EP0447613B1 - Sampler for molten metals - Google Patents

Sampler for molten metals Download PDF

Info

Publication number
EP0447613B1
EP0447613B1 EP90119782A EP90119782A EP0447613B1 EP 0447613 B1 EP0447613 B1 EP 0447613B1 EP 90119782 A EP90119782 A EP 90119782A EP 90119782 A EP90119782 A EP 90119782A EP 0447613 B1 EP0447613 B1 EP 0447613B1
Authority
EP
European Patent Office
Prior art keywords
chamber
layer
abrasion
sampler
sampler according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90119782A
Other languages
German (de)
French (fr)
Other versions
EP0447613A3 (en
EP0447613A2 (en
Inventor
Christiaan Eugene Edouad Baerts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite International NV
Original Assignee
Heraeus Electro Nite International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite International NV filed Critical Heraeus Electro Nite International NV
Publication of EP0447613A2 publication Critical patent/EP0447613A2/en
Publication of EP0447613A3 publication Critical patent/EP0447613A3/en
Application granted granted Critical
Publication of EP0447613B1 publication Critical patent/EP0447613B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • G01N1/125Dippers; Dredgers adapted for sampling molten metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S73/00Measuring and testing
    • Y10S73/09Molten metal samplers

Definitions

  • the present invention relates to a sampler for molten metal with at least two bowl-shaped, metallic partial bodies, which are arranged with respect to one another such that their end faces are opposite, the metallic partial bodies forming a sampling chamber, and with an inlet connection opening into the chamber via an opening, whereby the chamber formed by the shell-shaped metallic part body is subdivided into at least two chamber regions of different thicknesses, these chamber regions lying one behind the other in the direction of the inlet nozzle in the direction of the inflowing metal and each of a gradation which forms an impact surface for the liquid metal , are separated from one another, the chamber region with the smaller thickness forming the end of the sampling chamber opposite the inlet nozzle.
  • samplers are known, for example from BE-PS 871 391 or DE-OS 35 40 228. These samplers can be part of a measuring head, with which measurements are then carried out in metal melts and a sample of this metal melt is taken.
  • the sampler consists of two identical halves or half-shells that enclose a cavity or a chamber. The two part bodies of the sampler are clamped together with a spring clip. An inlet connection for the liquid metal opens into the chamber at its front end. After the measuring probe, at the end of which the measuring head with the sampler is located, has been pulled out of the molten metal to be analyzed, the sampler can be removed from the measuring head.
  • the solidified sample of the molten metal is then in the sampler can then be removed by breaking open the sampler in the area of the two shell-shaped, metallic partial bodies which surround the chamber.
  • the usual chambers are shaped so that flat, disc-shaped metal samples result.
  • the chamber of the sampler can optionally be subdivided into two chambers, the chamber facing away from the inlet connector usually being of a much smaller thickness than the closer chamber. This results in a sample with a thicker area and a thinner area that can be used to analyze the metal.
  • DE-U-8707781 discloses a spherical sample chamber for determining the liquidus in molten steel.
  • the purpose of this device is to achieve a uniform solidification of the melt, starting from the circumference of the sphere, and to measure the temperature profile during the solidification.
  • the chamber described here is an exclusive measuring chamber; the samples are neither suitable nor intended for subsequent further analyzes.
  • the inside of the chamber is covered with a layer of milk of lime or clay. It is necessary to ensure the proper functioning of the sample chamber that the entire cavity is coated as evenly as possible in order to ensure uniform heat insulation and thus a uniform solidification of the molten metal. Such a layer is in liquid form before application and is spread over the inner surfaces of the chamber.
  • Binder water
  • Particles of this layer penetrate the surface of the incoming molten metal and penetrate into it, so that the metal sample is not suitable for subsequent analysis.
  • the invention is based on the object of designing a sampler of the known type in such a way that simple and rapid removal of the sample, that is to say simple dismantling of the metallic part body of the sampler, is possible after the liquid metal has solidified.
  • the chamber is at least in the area of the mouth and the opposite of the mouth, the baffle for the incoming metal wall area with an abrasion-resistant, up to about 1700 ° C temperature-stable layer, which is covered by the inlet port When viewed in the direction of the incoming metal, the wall furthest away remains uncoated, and that the end faces of the shell-shaped partial bodies remain coating-free from the abrasion-resistant coating material.
  • Abrasion-resistant is understood to mean that this layer remains connected to the metallic partial bodies both during storage and when the liquid metal flows in. Stable in the temperature range up to approximately 1700 ° C.
  • the layer is not decomposed in relation to liquid steel, or that it exhibits significant chemical or physical changes. Because both the area of the mouth and the wall area opposite the mouth are coated with the abrasion-resistant layer, the areas of the sample chamber that are coated with the very hot liquid metal flowing into the sample chamber are coated. It is precisely these areas with an uncoated sampler that the liquid metal bonds to the sampler when it solidifies.
  • the baffle forms the wall surface directly opposite the inlet nozzle, which the liquid metal flowing into the sample chamber hits.
  • the coated parts of the sampler should extend into the inlet nozzle at least in the area of the mouth about half of its length and cover the area of the walls of the sample chamber about 5 mm into the sampling chamber.
