compression energy systems for operating pneumatic motors.
  • a pneumatic motor of this type needs around 20% of the work it produces to compare the operation of the system without taking wear and friction losses into account, in order to maintain the operator process and can continuously state 80% of the work as power for operating system systems.
  • the pneumatic pressure energy of 33 to approximately 60 or 70% stored in the pressure bypass chamber 16 of the pressure cylinder 1 before the working stroke of the sliding piston plate 2 is to be introduced into the pressure circulation line 28 without any expenditure of energy with gradual pneumatic pressure compensation.
  • the remaining percentages of pneumatic energy remaining in the pressure flow process must also be transferred by volume flow compressors in the same way.
  • the process just described can also take place via two separate pressure circulation lines 28, a pressure circulation line transferring potential energy in volume flow from cylinder to cylinder in the flow process and the transfer being carried out in series parallel to this process by means of a flow compressor.
  • a pressure circulation line transferring potential energy in volume flow from cylinder to cylinder in the flow process and the transfer being carried out in series parallel to this process by means of a flow compressor.
  • Another possibility of pneumatic pressure transfer for the entire potential energy to be transferred by means of a pressure circulation line 28 is possible with a flow compressor 32 within the pneumatic system in that the individual compression chambers of the overflow compressor, regardless of whether they are piston compressors or wheel compressors, have connecting pieces in which non-return valves are installed.
  • the constantly changing suction pressure from the pressure bypass chamber 16, from which the compressible medium is extended should act on the reverse side on the surfaces of the parts in the bypass compressor which contribute to the compression. This saves enormous compressor performance and the potential energy of the free circulation transfer via the compressor or through the compressor does not impair the necessary transfer performance of the flow compressor or the flow compressors.
  • the flow compressor is intended to transfer some of the stored potential energy, for example from cylinder I to cylinders III-VIII, for further use.
  • Active power of a compressor with buffer volume within a pneumatic motor The compressed air has to suck out from the pressure bypass chamber 16 of the cylinder 1 in a very short time, for example similar to the expansion time of the air.
  • the potential energy has to be conveyed into the cylinders III-VIII via the pressure circulation line 28 in which a bypass is arranged in relation to the stroke volume of the compressor and a buffer volume container which is at least 10 times the stroke volume.
  • the pumping out of the air volume from cylinder I and the inflow of compressed air of, for example, up to 11 bar while observing the constructively promoted parameters for flow compressors into cylinders III-VIII are timed by control elements.
  • With a 10-fold cylinder stroke volume of the buffer the pressure only fluctuates by approx. 1 bar during the work cycles. Pressure can flow from the buffer into the cylinder volume of the leading piston in cylinder 3 even before it is fed from cylinder 1.
  • thermodynamic gas laws result in pressure ratios between 1 and 11 bar
  • the isothermal coupling efficiency which is 0.534 kT from 1 bar to the respective nominal output, also improves by 60 when an overflow compressor works within a pneumatic motor due to the shortened operating time of the compressor, the pressure medium that is used, which loads the compressor with a medium pressure %. It increases from 0.534 kT to 0.854 kT.
  • the pneumatic motor in which work is carried out in the pressure evacuation chamber 15 of the individual cylinders by means of the sliding piston plate 2 in the relief process, should, in terms of effectiveness, perform the work which was carried out in the pressure circumvention rooms 16 of the individual cylinders.
  • the sliding piston plates 9a and 9b divide with the help of the extending control cylinders 8 and the residual pressure volume is transferred to the subsequent cylinder responsible for this at a constant pressure.
  • the parameters of increased pressure transfer do not have a disadvantageous effect in relation to the parameters of the always increasing mean pressure transfer in connection with the free pressure circulation, which are responsible for the performance of the flow compressor.
  • compressed fluid which is drawn in by means of a compressor in the pressure bypass chamber 16 is brought to the respective nominal power in the start-up process and thus with a coupling active factor of 0.534 of 1 bar.
  • the circulation compressor now works with a work saving of 60% due to the existing pressure medium, i.e. to get 1100 Nm work per stroke of the system the circulation compressor requires an energy expenditure of 430 Nm at one changed clutch factor of 0.854. Because the overflow compressor only has to transfer a maximum of 50% of the pressure fluid, which overflows the other pressure fluid in its own pressure circulation, until the respective pressure equalization within the transfer cylinder, this output is divided again by two; taking into account friction and wear losses, it is possible to obtain a workload of up to 200% within the operating process of the system for a 100% energy expenditure.
  • an internal combustion engine which serves as the drive unit of the engine, is connected upstream of the pneumatic one, the effective factor performance of this engine can improve up to 100%.
  • a generator which is driven by means of the pneumatic motor can be connected to an electric motor with a downstream pneumatic motor for obtaining work. This guarantees that the electrical system operates within the operator process without energy expenditure and that up to 60% of the operator's own power required can be obtained either in the form of electrical energy from the generator or in the form of kinetic energy via the pneumatic motor.
  • each pressure bypass chamber 16 of a cylinder within the pneumatic motor is followed by a hydraulic tank in which the expanding pressure fluid can expand from the pressure bypass chamber 16 and thus shift the respective nominal pressure to the hydraulic oil.
  • the hydraulic oil circulated by means of the hydraulic pump and entering the tank again compresses the respective pressure fluid around the corresponding pressure bypass chambers. It should be noted that this variant never runs down to 1 bar in the pressure lowering and transfer process in the pressure lowering pressure bypass chamber 16.
  • a pressure fluid of medium pressure level must be run over by means of the control cylinders 8 and division of the sliding piston plates 9a and 9b from pressure bypass chamber 16 to pressure bypass chamber 16.
  • the performance of the hydraulic pump also relates to the average load in the bypass process.
  • a cooling system provided, which can be controlled by a temperature sensor, is switched on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Antrieb eines pneumatischen Motors unter Verwendung eines Antriebssystemes, das so gestaltet ist, daß das Antriebssystem eine Vielzahl von in Reihe geschalteten Arbeitszylindern enthält, deren jeder einen geschlossenen Druckexpansionsraum aufweist, der während der gesamten Arbeitszeit eine gleichbleibende Druckluftmenge enthält, deren vor dem Arbeits-Schub aufgebrachter Spanndruck nach dem Arbeitshub entsprechend seines ursprünglich aufgefahrenen Spanndruckwertes expandierend den Gleitkolbenteller um die Weglänge der notwendigen Expansion bei Arbeitsleistung verfährt, und in jedem Arbeitszylinder ein Druckumfahrraum angeordnet ist, der einerseits mit einer an die Druckluftquelle angeschlossenen Injektions-Druckleitung verbunden ist, die über steuerbare Relaisventile mit dem Druckumfahrraum aller übrigen Arbeitsdruckzylinder verbunden ist, und der andererseits mit einer, die Druckumfahrräume aller Arbeitsdruckzylinder miteinander über steuerbare Relaisventile verbindenden Druckumfahrleitung verbunden ist, derart, daß das aus dem Druckumfahrraum expandierende Arbeitsfluidum über die durch Relaisventile steuerbare Druckumfahrleitung in den einzelnen Druckumfahrräumen der nachfolgenden Arbeitszylinder einspeicherbar ist (s. Tabelle), und zum erneuten Auffahren des pneumatischen Spanndruckes im Druckexpansionsraum, teils aus den in den Druckumfahrräumen aller nachfolgenden Arbeitszylinder rückgespeicherte Druckfluidum über die relaisgesteuerte Energie-Umfahrleitung in den Druckumfahrraum einfahrbar ist und das für das Aufbringen des erforderlichen Spanndruckes noch benötigte Druckfluidum über die Injektions-Druckleitung aus der Druckluftquelle zuführbar ist, so daß der als Arbeitskolben wirkende Gleitkolbenteller aufwärts verfahren und der für den nächsten Arbeitshub erforderliche Spanndruck im Druckexpansionsraum aufgefahren wird. Als Nachschaltgerät eines Motors, d.h. einem Antriebssystem, gibt dieser pneumatische Motor mehr Energie in Form von Arbeit ab als für die Erhaltung des Systems innerhalb des Betreiberprozesses an Energie benötigt wird. <IMAGE>