  • the walls with the greater width should preferably be completely coated as part of a large-area coating.
  • An abrasion-resistant layer is preferably applied in the form of a ceramic layer. Particularly good results are achieved with a ceramic layer in the form of an essentially oxidic layer. It has been shown that the metallic partial body of the sampler can be easily separated and the solidified sample can be removed with such an oxide layer.
  • Oxidic layers of Al 2 O 3 and ZrO 2 are preferably used. Above all, the coating with Al 2 O 3 is cheap and easy to apply, while a layer of ZrO 2 is preferred if the temperature of the melt exceeds 100 ° C.
  • These layers have the advantage that they have little influence on the actual cooling process of the metal sample, since they have good thermal conductivity. They also contain no binders or other materials that tend to gasify or dissolve. In addition, a very thin and smooth surface can be achieved with these layers.
  • a layer consisting essentially of nitrides has proven to be advantageous as an abrasion-resistant layer with regard to an easy opening of the sampler after solidification of the liquid metal, in particular in the case of melts at high temperature.
  • Such layers have the advantage that the surface that can be achieved is very abrasion-resistant and form a very dense and closed surface with regard to the pores.
  • Plasma spraying and flame spraying have proven to be advantageous as an application method for the abrasion-resistant layer on the surfaces of the sampling chamber to be coated. A very uniform, thin layer can be achieved in particular with plasma spraying. Applying a layer using flame spraying has proven to be advantageous when an inexpensive coating process is desired.
  • the sampler 1 according to FIGS. 1 and 2, and the sampler 1 according to FIGS. 3 and 4, have two identically constructed, shell-shaped, metallic partial bodies 2, 3 which lie on one another with their end faces 4 and thus enclose a chamber 5.
  • FIGS. 3 and 4 show the complete sampler 1, which is composed of the two shell-shaped, metallic partial bodies 2, 3 and which there is in the end of a Measuring head 9 is inserted.
  • An inlet nozzle 6 opens into this chamber 5, this inlet nozzle 6 being slightly narrowed in the region of its mouth 7 into the chamber 5.
  • the constriction serves as a stop area for a quartz tube 8, which is inserted into the inlet connection 6, as shown in FIGS. 3 and 4.
  • the sampler is divided into two chamber areas 11, 12 by a gradation 10. Seen in the direction of the liquid metal flowing in via the inlet connection 6, this inflow direction being indicated in the figures by the flow arrow 13, the chamber region 11 with the greater width 14 is closer to the mouth 7 of the inlet connection 6, while the chamber region 12 with the smaller width 15 seen in the flow direction 13 forms the end of the chamber.
  • the gradation 10 which is approximately at right angles to the side walls of the sampler 1, creates an impact surface 16 on which the liquid metal flowing into the sampler 1 impinges. As also shown in FIGS. 3 and 4, the partial bodies 2, 3 of the sampler 1 are held together by means of a spring clip 17.
  • the critical areas of the chamber 5 of the sampler 1 are covered with an abrasion-resistant layer 18. These critical areas are the area of the mouth 7 of the inlet connection 6 into the chamber 5 and the opposite wall area 16 of the sampler 1 forming the impact surface for the inflowing metal. These areas tend to cause the liquid metal to connect to the metallic partial bodies 2, 3 would if these abrasion-resistant layers 18 were not provided.
  • the width 20 of the abrasion-resistant layer 18, viewed in the direction of flow 13, extends from the mouth 7 into half of the inlet connection 6 and over a range of 5 mm into the chamber 5. Accordingly, the chamber 5 is 20 mm wide 5 mm from the wall area 16 coated.
  • the coating consists of Al 2 O 3 or ZrO 2 with a layer thickness 21 of approximately 60 ⁇ m.
  • FIGS. 1 and 2 show at least the impact surface 16 is coated with an abrasion-resistant layer 18. Also in the area of these baffles 16 - this baffle 16 is actually two individual surfaces of one part body 2 and the other part body 3, the ceramic layer is designed with a width 20 in the flow direction 13 of the liquid metal such that the coating 5 mm begins before the impact surface 16 and ends 5 mm after the impact surface.
  • the entire chamber 5, that is to say the walls of the chamber 11 with the greatest width transverse to the direction of flow, can be covered with the abrasion-resistant layer 18.
  • Such a continuous coating is shown in Figures 1 and 2 of the Sampler 1 shown.
  • Such a continuous ceramic layer 18 is, however, not shown in the sampler 1 of FIGS. 3 and 4 used in the measuring head 9, it having proven sufficient for such a sampler 1 with two chamber regions that only the chamber region 11 is coated with the large width 14, here also the coating, viewed in the direction of the flow arrow 13, extends approximately 5 mm following the impact surface 16 into the chamber region 12 with the smaller width 15.
  • the sampler 1 is broken out of the measuring head 9, the spring clamp 17 is released and the two partial bodies 2, 3 are separated from one another.
  • the two partial bodies 2, 3 can be easily separated from one another without them adhering to the sample.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Samplers for molten metals are known which consist at least of two shell-type metallic subbodies which are arranged in such a way with respect to each other that their end faces are opposite. Their subbodies form a sampling chamber and they have an inlet pipe which opens into the chamber. In order to design a sampler in such a way that it is possible to remove the sample after the liquid metal has solidified simply and quickly, the chamber is coated at least in the region of the opening and the wall region opposite the opening with an abrasion-resistant layer which is thermally stable up to about 1700 DEG C. The end faces of the shell-type subbodies can remain free of the abrasion-resistant coating material.

Description

Die vorliegende Erfindung betrifft einen Probennehmer für Metallschmelze mit mindestens zwei schalenförmigen, metallischen Teilkörpern, die so zueinander angeordnet sind, daß ihre Stirnflächen gegenüberliegen, wobei die metallischen Teilkörper eine Probennahme-Kammer bilden, und mit einem über eine Mündung in die Kammer mündenden Einlaufstutzen, wobei die durch die schalenförmigen metallischen Teilkörper gebildete Kammer in mindestens zwei Kammer-Bereiche unterschiedlicher Dicke unterteilt ist, wobei diese Kammer-Bereiche in Richtung des Einlaufstutzens in Richtung des einfließenden Metalls gesehen hintereinander liegen und jeweils von einer Abstufung, die eine Prallfläche für das flüssige Metall bildet, voneinander getrennt sind, wobei der Kammer-Bereich mit der geringeren Dicke das dem Einlaufstutzen gegenüberliegende Ende der Probennahme-Kammer bildet.The present invention relates to a sampler for molten metal with at least two bowl-shaped, metallic partial bodies, which are arranged with respect to one another such that their end faces are opposite, the metallic partial bodies forming a sampling chamber, and with an inlet connection opening into the chamber via an opening, whereby the chamber formed by the shell-shaped metallic part body is subdivided into at least two chamber regions of different thicknesses, these chamber regions lying one behind the other in the direction of the inlet nozzle in the direction of the inflowing metal and each of a gradation which forms an impact surface for the liquid metal , are separated from one another, the chamber region with the smaller thickness forming the end of the sampling chamber opposite the inlet nozzle.