Description

  • Die Erfindung betrifft ein neuartiges Verfahren zum Antrieb eines pneumatischen Motors und eine Vorrichtung zur Durchführung des Verfahrens.
  • Das neuartige Verfahren ersetzt herkömmliche Otto- oder Dieselmotoren bzw. Verbrennungsmotoren aller Art. Alle bisher bekannten Verfahren und Vorrichtungen für den Antrieb von Motoren weisen den Nachteil auf, daß sie einen verhältnismäßig geringen Wirkungsgrad haben.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, das ein System aufweist, mit dem ein wesentlich größerer Leistungsfaktor, als das bei bisher bekannten Motoren möglich war, erzielbar ist und mit dem es ermöglicht wird, Antriebsenergie auf wirtschaftliche und wirkungsvolle Art zu nutzen.
  • Erfindungsgemäß wird die Aufgabe durch die kennzeichnenden Merkmale des Verfahrensanspruches 1 gelöst, wobei weitere Ausgestaltungen durch den Verfahrensanspruch 2, 3 und 4 gelöst werden; die Aufgabe wird auch durch die kennzeichnenden Merkmale des Sachanspruches 5 gelöst, wobei weitere Ausgestaltungen durch die Merkmale der Ansprüche 5 - 10 gelöst werden.
  • Erfindungsgemäß ergibt sich der Vorteil, daß während des Arbeitsvorganges Energie gespeichert und im anschließenden Arbeitsvorgang genutzt werden kann, so daß nach Beendigung der Anlaufphase eine Energiespeicherung bis zu 80 % erzielbar ist.
  • In der Zeichnung sind zwei Ausführungsbeispiele des Gegenstandes der Erfindung dargestellt.
  • Es wird eine Tabelle (A) beigefügt, welche die erzielbaren prozentualen Druck-Rückspeicherungs-Prozentsätze, nach Beendigung des Anlaufverfahrens während der normalen Arbeitsphase angibt.
  • In der Zeichnug zeigt:
  • Fig. 1
    einen der in Reihe geschalteten Zylinder entsprechend der Stellung des Zylinders II gemäß Fig. 3 in vergrößertem Maßstab;
    Fig. 1a
    den Gleitkolbenteller 11 mit den mit diesem einstückig verbundenen sich nach aufwärts erstreckenden Schubstützen und den sich nach abwärts erstreckenden Zweigen;
    Fig. 2
    sechs der in Reihe geschalteten Arbeitszylinder von insgesamt acht Arbeitszylindern, wobei die letzten beiden zur besseren Übersichtlichkeit fortgelassen worden sind im Längsschnitt;
    Fig. 3
    die ersten drei der in Reihe geschalteten Arbeitszylinder gemäß einem anderen Ausführungsbeispiel, wobei der Zylinder III in den drei Stellungen III a, III b, IIIc eine komplette Arbeitsphase des Zylinders III nach der Durchführung des Arbeitshubes darstellt;
    ig. 4
    vier der in Reihe geschalteten Arbeitszylinder gemäß einem anderen Ausführungsbeispiel der Durchführung des Verfahrens;
    Fig. 5
    eine Anordnung von acht zu einem Arbeitssystem zusammengefaßten Arbeitsdruckzylindern mit Verwendung zusätzlicher Kleinkompressoren zur Umströmkompression (wobei auch ein Umströmkompressor das gesamte System innerhalb des Umströmprozesses versorgen kann).
    Fig. 6
    zeigt die vertikal geringfügig bewegliche Befestigung des Zylindergehäuses der Steuerzylinder am Gleitkolbenteller 9A.
    Fig. 7
    ein zweites Ausführungsbeispiel eines zur Durchführung der Drucküberführung erforderlichen besonders gestalteten einseitigen Steuerzylinders;
  • Das Verfahren zum Antrieb des pneumatischen Motors und der Verwendung eines ernergiesparenden Antriebssystemes besteht darin, daß das Antriebssystem eine Vielzahl von beispielsweise acht in Reihe geschalteten Arbeitszylindern I-VIII enthält, wie das in Fig. 5 dargestellt ist.
  • Jeder dieser in Reihe geschalteten Arbeitszylinder I bis VI enthält, wie das in Fig. 1 dargestellt ist, einen geschlossenen Druckexpansionsraum 15, der während der gesamten Arbeitszeit eine gleichbleibende Druckluftmenge enthält, deren vor dem Arbeitsschub aufgebrachter Spandruck auf den Gleitkolbenteller 2 einwirkt, welcher mit der Kolbenstange 5 über einen, eine Arretierung 3 enthaltenden Arretierungsverschluß 6 mit der die Arbeitsleistung auf die Pleuelvorrichtung übertragenden Kolbenstange 5 des Arbeitszylinders lösbar verbunden ist. Dieser vor dem Arbeitssschub aufgebrachte Spanndruck verfährt nach dem Arbeitsschub um 50 % seines ursprünglich aufgefahrenen Spanndruckwertes expandierend,den Gleitkolbenteller 2 um die Weglänge der Expansion bei gleichzeitiger Arbeitsleistung. In jedem der Arbeitszylinder I-VIII ist im unterhalb des Gleitkolbentellers 2 befindlichen Bereich ein Druckumfahrraum 16 angeordnet, der einerseits mit einer an eine Druckluftquelle 29 angeschlossenen Injektions-Druckleitung 27 verbunden ist, die über steuerbare Relaisventile mit dem Druckumfahrraum aller übrigen Arbeitsdruckzylinder verbunden ist und der andererseits mit einer die Druckumfahrräume aller Arbeitsdruckzylinder I-VIII miteinander über steuerbare Relaisventile verbindenden Druckumfahrleitung 28 verbunden ist, derart, daß das nach dem Arbeitshub aus dem Druckumfahrraum 16 expandierende Arbeitsfluidum über die, durch Relaisventile steuerbare Druckumfahrleitung 28 in den einzelnen Druckumfahrräumen 16 der nachfolgenden Arbeitsdruck-Zylinder speicherbar ist (s. Tabelle A hierzu) und zum erneuten Auffahren des pneumatischen Spanndruckes im Druckexpansionsraum 15 teils aus den in den Druckumfahrraum 16 aller nachfolgenden Arbeitsdruck-Zylinder rückgespeicherte Druckfluidum über die relaisgesteuerte Energie-Druckumfahrleitung 28 in den Druckumfahrraum 16 einfahrbar ist und das für das Aufbringen des erforderlichen Spanndruckes noch benötigte Druckfluidum über die Injektions-Druckleitung 27 aus der Druckluftquelle 29 zuführbar ist, so daß der als Arbeitskolben wirkende Gleitkolbenteller 2 wieder aufwärts verfahren und der für den nächsten Arbeitshub erforderliche Spanndruck im Druckexpansionsraum 15 aufgefahren wird.
  • Bei Verwendung von beispielsweise acht Arbeitszylindern I-VIII wird in die Druckumfahrräume 16 der jeweils ersten drei Arbeitszylinder aus der Druckluftquelle 29 100 % des erforderlichen Spanndruckes zugeführt, wobei der jeweils dritte Arbeitszylinder III den Arbeitsschub durchführt, wobei der Druckumfahrraum 16 des folgenden Arbeitszylinders über die Druckumfahrleitung zuerst relaisgesteuert mit dem Druckumfahrraum 16 des nächsten Arbeitsdruckzylinders verbunden wird, wobei nach Druckausgleich 50 % des Spanndruckes in diesem gespeichert werden, worauf die Druckumfahrleitung mit dem nachfolgenden Arbeitsdruckzylinder verbunden wird, wo wiederum an Druckausgleich 50 % dieses Spanndruckes dort gespeichert werden und sofort, bis während des Betriebes jeweils annähernd 80 % des Druckfluidums speicherbar wieder verwendet sind.
  • Der noch erforderliche Restdruck des Druckumfahrraumes 16 wird mittels eines aus der Druckluftquelle 29 eingespeisten Druckfluidums in die Nachfolgebehälter überfahren.
  • Die Vielzahl von in Reihe geschalteten Arbeitszylindern kann parallel verlaufend mehrfach verwendet werden, um einen kontinuierlichen Kurbelwellenantrieb zu gewährleisten.
  • In der Tabelle wird zur besseren Darstellung davon ausgegangen, daß die speicherbaren Auffahrwerte innerhalb der Druckumfahrräume 16 und die für den folgenden Arbeitshub erforderlichen fehlenden Restwerte als Injektionsenergie nach Vollendung des Schubes über einen Kompressor 30 aus der freien Luft der Druckluftquelle 29 und von dieser über die Injektions-Druckleitung dem Druckumfahrraum 16 zugeführt werden. Die Druckumführung aus dem Druckumfahrraum 16 vor der Entlastung erfolgt bei einem Druck von 10 bar in dem Druckumfahrraum 16 des Folgebehälters, der zur Arbeit mit der vollen Leistung von 10 bar vorbereitet wird, wobei für das System ein Umströmkompressor oder mehrere Umströmkompressoren in Form von Kleinkompressoren 32 verwendet werden können.
  • Diese Überführung entspricht der Leistung nach dem energielosen Druckumflauf bzw. -ausgleich von maximal 20 % der abzugebenden Energie. Aus der freien Luft wird stetig nur noch ca. 1 % Verschleißenergie zugeführt.
  • Die Drucküberführung erfolgt gemäß der Tabelle A aus dem Druckumfahrraum 16 desjenigen Arbeitszylinders 1, in welchem der Arbeits-Schub gerade vollendet worden ist, in den Druckumfahrraum 16, beispielsweise des nächsten Zylinders III über die Energie-Druckumfahrleitung 28, in welcher nur die steuerbaren Regelventile vom Druckumfahrraum 16 dieses ersten Arbeitszylinders, in welchem der Arbeits-Schub gerade vollendet worden ist, zum Umfahrraum 16 beispielsweise des übernächsten Zylinders III geöffnet sind.
  • Es folgt ein Druckausgleich nach der Formel:
    Figure imgb0001

    wobei
  • D =
    der ausgleichende Druck in Volumen % ist.
    a =
    der Anfangsdruck im Arbeitszylinder ist, in welchem der Arbeitsschub gerade vollendet ist und
    b =
    der Druck im Arbeitszylinder III ist, der vor dem Anfahrstadium = Null ist.
  • Für das zu überführende Druckfluidum ist der Kompressionsaufwand gleich dem Arbeitsaufwand des Umströmkompressors:
    Figure imgb0002
  • Der Druckumfahrraum 16 desjenigen Arbeitszylinders, der den dann anschließend folgenden Arbeit-Schub gerade vollendet hat, wird dann in einem anschließenden Verfahrensschritt über die Druckumfahrleitung 28 bei entsprechender Einstellung der steuerbaren Regelventile mit dem Druckumfahrraum 16 des nächstfolgenden Zylinders IV verbunden, wobei nach entsprechendem Druckausgleich
    Figure imgb0003

    im Druckfahrraum dieses Zylinders gespeichert werden können, und sofort nach der Tabelle A.
  • Wie aus Fig. 1 ersichtlich ist, weist der Arbeitszylinder einen am Druckexpansionsraum 15 anliegenden Gleitkolbenteller 2 als Arbeitskolben auf, der mittels einer Arretierung 3 eines Arretierungsverschlusses 6 mit der durch eine Führung 4 verlaufenden Kolbenstange 5 arretierbar ist, wobei sich in bestimmtem Abstand unterhalb des Gleitkolbentellers 2 ein Gleitkolbenteller 9 und ein mit nach aufwärts verlaufenden und sich in Gleitdichtungen und Gleitöffnungen 10 durch den Gleitkolbenteller 9 hindurcherstreckenden Schubstützen 7 versehener Gleitkolbenteller 11 befindet, der mit steuerbaren Ventilen c versehen ist, wobei der Druckumfahrraum 16 nach unten zu durch eine arretierbare Kolbenteller-Bodenplatte 12 verschlossen ist, wobei diese Schubstützen 7 starr mit dem Gleitkolbenteller 11 verbunden sind.
    Die mit dem Gleitkolbenteller 2 einstückig verbundene Führung 4 ist mittels einer Arretierung 3' feststellbar.
    Der Gleitkolbenteller 9 kann durch zwei Gleitkolbenteller 9A und 9B ersetzt werden, wobei der obere Gleitkolbenteller 9A mit dem Zylindergehäuse 50 eines Steuerzylinders 8 gemäß Fig. 6 starr verbunden ist,wobei der untere Gleitkolbenteller 9B mit der Kolbenstange 52 eines zweiseitig umsteuerbaren Kolbens 51 dieses Steuerzylinders 8 starr verbunden ist.
  • Bei der Umsteuerung des Steuerzylinders 1 wird derselbe einmal vom Umströmkompressor 30' eingefahrene Druck ständig in den Gegendruckraum umgesteuert.
  • Die Schubstützen verlaufen durch alle Gleitkolbenteller 9A und 9B, jedoch nicht durch den Gleitkolbenteller 2, aber ihre abwärts verlaufenden Zweige 7' erstrecken sich auch durch die Gleitkolbenteller-Bodenplatte 12, wodurch gewährleistet wird,daß durch die starre Befestigung der Schubstützen 7 am Gleitkolbenteller 11 bei Verschiebung des Gleitkolbentellers 11 kein Schub- oder Druckstau entsteht. Alle Ventil-, Schalt- und Arretierungssysteme werden elektrisch gesteuert.
  • Um eine Vakuumbildung beim auseinander bewegen der Gleitkolbenteller 9A und 9B zu verhindern, wird eine Öffnung im Gleitkolbenteller 9a frei, die eine Verbindung zur Atmosphäre schafft.
  • In Fig. 7 ist ein weiteres Ausführungsbeispiel eines zur Durchführung der Drucküberführung erforderlichen, einseitig steuerbaren Steuerzylinders 41 dargestellt.
  • Während der Druckentlastung, jedoch noch vor der Restdrucküberführung im Druckumfahrraum 16 liegt der Gleitkolbenteller 2 stetig auf einem Lösestempel 38 auf und drückt eine als Spreizklammer wirkende Schere 39 auseinander, weil der Lösestempel 38 mit einer Feder 40 mit geringer Federspannkraft ausgestattet ist.
  • Bei einsetzender Drucküberführung werden die Druckstempel 37 durch die erfolgende Verschiebung der Gleitkolbenteller 9A und 9B eingefahren und im oberen Totpunkt der aufgefahrenen bzw. zusammengefahrenen Gleitkolbenteller 9A und 9B arretiert, wobei der Flächendruck des Gleitkolbentellers 2 auf dem Lösestempel 38 nachläßt, sobald der Gleitkolbenteller 11 zusammen mit seinen Schubstützen 7 nach der Arretierung vertikal aufwärts verfahren wird.
  • Die spreizklammerartige Schere 39 schließt sich dann und der Kolben des Druckstempel 37 ist arretiert.
  • Der Druckstempel 37 fährt erst aus, wenn der Druck im Druckumfahrraum 16 auf ein bestimmtes Niveau gesunken ist. Bei wieder steigendem Druck im Druckumfahrraum 16 werden die Druckstempel 37 durch Gleittellerverschiebung eingefahren und im oberen Totpunkt der zusammengefahrenen Gleitkolbenteller 9A und 9B arretiert. Der Gleitkolbenteller 11 verschiebt den Gleitkolbenteller 9B und nach dessen Zusammentreffen mit dem Gleitkolbenteller 9A auch diesen vertikal aufwärts; ist dann der Lösestempel 38 druckentlastet, so schließt die Schere 39 und arretiert so den Druckstempel 37.
  • Der Druckkammerraum 42 des einseitig steuerbaren Steuerzylinders 41 ist mittels einer Druckleitung mit einem Druckkessel 43 verbunden, dessen Raumvolumen um ein vielfachen größer ist als das Raumvolumen der Druckkammer 42 um ein en Druckabfall im Druckumfahrraum 16 bei der Drucküberführung zu verhindern.
  • In der Gehäusewandung des Zylinders ist ein in den Druckexpansionsraum 15 mündender Druckzuleitungsstutzen 12 angeordnet, der mit der von der Druckluftquelle 29 kommenden Injektions-Druckleitung 27 verbunden ist. Die Energie-Druckumfahrleitung 28 ist mittels einer Verbindungsleitung 19 mit dem Druckumfahrraum 16 verbunden, wobei in der Seitenwandung jedes Zylinders 1 ein, den zwischen dem Gleitkolbenteller 2 und dem oberen Gleitkolbenteller 9A liegendem Raum mit der Atmosphäre verbindender Verbindungsstutzen 17 im unteren Bereich dieses Raumes angeordnet ist.
  • Anschließend wird die Wirkungsweise des pneumatischen Motors gemäß Fig. 2 erläutert.
  • Wie aus Fig. 2 ersichtlich ist, sind acht in Reihe geschaltete Arbeitszylinder I-VIII vorgesehen, wobei in Fig. 2 von den acht in Reihe geschalteten Zylindern der besseren Übersichtlichkeit wegen nur die ersten sechs dargestellt und die letzten zwei fortgelassen worden sind. Die Wirkungsweise und Betriebsart des pneumatischen Motors ist gemäß einem ersten Ausführungsbeispiel folgende:
    Es wird mit einem teils pneumatischen Eigendruckumlauf das Druckumlaufvolumen von Druckumfahrraum 16 zu Druckumfahrrraum 16 dargestellt und teilweise erfolgt der pneumatische Druckumlauf selbigen Druckvolumens mittels Kleinkompressoren 32 bei geringfügiger Druckerhöhung.
  • In dieser Darstellungsart ist der Wert des Druckes des Druckexpansionsvolumens sowie das Volumen selbst im Druckexpansionsraum 15 sowie dessen Expansionswert von der Leistung des Motors abhängig.
  • Diese Art des pneumatischen Motors wird beispielsweise bei einer anfänglichen Belastung der Fläche der Expansion auf der Fläche des Gleitkolbentellers 2 von 10 bar auf 100 cm² Fläche betrieben.
    Das Druckvolumen im Druckexpansionsraum 15 beträgt bei 10 bar ein dm³.
  • Um nach der Arbeit und der Expansion des Druckvolumens im Druckexpansionsraum 15 die ursprüngliche Spannkraft, d.h. den ursprünglichen Druckwert des Druckvolumens für eine erneute Arbeitsleistung zu erhalten, ist im Druckumfahrraum 16 ein Druckvolumen von 1 dm³ mit einem Druck von 12,5 bar, welcher die Platte des Gleitkolbentellers 9 auf 80 cm² Fläche belastet, in dem Zylinder eingelagert, welcher zu erneuter Arbeitsleistung der der in Reihe geschalteten Anlage vorbereitet wird.
  • In diesem Moment wird mittels Gegendruck aus dem Umfahrraum 16 der ursprüngliche Spannwert des Druckexpansionsraumes 15 zu erneuter Arbeitsleistung erreicht. Zur Steuerung der Umfahrmomente des Druckvolumens sowie zur Restvolumen-Drucküberführung innerhalb der Druckumfahrräume der einzelnen Zylinder kann ein pneumatischer oder hydropneumatischer Druck im Steuerzylinder 8 angewendet werden. Dieser Druck kann über eine Hydraulikpumpe, da es sich um einen Restdruck handelt, aufgebracht werden, oder bei Verwendung höherer Drucke zur Erzielung einer hohen Arbeitsleistung wird das Steuerleitsystem des Steuerzylinders 8 über einen Kompressor betrieben.
  • Der anliegende Druck im Steuerleitungssystem gemäß Fig. 6, welcher für die Steuerzylinder 8 zuständig ist, ist in der Regel stets annähernd konstant, weil bei einer Verschiebung der Gleitkolbenteller im Steuerzylinder 8 das Druckvolumen, gleichbleibend in seiner Volumenmenge, bei geringer Umfahrabweichung umfahren wird.
  • Die Kolben des Steuerzylinders 8 haben eine Fläche von 15 cm².
  • In jedem Arbeitszylinder sind zwei Steuerzylinder 8 eingearbeitet.
    Bei der Restdrucküberführung im Druckumfahrraum 16 fahren die Druckstempel des Steuerzylinders 8 deren Gesamtfläche 30 cm² beträgt, die Gleitkolbenteller 9B mit ihrer großen Druckfläche auf einer Weglänge von 10 cm aus, um den Restdruck aus diesem Druckumfahrraum 16 zu umfahren.
  • Die Belastung auf der Gleitkolbenfläche 9B beträgt hierbei 375 kp auf 80 cm² Fläche.
  • Um diesen anstehenden Druck umfahren zu können, steht auf den Kolben der Steuerzylinder 8, mit ihren 30 cm² Gesamtfläche, ein Steuerdruck von 12,5 bar an, welcher innerhalb des Umfahrprozesses der Restdrucküberführung in den Druckumfahrräumen mittels des zwischengeschalteten Kleinkompressors 32 bis auf maximal 15 bar erhöht wird.
  • Die Schubstützen 7 besitzen einen Flächenquerschnitt von 10 cm² und in ihrem vertikalen Verlauf im Druckumfahrraum 16 dem eine Höhe von 10 cm eigen ist, nehmen sie demzufolge 200 cm³ Raumvolumen vom Druckraumvolumen ein.
  • Somit beträgt das Druckvolumen des Druckumfahrraumes 16 1000 cm³ bei einem Druck von 12,5 bar.
  • Anschließend wird die Vorbereitungsphase zur Betreibung des pneumatischen Motors nach Fig. 2 beschrieben.
    Figure imgb0004
  • In den Zylindern I-VIII wird in den Druckexpansionsräumen 15 vom Kompressor 30 über die Druckinjektionsleitung 27 eine bestimmte Druckfüllmenge injiziert. Sie ist in allen Druckumfahrräumen 15 gleich.
    Die Expansionsgröße der Expansionsräume 15 hat vor der in Betriebnahme des Motors innerhalb jedes Zylinders ein anderes Raumvolumen.
    Deshalb wird entsprechend der vorhandenen Größe des Raumvolumens der Druck in verschiedener Höhe eingefahren.
    Im Druckexpansionsraum 15 des Zylinders I ist 1 dm³ bei 10 bar, im Druckexpansionsraum des Zylinders II wird ebenfalls 1 dm³ auf 10 bar verfüllt.
    Im Druckexpansionsraum 15 des Zylinders III wird entsprechend der Steuerstandfüllung bei 2 dm³ Raumvolumen auf 5 bar verfüllt.
    Der Druckexpansionsraum 15 des Zylinders IV hat eine Raumgröße von 3 dm³ der mit 3,75 bar pneumatischen Volumens aufgefüllt wird.