Derartige Probennehmer sind bekannt, beispielsweise aus der BE-PS 871 391 oder der DE-OS 35 40 228. Diese Probennehmer können Teil eines Meßkopfes sein, mit denen dann sowohl Messungen in Metallschmelzen durchgeführt werden als auch eine Probe dieser Metallschmelze entnommen wird. Der Probennehmer besteht aus zwei identischen Hälften oder Halbschalen, die einen Hohlraum oder eine Kammer umschließen. Die beiden Teilkörper des Probennehmers werden mit einer Federklammer zusammengeklemmt. In die Kammer mündet an ihrem vorderen Ende ein Einlaufstutzen für das flüssige Metall. Nachdem die Meßlanze, an deren Ende sich der Meßkopf mit dem Probennehmer befindet, aus der zu analysierenden Metallschmelze herausgezogen wurde, kann der Probennehmer dem Meßkopf entnommen werden. In dem Probennehmer befindet sich dann die erstarrte Probe der Metallschmelze, die anschließend durch Aufbrechen des Probennehmers im Bereich der zwei schalenförmigen, metallischen Teilkörper, die die Kammer umschließen, herausgenommen werden kann. Die üblichen Kammern sind so geformt, daß sich flache, scheibenförmige Metall-Proben ergeben. Die Kammer des Probennehmers kann gegebenenfalls in zwei Kammern unterteilt sein, wobei die vom Einlaufstutzen abgewandte Kammer üblicherweise eine wesentlich kleinere Dicke aufweist als die näherliegende Kammer. Hierdurch ergibt sich eine Probe mit einem dickeren Bereich und einem dünneren Bereich, die zur Analyse des Metalles herangezogen werden können.Such samplers are known, for example from BE-PS 871 391 or DE-OS 35 40 228. These samplers can be part of a measuring head, with which measurements are then carried out in metal melts and a sample of this metal melt is taken. The sampler consists of two identical halves or half-shells that enclose a cavity or a chamber. The two part bodies of the sampler are clamped together with a spring clip. An inlet connection for the liquid metal opens into the chamber at its front end. After the measuring probe, at the end of which the measuring head with the sampler is located, has been pulled out of the molten metal to be analyzed, the sampler can be removed from the measuring head. The solidified sample of the molten metal is then in the sampler can then be removed by breaking open the sampler in the area of the two shell-shaped, metallic partial bodies which surround the chamber. The usual chambers are shaped so that flat, disc-shaped metal samples result. The chamber of the sampler can optionally be subdivided into two chambers, the chamber facing away from the inlet connector usually being of a much smaller thickness than the closer chamber. This results in a sample with a thicker area and a thinner area that can be used to analyze the metal.

Damit die metallischen Teilkörper während der Lagerhaltung nicht korrodieren, werden sie galvanisch verzinkt.So that the metallic parts do not corrode during storage, they are galvanized.

Es zeigt sich, daß das Aufbrechen der zwei schalenförmigen, metallischen Teilkörper problematisch ist, da sich das flüssige Metall beim Erstarren mit den Teilkörpern verbindet. Diese Verbindung kann derart fest sein, daß die Teilkörper mechanisch entfernt werden müssen, was sehr aufwendig sein kann. Selbst wenn die Teilkörper unter großer Krafteinwirkung voneinander trennbar sind ist zu beobachten, daß Teile der Teilkörper an der Metall-Probe haften, wodurch die Metall-Probe verunreinigt wird. Da die Teilkörper mit Zink galvanisch beschichtet sind, wird die Probe und durch dieses Zink verunreinigt oder neigt zur Porenbildung, so daß die spätere Analyse der Probe ein verfälschtes Ergebnis der Probe liefert. Außerdem wird durch die mechanische Einwirkung auf die Probe beim Aufbrechen der Teilkörper , falls diese an der Probe haften, das Gefüge der Metall-Probe beeinflußt und die Metall-Probe verbogen, so daß für ein späteres Ausstanzen irgendwelcher Teilbereiche der Probe eine ebene Anlagefläche der Probe nicht gegeben ist.It has been shown that breaking up the two shell-shaped, metallic partial bodies is problematic, since the liquid metal combines with the partial bodies during solidification. This connection can be so tight that the partial body must be removed mechanically, which can be very expensive. Even if the partial bodies can be separated from one another under the action of great force, it can be observed that parts of the partial bodies adhere to the metal sample, as a result of which the metal sample is contaminated. Since the partial bodies are galvanically coated with zinc, the sample and this zinc are contaminated or have a tendency to form pores, so that the later analysis of the sample provides a falsified result of the sample. In addition, the mechanical action on the sample when the partial bodies break open, if they adhere to the sample, influences the structure of the metal sample and the metal sample is bent, so that a flat contact surface of the sample is subsequently punched out of any partial areas of the sample is not given.