    Der Druckexpansionsraum des Zylinders V wird mit 2 dm³ bei 5 bar und der Druckexpansionsraum 15 des Zylinders VI bei 1,75 dm³ auf 6,25 bar Druck gebracht.
    Der Druckexpansionsraum 15 des Zylinders VII faßt in dieser Stellung 1,20 dm³ bei 8 bar und der Druckexpansionsraum des Zylinders VIII bei 1 dm³ wiederum 10 bar Druckvolumen.
    Die Druckumfahrräume 16 der Zylinder I und II sind jeweils mit 1,6 dm³ und 12,5 bar gefüllt.
    Dasselbe befindet sich im Druckumfahrraum 16 des Zylinders III; der Druckumfahrraum des Zylinders IV befindet sich in eingefahrener Stellung und ist druck- und druckvolumenlos.
    Der Druckumfahrraum des Zylinders V ist mit 0,8 dm³ und 6,25 bar verfüllt.
    Der Druckumfahrraum 16 des Zylinders VI hat bei einem Raumvolumen von 1,1 dm³ einen Druck von 7,8 bar. Im Zylinder VII hat der Druckumfahrraum 16 ein Raumvolumen von 1,44 dm³ bei 10 bar und der Zylinder VIII hat im Druckumfahrraum 16 eine Druckraumgröße von 1,6 dm³ bei 12,5 bar.
  • In der Steuerleitung befindet sich ein aufgefahrener Steuerdruck zur Steuerung des Steuerzylinders 8 von 12,5 bar. Die Steuerleitung, die aus Platzgründen nicht eingezeichnet wurde, wird im Steuersystem annähernd so betrieben, wie die im System dargestellte Druckumfahrleitung.
  • Gemäß den obigen Ausführungen ist die Stellung der Arbeitszylinder I-VIII gemäß der Fig. 2 der Zeichnung dargestellt:
    Fig. 2 zeigt diesen Zylinder I mit aufgefahrenem pneumatischen Spanndruck im Druckexpansionsraum 15 vor dem Arbeits-Schub.
  • Der Gleitkolbenteller 2 ist mittels der Arretierung 3' an der Wandung des Arbeitsdruckzylinders arretiert.
  • Fig. 2 der Zeichnung zeigt den Zylinder II mit aufgefahrenem pneumatischen Spanndruck mit nach abwärts zurückgefahrenem Gleitkolbenteller 11 zusammen mit dem mit diesen starr verbundenen Schubstützen 7, so daß diese Schubstützen 7 innerhalb des anschließenden Entlastungsvorganges im Druckexpansionsraum 15 den pneumatischen Druck-Entlastungsvorgang durch Auflage auf den Gleitkolbenteller 2 nicht beeinträchtigen können (vor den Arbeits-Schub). Der Raum zwischen dem Gleitkolbenteller 2 und dem Gleitkolbenteller 9A ist über den Stutzen 17 mit der Atmosphäre verbunden.
    Die im Gleitkolbenteller 11 eingelagerten relaisgesteuerten Ventile c sind hierbei geöffnet.
    Der Gleitkolbenteller 11 wird innerhalb des Druckumfahrraumes 16 energielos um den Wert der Raumspannung des Druckexpansionsraumes 15 in Bezug auf die Entspannungsweglänge nach unten verfahren.
  • Fig. 2 der Zeichnung zeigt den Zylinder III in der Stellung des Gleitkolbentellers 2 bei Beendigung des Arbeits-Schubes, wobei die Arretierung 3' gelöst und der arbeitende Gleitkolbenteller 2 nach unten in den von den Schubstützen 7 frei gemachten Raum zunächst um die Weglänge nach unten verfahren wird, bis er auf den Schubstützen 7 aufliegt.
    Es setzt nun die Drucküberführung aus dem Druckumfahrraum 16 in die Folgebehälter bzw. in die folgenden Zylinder ein.
    Dies geschieht über die stete Energie-Druckumfahrleitung 28 (s. hierzu die Tabelle).
  • Fig. 2 der Zeichnung zeigt den Zylinder IV, in Stellung der Gleitkolben bei Beendigung des Entlastungvorganges. Während des Abfahrvorganges des Gleitkolbentellers 11 sind die Ventile C geöffnet.
    Hierbei wird der Druck vom Druckumfahrraum 16 in die Folgebehälter bzw. in die folgenden Zylinder überfahren. Der nunmehr noch anstehende pneumatische Restdruck im Druckumfahrraum 16 zwischen dem Gleitkolbenteller 9 und dem Gleitkolbenteller 11 verbleibt entweder während des gesamten Arbeitsprozesses der gesamten in Reihe geschalteten Anlage stetig während des Umfahrvorgangens in diesem Raum und wird in diesen überführt oder, er wird aufgrund seiner geringen Druckgröße mittels durch einen Kompressor 30'antreibbarer Steuerzylinder 8 in die Folgebehälter bzw. -zylinder überfahren.
  • Zylinder V zeigt die Stellung der Gleitkolbenteller bei der das Druckfluidum vollständig in die Nachfolgebehälter bzw. -zylinder überführt ist und ein erneutes Beschicken des Druckumfahrraumes mit Druckfluidum beginnen kann.
  • Zylinder V der Fig. 2 der Zeichnung zeigt die im Leerlauf über die Kurbelwelle und Pleuel wieder nach oben geführte Schub-Kolbenstange 5, den druckgeleerten Druckumfahrraum 16, die aneinanderliegenden Gleitkolbenteller 9 und 11 im Druckumfahrraum 16, sowie den expandierten Druckexpansionsraum 15. Die Schubstützen 7 des Gleitkolbentellers 11 liegen unterseitig am Gleitkolbenteller 2 an und es kann nach der Druckexexpansion des Folgebehälters, d.h. nach dessen Arbeit und seiner beginnenden Entlastung in diesen Behälter bzw. -zylinder über die stete Druckumfahrleitung 28 im Druckumfahrraum 16 erneut pneumatischer Druck injiziert werden (s.Tabelle des steten Druckumlaufes). Die Gleitkolbenteller 9A, 9B und der Gleitkolbenteller 11 bleiben im Auffahrprozeß zusammen, die relaisgesteuerten Ventile C des Gleitkolbentellers 11 sind geschlossen, der nunmehr einfahrende pneumatische Druck über die stete Energie-Druckumfahrleitung 28 komprimiert mittels Verschiebung des Gleitkolbentellers 2 in Richtung nach oben, den pneumatischen Druck im Druckexpansionsraum 15 auf seinen ursprünglichen Wert.
  • Fig. 2 der Zeichnung zeigt den Zylinder VI kurz vor dem erneuten Arbeits-Schub. Der als Arbeitskolben wirkende Gleitkolbenteller 2 wird bis zur oberen Arretierung 3' mittels überfahrenden Druckfluidums zur Arretierung 3' gedrückt und der Gleitkolbenteller 2 wird am oberen Totpunkt arretiert. Die Arretierung erfolgt auch an der Kolbenstange 5 mittels der Arretierung 3 am Gleitkolbenteller 2.
  • Die Zylinder VII und VIII sind in Fig. 2 der Zeichnung nicht dargestellt, um die Zeichnung nicht unnötig zu komplizieren. Alle Folgebehälter haben ein gleiches Raumvolumen und sind dem gleichen Druck ausgesetzt. Dadurch ist ein gleichmäßiges pneumatisches Drucküberführen sowie Druckauffahren in jedem Arbeitsdruckbehälter bzw. -zylinder in bezug auf Druckkraft und Druckvolumen gewährleistet.
  • Es ist zwar möglich nach der Druckexpansion im Druckexpansionsraum 15 diesen Raum direkt wieder zu komprimieren, indem der Gleitkolbenteller 11 bei geschlossenen Relaisventilen an den Gleitkolbenteller 9 gefahren wird, doch damit ist ein sehr hoher Energieaufwand notwendig, weil die Kompressionsenergie im Druckumfahrraum 16 überall mit gleicher Größe anliegt und eine Überführung von Druckfluidum zwischen den Gleitkolbentellern 9 und 11 zu dem Raum zwischen den Gleitkolbentellern 11 und der arretierten Kolbenteller-Bodenplatte 12 absolut notwendig ist.
  • Bei der dargestellten Betriebsart erfolgt der pneumatische Druckentspannungsprozeß mit Drucküberführung mittels der steten Energie-Druckumfahrleitung 28 in die folgenden Zylinder durch die Entspannung des pneumatischen Druckes im Druckexpansionsraum 15 und die damit verbundene stetige Entspannung des pneumatischen Druckes im Druckumfahrraum 16, bei gleichzeitiger pneumatischer Drucküberführung und der Energieeinsparung von 80 %.
  • Das pneumatische Restvolumen, welches mittels Kompression überführt wird, ist in Bezug zu seinem Volumen und Druck sehr gering. Die Überführung beansprucht sehr wenig Energie. Konstruktiv ist darauf zu achten, daß der pneumatische Druck im Druckexpansionsraum 15 vor der durchschnittlichen 50 %igen Entspannung zum Zwecke der Arbeitsentlastung gleich dem pneumatischen Druck im Druckumfahrraum 16 ist.
  • Das System der Zylinder kann mehrmals in Reihe parallel geschaltet werden um bessere Rotationsbewegungen der Kurbelwelle zu erreichen.
  • Fig. 3 der Zeichnung stellt eine komplette Arbeitsphase des Zylinders III dar, mit Drucküberführung nach dem Arbeitshub.
  • Die drei letzten Darstellungen des Zylinders betreffen den Zylinder III a in seiner ersten Stellung, dann den Zylinder III b in seiner anschließenden Stellung und den Zylinder III c in seiner abschließenden Stellung, in welcher der Restdruck aus dem Druckumfahrraum 16 mittels des absenkbaren Gleitkolbentellers 9B aus dem Druckumfahrraum 16 desselben über die Energie-Druckumfahrleitung 28 in die anderen speichernden Druckumfahrräume überführt worden ist. Das Druckumfahrvolumen, welches nach dem Arbeitshub dieses Zylinders III = 100 % beträgt, wird in den drei dargestellten Phasen hintereinander überführt. Nach dem Arbeitshub des Zylinders III kann der Gleitkolbenteller 9 arretiert bleiben, bis das Druckvolumen aus dem Druckumfahrraum 16 des Zylinders III, welches zuerst in den Zylinder VII, dann in die Zylinder VI - V und in den Zylinder IV überführt wird, einen Druck aufweist, welcher kleiner als der expandierende Druck im Expansionsraum 15 ist.
  • Dann erst löst sich die Arretierung des Gleitkolbentellers 9, so daß der Schub des im Druckexpansionsraum 15 noch anliegenden Expansionsdruckes den im Druckumfahrraum 16 noch innerhalb der Überführung entstehenden Druckes im Druckausgleich bis auf ein Restvolumen von 400 dm³ überführen kann. die Restüberführung erfolgt mittels Ausfahrens der Kolben 51 des Steuerzylinders 8 gemäß Fig. 3 der Zeichnung in der Zylinderstellung gemäß Zylinder III c.
    Der Steuerdruck im Steuerzylinder 8 wird von 12,5 bar mittels Kleinkompressor oder Hydraulikpumpe je nach Anwendungsart des entsprechenden Druckmediums bis auf einen Druck von max. 15 bar gebracht, wobei der Druckumfahrraum 16 entleert wird.
  • Motorlauf bzw. Betriebszeit
  • Gemäß einem weiteren Ausführungsbeispiel kann der Zylinder II, aufgrund seines gefaßten Druckvolumens in Verbindung der mechanischen Stellung seiner Teile, Arbeit leisten, indem der Expansionsdruck im Druckexpansionsraum 15 von 10 bar auf 5 bar expandiert auf einer Weglänge von 10 cm. Es wird in diesem Moment an der Kolbenstange eine Arbeit in Form von einer mittleren Kraft, die 750 kp auf einer Weglänge von 10 cm beträgt frei.
    Innerhalb dieser Zeitfolge entlastet der Zylinder III gemäß Fig. 2 der Zeichnung, welcher seinen Druckumfahrraum 16 in dem der Zylinder VII-VI-V und IV innerhalb der Druckumfahrräume 16, im Druckvolumen aufgefahren wird, entsprechend so wie das Druckvolumen im Druckumfahrraum 16 des Zylinders III prozentual abnimmt. Die stetig gleichbleibenden Fahrwerte, die annähernd konstant sind, sind aus Fig. 2 der Zeichnung ersichtlich.
  • Die Steuerfolgen im Entlastungsmoment des Druckumfahrraumes 16 des Zylinders 1 sind in der Fig. 3 der Zeichnung ersichtlich und bereits in der Vorbereitungsphase beschrieben.
    Addieren wir den in der Vorbereitungsphase vorhandenen Druckvolumenstand des Zylinders III und des Zylinders VII, so haben wir im Zylinder III 100 %, im Zylinder VII 80 %, das entspricht 180 % dividiert durch zwei Volumenräume = 90 % im Druckumfahrraum 16 des Zylinders VII, d.h. es müssen 160 cm³ des verbleibenden Restdruckes im Zylinder III mittels der Druckumfahrleitung und der Kleinkompressoren 32 nach dem Umfahren des Druckes im Druckumfahrraum 16 des Zylinders VIII, bei einem Druck von 12,5 bar rückgeführt werden.
    Somit ist praktisch der Zylinder VII, wenn er nunmehr seine Schubstützen 7 bei geöffneten Ventilen C des Gleitkolbentellers 11 mechanisch zurückfährt, zur Arbeit vorbereitet. Der Zylinder I hat zwischenzeitlich den soeben geschilderten Arbeitsgang erledigt, und kann nun mittels Druckexpansion im Druckexpansionsraum 15 Arbeit leisten, wobei der Zylinder II den Entlastungsvorgang des Druckumfahrraumes 16 einleitet, hierbei mit der Drucküberführung in den Zylinder VI beginnt und diesen auf 90 % des erforderlichen Druckvolumens im Druckumfahrraum 16 bringt, so daß wiederum ein Restdruck von 10 % des 10 %igen Druckvolumens vom Zylinder II und Zylinder VI im Rückfahrprozeß rückgeführt werden muß.
  • Infolge der weiteren kontinuierlichen Arbeitsleistung des pneumatischen Motors verschiebt sich der stetige Funktionsprozeß in der Veränderungsphase jeweils um einen Zylinder nach links. Es entsteht ein Rotationsumlauf geschilderter Einzelvorgänge.
  • Das für einen Arbeitshub notwendige Druckvolumen beträgt ohne Berücksichtigung des einmaligen, anfänglichen Füllmomentes des pneumatischen Motors 1000 cm³ bei einem Druck von 12,5 bar im Druckumfahrraum 16, wovon 80-90 % mittels Eigenenergieumlauf ernbracht werden und ca. 20-10 % mittels Kleinkompressor 32 rückgeführt werden müssen.
    Bei 20 % Volumendruck-Rückführung innerhalb der Druckumfahrräume 16, entspricht dies einem Auffahren des Druckes von 3,75 bar und ca. 980 cm³ Volumen auf 12,5 bar bei 320 cm³ Volumen, bezogen auf die Expansionsphase der geleisteten Arbeit innerhalb eines Arbeitshubes, bei ca. 40 % Energieaufwand für diesen Prozeß.
  • Zur Restdrucküberführung durch Auffahren des Steuerdruckes in den Druckstempel 8 wird ein Energieaufwand von 5-7 % der erzielten Arbeit benötigt, so daß ohne Berücksichtigung der Reibungsverluste der pneumatische Motor in dieser Art noch ca. 5o % Arbeit innerhalb der Betriebszeit ohne Energieaufnahme abgeben kann.
  • Die Wirkungsweise des pneumatischen Motors nach einem weiteren Ausführungsbeispiel gemäß Fig. 4 der Zeichnung.
  • Die Wirk- und Betriebsvariante des pneumatischen Motors wird ohne pneumatischen Eigendruckumlauf innerhalb der Druckumfahrräume 16 dargestellt.
  • In dieser Darstellung ist die Größe des Druckexpansionsraumes 15 und die Menge des Druckvolumens des Druckexpansionsraumes 15 sowie der Expansionswert des Druckvolumens von der zu erwartenden Leistung des Motors abhängig.
    Der Gleitkolbenteller 9 ist horizontal in einen Gleitkolbenteller 9A und in einem Gleitkolbenteller 9B unterteilbar.
    Auf dem Gleitkolbenteller 9A ist eine Rasterarretierung 18(Fig.6) angeordnet, in welcher das Zylindergehäuse 5o des steuerbaren Steuerzylinders 8 vertikal leicht beweglich befestigt ist, dessen Kolben 51 mit seiner Kolbenstange 52 am Gleitkolbenteller 9B fest angebracht ist.
    Die Schubstützen 7 sind gleitbar und verlaufen durch alle Gleitkolbenteller sowie durch die Kolbenteller-Bodenplatte 12. Dies garantiert im Rückfahrmoment der Schubstützen 7 mit dem steuerbaren Gleitkolbenteller 11, an welchen die Schubstützen 7 fest arretiert sind, daß innerhalb des Druckumfahrraumes 16 im Zeitpunkt des Rückfahrens des genannten Gleitkolbentellers 11 kein Schub- oder Druckstau entsteht. Alle Ventil-, Schalt- und Arretierungssysteme werden elektronisch gesteuert.
    Der pneumatische Motor wird von seiner Expansionsflächenbelastung auf seiten der Fläche de Gleitkolbentellers 2 von anfänglich 1oo bar auf 1oo cm² betrieben. Das entspricht einem anfänglichen Expansionsraumvolumen von 1o dm³ und 1oo bar.
  • Die Hublänge des Arbeitsweges beträgt 4o cm. Aufgrund dieser Hubweglänge ist dem Expansionsraumvolumen im Expansionsdruckraum 15 ein Druckvolumen von 14 dm³ bei 8o bar eigen.
  • Auf dem Wege von 4o cm geleisteter Arbeit werden 9 t benötigt. Vom Druckumfahrraum 16 her, ist die Platte des Gleitkolbentellers 9 mit 122 bar auf 8o cm² Fläche belastet. Dies entspricht der anfänglichen Belastung der Gleitkolbentellerplatte 2 von seiten des Expansionsdruckraumes 15. Das garantiert aber somit auch, die Rückführung der Gleitkolbentellerplatte 2 auf den ursprünglichen Spannwert zum Erhalten einer neuen Arbeitsleistung.
  • Zur Steuerung der Umfahrmomente des Umfahrdruckes in den Druckräumen der einzelnen Zylinder wird ein pneumatischer oder hydropneumatischer Druck von 225-235 bar verwendet, um eine Druckentlastung innerhalb der Druckumfahrräume 16 während des Druckumfahrvorganges zu verhindern.
  • Die Steuerzylinder 8 haben auf ihren Drucktellerflächen eine Querschnittsgröße von 2o cm² je Stempel.
  • In jedem Arbeitszylinder sind zwei dieser Steuerzylinder 8 eingelagert, so daß bei 4o cm² Hochdruckflächenbelastung ein Steuerdruck von ca. 9 t auf das Druckvolumen innerhalb der Druckumfahrräume 16 während des Druckumfahrvorganges lastet. Die Hochdruck-Steuerleitung wird ebenfalls über einen Umström-Kompressor und Druckbehälter geschaltet.
    Sie garantiert mit dem Kolben 51 des Steuerzylinders 8, bei einem Steuerwechsel des Steuerzylinders das Anliegen eines konstant steten Hochdruckes, wobei dieser Druck, um das Druckvolumen im Arbeitszylinder innerhalb des Druckumfahrraumes 16 umfahren zu können um einige bar erhöht wird.
  • Die Steuerleitung, welche an den Steuerzylinder 8 angeschlossen ist, ist aus Übersichtsgründen nicht dargestellt.
  • Die Vorbereitungsphase zur Betreibung des pneumatischen Motors gemäß Fig. 4 der Zeichnung.
  • In den Zylindern wird entsprechend des Steuerungsstandes gemäß Fig. 4 der Zeichnung im Druckexpansionsraum 15 der Zylinder I u.IV ein Druckvolumen von 10 dm³ bei 100 bar injiziert.
    In den Druckumfahrraum 15 der Zylinder II und III werden 14 dm³ mit 80 bar injiziert.
    In den letztgenannten Druckexpansionsräumen 15 stehen die Zylinder mit ihrer Mechanik in expandiertem Zustand.
    Das Druckvolumen in allen Expansionsräumen ist gleich groß. Die vertikale Gleitkolbentellerbelastung des Gleitkolbentellers 2 beträgt in gespanntem Zustand vom Druckexpansionsraum 15 her, im Zylinder I und IV 100 bar = 10 t.
    Im entspannten Zustand der Druckexpansionsräume 15 liegen, entsprechend den Zylindern II und III 80 bar = 8 t auf 100 cm² Fläche an.
    Der Expansionsdruckweg beträgt 40 cm, der Entspannungswert des Expansionsdruckvolumens im Expansionsdruckraum 15 beträgt 20 %.
    Somit beträgt die anfallende Arbeit auf 40 cm Weglänge 9 t. In den Druckumfahrräumen 16 nach Fig. 4 der Zeichnung werden in die Zylinder I und II sowie IV, III, 2 dm³ Druckvolumen bei einem Druck von 122 bar injiziert.
    Die Stössel der Schubstützen 7, deren Querschnitt 10 cm², bei einer Lauflänge von 40 cm innerhalb der Druckumfahrräume 16 beträgt, machen es notwendig, das im Druckumfahrraum 16 anstehende Druckvolumen auf 122 bar zu erhöhen, um einen äquivalenten Druckkraftausgleich zwischen dem Druckumfahrraum 16 und dem Druckexpansionsraum 15 herzustellen, so daß der 100 %ige im Druckexpansionsraum 15 beim Umfahren des Druckvolumens vom Druckumfahrraum 16 eines Zylinders zum Druckumfahrraum 16 eines anderen Zylinders anstehende Druckausgleich bei Erhalt des 100 %igen Spannwertes im Druckexpansionsraum 15 zum Erhalt erneuter Arbeit gewährleistet ist.
  • Die Stempel der Steuerzylinder 8 befinden sich aufgrund der Steuerstellung im Zylinder I und II in eingefahrener Stellung, im Zylinder III und IV in ausgefahrener Stellung.
  • Zu bemerken ist, daß der Gleitkolbenteller 9 bis hin zu seiner obersten Arretierungsstellung bei dem Umfahren des Druckes und seines Volumens vom Druckumfahrraum 16 zum Druckumfahrraum 16 gleitend beweglich ist.
    Daraus resultiert, daß die Stempel der Steuerzylinder 8 bei ausgefahrener Druckstellung im Auffahrmoment der Druckauffahrräume 16 wie im Zylinder IV ersichtlich ist, frei beweglich in vertikaler Richtung mitlaufen.
    Nach Erreichen der Spannstellung der Kolbentellerfläche 2 im Moment seiner Arretierung, wird der Steuerhochdruck in den Steuerzylinder 8 umgeschaltet, der Gleitkolbenteller 9A bleibt frei beweglich, der Gleitkolbenteller 9B arretiert und es verfährt der Gleitkolbenteller 9A zum Gleitkolbenteller 9B vertikal abwärts, wobei gleichzeitig der Gleitkolbenteller 11 mit den Schubstützen 7 vertikal abwärts fährt. Die vertikale Abwärtsbewegung dieser Teile beträgt 40 cm Weglänge um einen Arbeitshub zu gewährleisten.
  • Vor dem Einsetzen eines Arbeitshubes innerhalb eines Zylinders, der durch Abwärtsbewegung des Gleitkolbentellers 2 erfolgt, müssen die sich nach aufwärts erstreckenden Schubstützen 7 zusammen mit dem mit ihnen starr verbundenen Gleitkolbenteller 11 bei geöffneten Ventilen c, im Druckumfahrraum 16 mit geringem mechanischen Energieaufwand nach unten um die Weglänge des Arbeitshubes abgesenkt werden. Das kann dadurch geschehen, daß am unteren Ende eines der sich nach unten erstreckenden Zweige 7' der Schubstützen in Höhe unterhalb der Gleitkolben-Bodenplatte 12 ein Zahnstangenabschnitt eines mechanischen Zahnstangen-Zahnrad-Steuersystemes 33 befestigt ist, und das mit diesem kämmenden Zahnrad an der äußeren Zylinderwandung befestigt ist und über die Pleuelstange oder Kurbelwelle antreibbar sein kann.
    Im Zahnstangen-Zahnrad-Steuersystem 33 kann der Eingriff zwischen dem Zahnrad und der Zahnstange durch ein beliebiges Steuersystem gelöst werden, so daß der Gleitkolbenteller 11 sowohl mit seinen nach aufwärts gerichteten Schubstützen 7 und auch mit sich nach abwärts erstreckenden Zweigen 7' frei verschiebbar ist.
  • Motorlauf und Betriebszeit. Die Anlaufphase wurde entsprechend der Fig. 4 der Zeichnung beschrieben. Entsprechend dieser Figur 4 beginnt nunmehr die Betriebszeit.
    Im Zylinder I löst die Arretierung 3' des Gleitkolbentellers 2 mit einem Druck von 9 t auf 40 cm Weglänge. Es verfährt der Gleitkolbenteller 2 bei Mitnahme der Kolbenstange 5 zur Betätigung der Kurbelwelle vertikal abwärts, bis zu seiner Auflage auf die Steuerzylinder 8.
    In dieser Zeitphase fahren nun im Zylinder II die Steuerzylinder 8 ihre Kolbenstangen 52 aus, indem ein Kleinkompressor 30' mittels einer umsteuerbaren Leitung 20 den, jetzt obenseitig auf dem Kolben des Steuerzylinders 8 liegenden Raum "a" beaufschlagt und den Druck während des Arbeitsvorganges um einige bar drucksteigernd erhöht.
    Innerhalb der auf dem Gleitkolbenteller 9A befindlichen vertikalen Gleitfläche mit Rasterarretierung 18, in welcher die Steuerzylinder 8 Führung finden und vertikal um einige Millimeter beweglich sind, verfährt der Hochdruckstempel 8 um diese Differenz, so daß einmal auf das Zylindergehäuse 50 des Steuerzylinders 8 der expandierende Druck mittels der Fläche des Gleitkolbentellers 2 vom Druckexpansionsraum 15 her Druckwirkung erzeugt und zum anderen die ausfahrenden Kolbenstangen 52 des Steuerzylinders 8 mittels der Fläche des Gleitkolbentellers 9B einer gleichwertigen Gegendruckwirkung ausgesetzt ist, wenn nunmehr das Druckvolumen aus dem Druckumfahrraum 16 des Zylinders II mittels des Kleinkompressors 32 in den Druckumfahrraum 16 des Zylinders III überführt wird. Der Druckexpansionsraum 15 des Zylinders III verdichtet in dieser Zeitfolge bei Wiederherstellung des Spannwertes zur Erzielung erneuter Arbeit sein Expansionsdruckvolumen von 14 dm ³ und 80 bar auf 10 dm³ und 100 bar, wobei bei Erreichung dieser Größen die mechanischen Arretierungen die Gleitstelle arretieren.
    Während des geschilderten Vorganges wurde im Zylinder IV die Leitung 20 vom Kompressor 30' zum Raum b der Steuerzylinder 8 umgeschaltet und dabei die Steuerzylinder 8 eingefahren, wobei der Gleitkolbenteller 9A, wie bereits dargelegt, vertikal nach unten fährt und sich auf dem arretierten Gleitkolbenteller 9B auflegt.
  • Die Zylindergehäuse 50 der Steuerzylinder 8 werden somit vertikal ebenfalls nach abwärts verfahren.
    Die Schubstützen 7 werden ebenfalls mechanisch bei geöffneten Ventilen "c" des Gleitkolbentellers 11 zurückgefahren.
    Es setzt der Expansionshub des Zylinders IV ein, d.h. daß im Zylinder IV Arbeit geleistet wird, indem der Gleitkolbenteller 2 von seiner Arretierung befreit wird. Der soeben komplett geschilderte Arbeitsablauf innerhalb aller Zylinder verschiebt sich jetzt in der folgenden Arbeitsphase gemäß Fig. 4 der Zeichnung um jeweils einen Zylinder nach links.
  • Die arbeitleistende Druckexpansionsphase innerhalb eines Zylinders verläuft zeitgemäß innerhalb der Phase schneller als der Druckumlauf innerhalb der anderen Zylinder.
    Zurückzuführen ist dies auf die entsprechenden Querschnittsgrößen der Druckumfahrleitung 28, sowie der entsprechend geringeren Druckgeschwindigkeiten im Verhältnis zur Expansionskraft.
    Es sollte deshalb der Querschnitt aller Leitungssysteme so groß wie möglich gehalten werden und die Zylinderreihe eines Motorblocks nach Fig. 4 der Zeichnung mehrmals parallel geschaltet werden, wobei eine Versetzung der einzelnen Druckexpansionsstufen möglich ist, um einen kontinuierlichen Kurbelwellentrieb zu gewährleisten.
  • Das für einen Arbeitshub notwendige Druckvolumen beträgt ohne Berücksichtigung des einmalig anfälligen Füllmomentes innerhalb des pneumatischen Motors dm³ oder 4000 cm³, bei einem Druck von 122 bar und muß mit einem Energieaufwand von ca. 10 bar max. einmal umfahren werden. Der Energieaufwand für diesen Arbeitshub innerhalb der Steuerzylinder 8 ist annähernd dem soeben Geschilderten gleichwertig.
  • Entsprechend herkömmlicher Art zur Erzeugung eines gleichwertigen Druckvolumens wird für eine gleichwertige Leistung für jeden Arbeitshub wohl das gleiche Druckvolumen benötigt, bei einem Druck der von 0 auf 100 bar gebracht werden muß.
  • Der Wirkungsfaktor des pneumatischen Motors steigt entgegen herkömmlicher Art von Kompressionsenergie-Anlagen zur Betreibung von pneumatischen Motoren um wenigstens 700 bis 800 %.
    D.h. ein pneumatischer Motor dieser Art braucht im Vergleich seiner Betreibung ohne Berücksichtigung von Verschleiß und Reibungsverlusten ca. 20 % seiner erzeugten Arbeit, um den Betreiberprozeß aufrecht zu erhalten und kann 80 % anfallende Arbeit als Leistung zur Betreibung von Anlagesystemen stetig angeben.
  • Es soll die vor dem Arbeitshub des Gleitkolbentellers 2 in den Druckumfahrraum 16 des Druckzylinders 1 gespeicherte pneumatische Druckenergie von 33 bis ca. 60 oder 70 % bei stufenweisem pneumatischen Druckausgleich ohne Energieaufwand in die Druckumlaufleitung 28 eingebracht werden.
    Die restlichen Prozente verbleibender pneumatischer Energie im Druckumströmungsprozeß müssen mittels Umströmkompressoren ebenfalls volumenprozentual auf selbigen Weg überführt werden.
  • Der soeben geschilderte Prozeß kann des weiteren über zwei getrennte Druckumlaufleitungen 28 ablaufen, wobei eine Druckumlaufleitung volumenprozentual von Zylinder zu Zylinder potentielle Energie im Umströmprozeß überführt und in Reihe parallel zu diesem Prozeß die Überführung mittels Umströmkompressor vorgenommen wird. Eine andere Möglichkeit der pneumatischen Drucküberführung für die gesamte zu überführende potenielle Energie mittels einer Druckumlaufleitung 28 ist mit einem Umströmkompressor 32 innerhalb des pneumatischen Systems möglich, indem die einzelnen Verdichtungskammern des Überstromkompressors, gleich ob es sich um Kolbenverdichter oder Radverdichter handelt, Anschlußstutzen, in welchem Rückschlagventile eingebaut sind, haben.
    Diese Anschlußstutzen innerhalb der einzelnen Verdichtungsstufen werden mit der Druckumlaufleitung 28 geschlossen, so daß der jeweils erforderliche Nenndruck am Druckstutzen der sich im Umfahrprozeß der potentiellen Energie durch das Druckauffahren der Druckumfahrräume 16 stetig ändert, entsprechend des Druckbedarfs, in die Druckumlaufleitung 28 energieeinsparend einfahren kann und von den jeweiligen Druckumfahrräumen 16 abgenommen wird.
  • Des weiteren soll im Überströmungs- bzw. Umfahrprozeß der sich stets verändernde anliegende Saugdruck vom Druckumfahrraum 16, aus welchem das kompressible Medium ausgefahren wird, kehrseitig auf die Flächen der Teile im Umströmkompressor wirken, welche zur Verdichtung beitragen.
    Hierdurch wird enorme Kompressorleistung eingespart und die potentielle Energie der freien Umlaufüberführung über den Kompressor bzw. durch den Kompressor beeinträchtigt nicht die notwendige Überführungsleistung des Umströmkompressors oder der Umströmkompressoren.
  • Der Umströmkompressor soll einen Teil gespeicherte potentielle Energie beispielsweise vom Zylinder I in die Zylinder III-VIII zur weiteren Nutzung überführen.
  • Wirkleistung eines Kompressors mit Puffervolumen innerhalb eines pneumatischen Motors.
    Selbiger muß die Druckluft in sehr kurzer Zeit z.B. ähnlich der Expansionszeit der Luft ins Freie aus dem Druckumfahrraum 16 des Zylinders 1 absaugen.
    Über die Druckumlaufleitung 28 in welcher im Bypaß ein im Verhältnis zum Hubvolumen des Kompressors ein um mindestens das 10-fache des Hubvolumens größerer Puffervolumenbehälter beigeordnet ist, muß die potentielle Energie in den Zylinder III-VIII befördert werden. Das Abpumpen des Luftvolumens aus dem Zylinder I und das Zuströmen von Druckluft von beispielsweise bis zu 11 bar bei Einhaltung genannt konstruktiv geförderter Parameter für Umströmkompressoren in die Zylinder III-VIII wird durch Steuerorgane zeitlich gesteuert.
    Bei einem 10-fachen Zylinderhubvolumen des Puffers schwankt der Druck während der Arbeitsspiele nur um ca. 1 bar. Aus dem Puffer kann bereits vor der Zuförderung aus Zylinder 1 Druck in das Zylindervolumen des voreilenden Kolbens im Zylinder 3 einströmen.
  • Dieser stammt aus der Reserve des vorletzten Arbeitshubes des Zylinders 1.
  • Die am Ende des Drucküberführungsprozesses in den Zylindern III-VIII gespeicherte Arbeit beträgt

    W = P x U = 1100 N/m² x 1 dm³
    Figure imgb0005


    W = 1100 Nm (bei gewählten
  • V₂ =
    1 dm³
    p =
    11 bar
  • Die erforderliche Kupplungsarbeit des Kompressors liegt noch um das Produkt mit dem reziproken Kupplungswirkungsgrad 1 hk
    Figure imgb0006
    höher, also beträgt
    Figure imgb0007
  • Die erforderliche Arbeit beim Überströmen aus dem Druckumfahrraum 16 des Zylinders I zu den Druckumfahrräumen 16 der Zylinder III-VIII mittels eines Kompressors unter Einbeziehung eines Puffervolumens, ergibt sich aus der Funktion

    w K = f p m x V₂
    Figure imgb0008


  • Aus dem Ausdruck
    Figure imgb0009

    der thermodynamischen Gasgesetze ergibt sich für die Druckverhältnisse zwischen 1 und 11 bar
    Figure imgb0010
  • Bei isotroper Zustandsänderung n = 1,4 ein mittleres Druckverhältnis für die Berechnung des Arbeitsbedarfs während des Absaugvorganges von 11 auf 1 bar von

    II m = 4,4   (Dubbel I/1955, s. 749)
    Figure imgb0011


  • Die erforderliche Überströmarbeit von Zylinder I zu den Zylindern III-VIII wird
    Figure imgb0012
  • Die eingesparte Arbeit beträgt
    Figure imgb0013
  • Die erforderliche Kupplungsarbeit ist, wie bei der normalen Füllung des Zylinders I von 1 auf 11 bar, das Produkt mit dem reziproken Kupplungswirkungsgrad.
  • Der isotherme Kupplungswirkungsgrad jedoch, welcher von 1 bar auf jeweilige Nennleistung 0,534 k-T beträgt, verbessert sich bei der Arbeit eines Überströmkompressors innerhalb eines pneumatischen Motors aufgrund der verkürzten Laufleistung des Kompressors, des vorhandenen Druckmittels, welches mit einem mittleren Druck den Kompressor belastet, ebenfalls um 60 %.
    Er steigt von 0,534 k-T auf 0,854 k-T.
    Somit benötigt der Überströmkompressor nur noch eine Kupplungsleistung von PK = 40 %.
  • Der pneumatische Motor, in welchem im Druckumfahrraum 15 der einzelnen Zylinder mittels des Gleitkolbentellers 2 im Entlastungsprozeß Arbeit geleistet wird, sollte von der Effektivität her die Arbeit leisten, welche in den Druckumfahrräumen 16 der einzelnen Zylinder eingefahren wurde.
  • Im Expansionsprozeß nimmt auf die Länge des Expansionsweges die Arbeit, welche abgegeben wird, kontinuierlich ab.
    Es macht sich deshalb unumgänglich, daß ein Umströmkompressor diese Arbeit in den jeweiligen Druckumfahrraum 16 der Zylinder mit jeweils veränderlicher Nennleistung stufenweise einfährt.
  • Dies garantiert, daß im prozentualen Verhältnis, die mit geringfügigem Energieaufwand eingefahrene Arbeit in den Druckumfahrräumen im weitaus größeren Prozentualverhältnis von den Zylindern als Arbeitsleistung abgenommen werden kann, vorausgesetzt die Konstruktionsparameter eines Umströmkompressors, d.h, die Anschlußstutzen der Kammern innerhalb der einzelnen Verdichterstufen werden mit eingebauten Rückschlagventilen mit Druckrichtung zur Druckumlaufleistung 28 öffnend verbunden und innerhalb des Überströmungs- bzw. Umfahrprozesses liegt der sich jeweils verändernde Saugdruck vom Druckumfahrraum 16, aus welchem das kompressive Medium ausgefahren wird, innerhalb des Umströmkompressors kehrseitig auf die Fläche der Teile, welche zur Verdichtung beitragen, an.
  • Wird das Druckfluidum aus einem zu überführenden Druckumfahrraum 16 eines Zylinders innerhalb des Überführungsprozesses in die Folgezylinder nicht auf 1 bar leergefahren, d.h., es steht ein um mehrere bar Restdruckfluidum an, teilt sich der Gleitkolbenteller 9a und 9b mit Hilfe der ausfahrenden Steuerzylinder 8 und das Restdruckvolumen wird bei einem konstanten Druck in den dafür zuständigen Folgezylinder überführt.
  • Die Parameter erhöhter Drucküberführung wirken sich nicht nachteilig in Bezug zu den Parametern der stets angehenden mittleren Drucküberführung in Verbindung des freien Druckumlaufs, welche für die Leistung des Umströmkompressors verantwortlich sind, aus.
  • Die Leistung eines pneumatischen Motors innerhalb der Betreiberzeit.
  • Zum Erhalt einer Expansionsarbeit im Expansionsdruckraum 15 wird mittels Kompressor eingefahrenes Druckfluidum im Druckumfahrraum 16 im Anfahrprozeß und somit bei einem Kupplungswirkfaktor von 0,534 ein Druck von 1 bar auf die jeweilige Nennleistung gebracht.
  • Benötigter Arbeitsaufwand 2050 Nm.
    Für eine tatsächliche Leistung 1100 Nm.
  • Um diese 1100 Nm im Betreiberprozeß des Anlagensystems stetig zu erhalten, arbeitet nunmehr der Umströmkompressor aufgrund des vorhandenen Druckmediums mit einer Arbeitseinsparung von 60 %, d.h., für den Erhalt von 1100 Nm Arbeit pro Hub der Anlage benötigt der Umströmkompressor einen Energieaufwand von 430 Nm bei einem veränderten Kupplungsfaktor von 0,854. Weil der Überströmkompressor maximal nur 50 % des Druckfluidums überführen muß,das andere Druckfluidum im Eigendruckumlauf überströmt, bis zum jeweiligen Druckausgleich innerhalb der Überführungszylinder,wird diese Leistung nochmals durch zwei dividiert; unter Berücksichtigung von Reibungs- und Verschleißverlusten ist es möglich, innerhalb des Betreiberprozesses des Anlagesystems für einen 100 %igen Energieaufwand eine anfallende Arbeitsleistung bis zu 200 % zu erhalten.
    Wird dem pneumatischen ein Verbrennungsmotor, welcher als Antriebsaggregat des Motors dient, vorgeschaltet, kann sich die Wirkfaktorleistung dieses Motors bis zu 100 % verbessern.
    Einem Elektromotor mit nachgeschaltetem pneumatischen Motor zum Erhalt einer Arbeit kann ein Generator, welcher mittels des pneumatischen Motors angetrieben wird, beigeschalten werden.
    Hierbei wird garantiert, daß sich das elektrische Anlagensystem innerhalb des Betreiberprozesses ohne Energieaufwand betreibt und bis zu 60 % benötigter Eigenbetreiberleistung entweder in Form von Elektroenergie vom Generator oder in Form kinetischer Energie über den pneumatischen Motor abgenommen werden kann.
  • An Stelle des Umströmkompressors ist es möglich, eine Hydraulikpumpe zu setzen, vorausgesetzt jedem Druckumfahrraum 16 eines Zylinders innerhalb des pneumatischen Motors wird ein Hydrauliktank nachgeschaltet, in welchem das ausfahrende Druckfluidum aus dem Druckumfahrraum 16 expandieren kann und somit den jeweiligen Nenndruck auf das Hydrauliköl verlagert.
    Das mittels der Hydraulikpumpe umgefahrene und in den Tank wieder einfahrende Hydrauliköl komprimiert somit erneut das jeweilige Druckfluidum der entsprechenden Druckumfahrräume.
    Anzumerken ist, daß mit dieser Variante niemals im Druckabfahr- und Überführungsprozeß im druckabfahrenden Druckumfahrraum 16 bis auf 1 bar abgefahren wird.
  • Es muß ein Druckfluidum mittlerer Druckhöhe mittels der Steuerzylinder 8 und Teilung der Gleitkolbenteller 9a und 9b von Druckumfahrraum 16 zu Druckumfahrraum 16 überfahren werden. Die Arbeitsleistung der Hydraulikpumpe bezieht sich ebenfalls auf die mittlere Belastung im Umfahrprozeß.
  • Günstige Arbeitsbedingungen der Arbeitszylinder sind erzielbar, wenn das Volumen der jeweiligen Druckexpansionsräume 15 in jedem Einzelfall etwa dem Volumen der jeweiligen Druckumfahrräume 16 entspricht.
  • Sollte während des Betriebes die Temperatur der Arbeitszylinder die zulässige Betriebstemepratur übersteigen, so wird ein vorgesehenes durch einen Temepraturfühler steuerbares Kühlsystem eingeschaltet.
    Figure imgb0014

Claims (10)

  1. Verfahren zum Antrieb eines pneumatischen Motors unter Verwendung eines Antriebssystemes, dadurch gekennzeichnet, daß das Antriebssystem eine Vielzahl von in Reihe geschalteten Arbeitszylindern enthält, deren jeder einen geschlossenen Druckexpansionsraum aufweist, der während der gesamten Arbeitszeit eine gleichbleibende Druckluftmenge enthält, deren vor dem Arbeitsschub aufgebrachter Spanndruck nach dem Arbeitshub entsprechend seinen ursprünglich aufgefahrenen Spanndruckwertes expandierend den Gleitkolbenteller um die Weglänge notwendiger Expansion bei Arbeitsleistung verfährt, und in jedem Arbeitszylinder ein Druckumfahrraum angeordnet ist, der einerseits mit einer an eine Druckluftquelle angeschlossenen Injektions-Druckleitung verbunden ist, die über steuerbare Relaisventile mit dem Druckumfahrraum aller übrigen Arbeitsdruckzylinder verbunden ist, und der andererseits mit einer, die Druckumfahrräume aller Arbeitsdruckzylinder miteinander über steuerbare Relaisventile verbindenden Druckumfahrleitung verbunden ist, derart, daß das aus dem Druckumfahrraum expandierende Arbeitsfluidum über die, durch Relaisventile steuerbare Druckumfahrleitung in den einzelnen Druckumfahrräumen der nachfolgenden Arbeitsdruckzylinder speicherbar ist (S. Tabelle), und zum erneuten Auffahren des pneumatischen Spanndruckes im Druckexpansionsraum, teils aus den in den Druckumfahrräumen aller nachfolgenden Arbeitsdruckzylinder rückgespeicherte Druckfluidum über die relaisgesteuerte Energie-Druckumfahrleitung in den Druckumfahrraum einfahrbar ist und das für das Aufbringen des erforderlichen Spanndruckes noch benötigte Druckfluidum über die Injektions-Druckleitung aus der Druckluftquelle und im steten Betreibungsprozeß von Arbeitszylinder zu Arbeitszylinder, teils im ernergielosen Druckumlauf teils mit Umströmkompressor zuführbar ist, so daß der als Arbeitskolben wirkende Gleitkolbenteller aufwärts verfahren und der für den nächsten Arbeitshub erforderliche Spanndruck im Druckexpansionsraum aufgefahren wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Verwendung von beispielsweise acht Arbeitszylindern in den Druckumfahrräumen der jeweils ersten drei Arbeitszylinder aus der Druckluftquelle 1oo % des erforderlichen Spanndruckes aufgebracht wird, wobei der jeweils dritte Arbeitszylinder den Arbeitsschub durchführt, wobei der Druckumfahrraum des vierten Arbeitszylinders über die Druckumfahrleitung zuerst relaisgesteuert mit dem Druckumfahrraum des nächsten Arbeitsdruckzylinders verbunden wird, wobei nach Druckausgleich 5o % des Spanndruckes in diesem gespeichert wird, wo wiederum an Druckausgleich 5o % dieses Spanndruckes dort gespeichert werden und sofort, bis während des Betriebes jeweils annähernd 8o % des Druckfluidums speicherbar und wiederverwendbar sind.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Restdruck des Druckumfahrraumes mittels eines aus einem Druckkessel eingespeisten Druckfluidums in die Nachfolgebehälter mittels Umströmkompressor überfahren wird.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vielzahl von in Reihe geschalteten Arbeitszylindern, parallel verlaufend mehrfach verwendet wird, um einen kontinuierlichen Kurbelwellenantrieb zu gewährleisten.
  5. Vorrichtung zur Durchführung des Verfahrens gemäß den Ansprüchen 1-4, dadurch gekennzeichnet, daß jeder Arbeitszylinder (1) einen, am Druckexpansionsraum (15) anliegenden Gleitkolbenteller (2) als Arbeitskolben aufweist, der mittels einer Arretierung (3) eines Arretierungsverschlusses (6) mit der durch eine Führung (4) verlaufenden Kolbenstange (5) arretierbar ist und in bestimmtem Abstand unterhalb des Gleitkolbentellers (2) ein den Druckumfahrraum (16) begrenzender Gleitkolbenteller (9) und unter diesem ein Gleitkolbenteller (11) angeordnet ist, der mit steuerbaren Ventilen (c) versehen ist, wobei der Druckumfahrraum (16) nach unten zu durch eine arretierbare Kolbentellerbodenplatte (12) verschlossen ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die mit dem Gleitkolbenteller (2) starr verbundene Führung (4) der Kolbenstange (5) am Gehäuse des Zylinders (1) mittels einer Arretierung (3') arretierbar bzw. wieder lösbar ist.
  7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß in der Zylinderwandung eines jeden Zylinders (1) ein in den Druckexpansionsraum (15) desselben mündender Druckzuleitungsstutzen (13) vorgesehen ist, sowie ein in den Druckumfahrraum (16) desselben mündender Druckzuleitungsstutzen (14), welche beide mit einer mit der Druckluftquelle (29) in Verbindung stehenden Injektionsdruckleitung (27) verbunden sind, und in der Seitenwandung jedes Zylinders (1) ein, den zwischen dem Gleitkolbenteller (2) und dem oberen Gleitkolbenteller (9A)liegenden Raum mit der Atmosphäre verbindender Verbindungsstutzen (17) im unteren Bereich dieses Raumes angeordnet ist.
  8. Vorrichtung nach einem der Ansprüche 5-7, dadurch gekennzeichnet, daß der Druckumfahrraum (16) aller Zylinder (1) mittels einer Verbindungsleitung mit der die Druckumfahrräume (16) aller Zylinder miteinander verbindenden Energie-Druckumfahrleitung (28) in Verbindung steht.
  9. Vorrichtung nach einem der Ansprüche 5-9, dadurch gekennzeichnet, daß der Gleitkolbenteller (9) in zwei Gleitkolbenteller(9A) und (9B) aufgeteilt ist und der obere Gleitkolbenteller (9A) mit dem Zylindergehäuse (50) des aus einem Druckspeicher mit einem Druckfluidum beaufschlagbaren Steuerzylinders (8) verbunden ist, wobei der untere Gleitkolbenteller (9B) mit der Kolbenstange (52) eines zweiseitig umsteuerbaren und aufwärts bzw. abwärts verschiebbaren Kolbens (51) dieses Steuerzylinders (8) verbunden ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche 5-9, dadurch gekennzeichnet, daß der Gleitkolbenteller (11) starr mit sich nach aufwärts und abwärts erstreckenden Schubstützen (7) verbunden ist,deren in Richtung nach oben verlaufenden Teile sich durch die Gleitkolbenteller (9A und 9B) gleitend und abdichtend hindrucherstrecken und deren in Richtung nach unten verlaufenden Teile sich durch die Kolbenteller-Bodenplatte (12) gleitend und abdichtend hindurcherstrecken.
EP91107221A 1990-05-04 1991-05-03 Verfahren zum Antrieb eines pneumatischen Motors und Vorrichtung zur Durchführung des Verfahrens Expired - Lifetime EP0455258B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91107221T ATE87351T1 (de) 1990-05-04 1991-05-03 Verfahren zum antrieb eines pneumatischen motors und vorrichtung zur durchfuehrung des verfahrens.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4014372 1990-05-04
DE4014372 1990-05-04
DE4031324 1990-10-04
DE19904031324 DE4031324A1 (de) 1990-10-04 1990-10-04 Verfahren zum antrieb eines pneumatischen motors und vorrichtung zur durchfuehrung des verfahrens

Publications (2)

Publication Number Publication Date
EP0455258A1 true EP0455258A1 (de) 1991-11-06
EP0455258B1 EP0455258B1 (de) 1993-03-24

Family

ID=25892862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91107221A Expired - Lifetime EP0455258B1 (de) 1990-05-04 1991-05-03 Verfahren zum Antrieb eines pneumatischen Motors und Vorrichtung zur Durchführung des Verfahrens

Country Status (9)

Country Link
US (1) US5375417A (de)
EP (1) EP0455258B1 (de)
JP (1) JPH05506903A (de)
AU (1) AU7774891A (de)
BR (1) BR9106416A (de)
CA (1) CA2075630A1 (de)
DE (1) DE59100064D1 (de)
ES (1) ES2040606T3 (de)
WO (1) WO1991017344A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892135A (zh) * 2017-07-10 2020-03-17 伯克哈特压缩机股份公司 利用往复活塞式机器进行气体膨胀的方法和装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515675A (en) * 1994-11-23 1996-05-14 Bindschatel; Lyle D. Apparatus to convert a four-stroke internal combustion engine to a two-stroke pneumatically powered engine
EP0782671B2 (de) * 1995-05-16 2003-05-28 Globemag L.P. Vorrichtung zum kontrollierten antrieb wenigstens einer hydraulischen achse
US5806314A (en) * 1995-10-03 1998-09-15 Joseph F. Younes Pressurized cylinder and booster in a low volume pressure circuit
KR19990062360A (ko) * 1997-12-31 1999-07-26 하석봉 공기압을 이용한 실린더 상하 구동장치
US6626079B1 (en) * 2002-03-28 2003-09-30 Rehco, Llc Pneumatic motor
FR2880649A1 (fr) * 2005-01-07 2006-07-14 Raymond Louis Espitalie Dispositif hybride electro-pneumatique, generateur d'une energie motrice non polluante a deux temps
KR100999017B1 (ko) 2008-02-14 2010-12-09 강형석 압축공기를 이용한 실린더를 갖는 엔진
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
KR20140031319A (ko) 2011-05-17 2014-03-12 서스테인쓰, 인크. 압축 공기 에너지 저장 시스템 내의 효율적인 2상 열전달을 위한 시스템 및 방법
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN103075196A (zh) * 2013-01-05 2013-05-01 刘典军 压缩空气循环做功的气动马达
CN103089313B (zh) * 2013-01-28 2015-02-18 冯袖幅 一种气能机
US10641094B2 (en) 2015-04-10 2020-05-05 The Centripetal Energy Company Ii Pressure differential engine
CN106112439B (zh) * 2016-08-15 2018-07-31 大连华控工业装备有限公司 双列圆锥轴承自动定心密封罩压合机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE565927C (de) * 1929-09-11 1932-12-12 Olav Eskil Jorgensen Druckluftspeicher zum Betrieb von Druckluftmotoren
GB1007383A (en) * 1962-09-28 1965-10-13 John Ragnar Johansson Improvements in hydraulic or pneumatic reciprocating motors
GB1046882A (en) * 1963-02-15 1966-10-26 Air Prod & Chem Reciprocating piston engine
GB1064887A (en) * 1964-04-23 1967-04-12 Int Nickel Canada Sequential operation of a battery of pneumatic single-stroke motors
EP0044738A1 (de) * 1980-07-18 1982-01-27 Exxon Research And Engineering Company Energierückgewinnung aus Hochdruckreaktor-Austrittsgasen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US380375A (en) * 1888-04-03 willans
US626368A (en) * 1899-06-06 Vertical engine
US3925984A (en) * 1973-12-05 1975-12-16 John E Holleyman Compressed air power plant
DK149514C (da) * 1983-09-16 1986-12-22 Danfoss As Hydraulisk aktuator til styring af ventiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE565927C (de) * 1929-09-11 1932-12-12 Olav Eskil Jorgensen Druckluftspeicher zum Betrieb von Druckluftmotoren
GB1007383A (en) * 1962-09-28 1965-10-13 John Ragnar Johansson Improvements in hydraulic or pneumatic reciprocating motors
GB1046882A (en) * 1963-02-15 1966-10-26 Air Prod & Chem Reciprocating piston engine
GB1064887A (en) * 1964-04-23 1967-04-12 Int Nickel Canada Sequential operation of a battery of pneumatic single-stroke motors
EP0044738A1 (de) * 1980-07-18 1982-01-27 Exxon Research And Engineering Company Energierückgewinnung aus Hochdruckreaktor-Austrittsgasen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892135A (zh) * 2017-07-10 2020-03-17 伯克哈特压缩机股份公司 利用往复活塞式机器进行气体膨胀的方法和装置
CN110892135B (zh) * 2017-07-10 2022-04-05 伯克哈特压缩机股份公司 利用往复活塞式机器进行气体膨胀的方法和装置

Also Published As

Publication number Publication date
EP0455258B1 (de) 1993-03-24
AU7774891A (en) 1991-11-27
DE59100064D1 (de) 1993-04-29
BR9106416A (pt) 1993-05-04
JPH05506903A (ja) 1993-10-07
CA2075630A1 (en) 1991-11-05
ES2040606T3 (es) 1993-10-16
US5375417A (en) 1994-12-27
WO1991017344A1 (de) 1991-11-14

Similar Documents

Publication Publication Date Title
EP0455258B1 (de) Verfahren zum Antrieb eines pneumatischen Motors und Vorrichtung zur Durchführung des Verfahrens
EP2238318B1 (de) Wärmekraftmaschine
WO2002024441A1 (de) Steuervorrichtung für eine hydraulische presse sowie verfahren zu deren betrieb
WO1997017546A1 (de) Pneumo-hydraulischer wandler für energiespeicherung
EP0972631B1 (de) Hydraulischer Antrieb für eine Presse
DE102005023178B4 (de) Kompressionsimpulsverfahren zum Anlassen eines Freikolben-Verbrennungsmotors
DE2633233A1 (de) Waermekraftmashine mit aeusserer waermequelle
DE2845058A1 (de) Freikolbenmotorpumpe mit energieabgabeglaettung
EP3620296B1 (de) Ballenpresse sowie steuerverfahren für eine solche
DE2747548A1 (de) Servohydraulische presse mit ge schlossenem regelkreis
DE3780595T2 (de) Hydraulisch-pneumatische leistungsuebertragungseinrichtung.
DE1907077A1 (de) Presse und Verfahren zum Tiefziehen von Blechrohlingen zu Behaeltern
DE2349351C3 (de) Hydrauliksystem für eine Presse
DE4320213A1 (de) Stauchpressenhauptantrieb
DE102013007148A1 (de) Hydraulischer Pressantrieb mit Energierückspeisung
EP2668374B1 (de) Wärmekraftmaschine
DE2419715A1 (de) Thermohydraulischer motor
DE4101299A1 (de) Verfahren zum antrieb eines pneumatischen motors und vorrichtung zur durchfuehrung des verfahrens
EP3794238B1 (de) Verfahren, systeme und geräte für die kompression, expansion und/oder speicherung eines gases
EP3652417B1 (de) Verfahren und vorrichtung zum entspannen eines gases mit einer hubkolbenmaschine
DE4031324A1 (de) Verfahren zum antrieb eines pneumatischen motors und vorrichtung zur durchfuehrung des verfahrens
DE153570C (de)
DE417683C (de) Motorkompressor
CH639400A5 (de) Anlage zur intermittierenden polymerisation bei erhoehtem druck und ein verfahren zum betrieb der anlage.
DD298147A5 (de) Verfahren zum antrieb einer pneumatischen motors u. vorrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910925

17Q First examination report despatched

Effective date: 19920213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930324

Ref country code: DK

Effective date: 19930324

REF Corresponds to:

Ref document number: 87351

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930421

Year of fee payment: 3

REF Corresponds to:

Ref document number: 59100064

Country of ref document: DE

Date of ref document: 19930429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930430

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930505

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930507

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930517

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930520

Year of fee payment: 3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930614

Year of fee payment: 3

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930719

Year of fee payment: 3

ET Fr: translation filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040606

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940503

Ref country code: AT

Effective date: 19940503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940504

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

Ref country code: BE

Effective date: 19940531

BERE Be: lapsed

Owner name: BARTH WOLFGANG

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 91107221.3

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

EUG Se: european patent has lapsed

Ref document number: 91107221.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950503

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050503