Aus DE-U-8707781 ist eine kugelförmige Probenkammer zur Liquidusbestimmung in Stahlschmelzen bekannt. Zweck dieser Vorrichtung ist es, eine gleichmäßige Erstarrung der Schmelze, ausgehend vom Kugelumfang, zu erzielen und während der Erstarrung den Temperaturverlauf zu messen. Die hier beschriebene Kammer ist eine ausschließliche Meßkammer; die Proben sind für anschließende weitere Analysen weder geeignet noch vorgesehen. Die Innenflächen der Kammer sind mit einer Schicht aus Kalkmilch oder Tonerde überzogen. Dabei ist es notwendig, um die einwandfreie Funktion der Probenkammer zu gewährleisten, daß der gesamte Hohlraum möglichst gleichmäßig beschichtet ist, um eine gleichmäßige Wärmeisolierung und damit ein gleichmäßiges Erstarren der Metallschmelze zu gewährleisten. Eine derartige Schicht liegt vor dem Auftragen in flüssiger Form vor und wird auf die Innenflächen der Kammer aufgestrichen. Beim Einlaufen der Metallschmelze in die Kammer verdampft das Bindemittel (Wasser), so daß eine porige, körnige Schicht verbleibt, die nicht abriebfest ist. Partikel dieser Schicht durchsetzen die Oberfläche der einlaufenden Metallschmelze und dringen in diese ein, so daß die Metallprobe für eine anschließende Analyse nicht geeignet ist.DE-U-8707781 discloses a spherical sample chamber for determining the liquidus in molten steel. The purpose of this device is to achieve a uniform solidification of the melt, starting from the circumference of the sphere, and to measure the temperature profile during the solidification. The chamber described here is an exclusive measuring chamber; the samples are neither suitable nor intended for subsequent further analyzes. The inside of the chamber is covered with a layer of milk of lime or clay. It is necessary to ensure the proper functioning of the sample chamber that the entire cavity is coated as evenly as possible in order to ensure uniform heat insulation and thus a uniform solidification of the molten metal. Such a layer is in liquid form before application and is spread over the inner surfaces of the chamber. This evaporates when the molten metal enters the chamber Binder (water) so that a porous, granular layer remains which is not resistant to abrasion. Particles of this layer penetrate the surface of the incoming molten metal and penetrate into it, so that the metal sample is not suitable for subsequent analysis.

Der Erfindung liegt nun die Aufgabe zugrunde, einen Probennehmer der bekannten Art so auszubilden, daß eine einfache und schnelle Entnahme der Probe, das heißt ein einfaches Zerlegen der metallischen Teilkörper des Probennehmers, nach Erstarren des flüssigen Metalles möglich ist.The invention is based on the object of designing a sampler of the known type in such a way that simple and rapid removal of the sample, that is to say simple dismantling of the metallic part body of the sampler, is possible after the liquid metal has solidified.

Diese Aufgabe wird gemäß Anspruch 1 dadurch gelöst, daß die Kammer wenigstens im Bereich der Mündung und dem der Mündung gegenüberliegenden, die Prallfläche für das einströmende Metall bildenden Wandbereich mit einer abriebfesten, bis etwa 1700° C temperaturstabilen Schicht überzogen ist, wobei die von dem Einlaufstutzen in Richtung des einströmenden Metalls gesehen am weitesten entfernt liegende Wand unbeschichtet bleibt, und daß die Stirnflächen der schalenförmigen Teilkörper von dem abriebfesten Überzugsmaterial beschichtungsfrei verbleiben. Unter abriebfest ist zu verstehen, daß diese Schicht mit den metallischen Teilkörpern verbunden bleibt sowohl während der Lagerung als beim Einfließen des flüssigen Metalls. Unter stabil im Temperaturbereich bis etwa 1700° C wird verstanden, daß die Schicht in Beziehung mit flüssigem Stahl nicht zersetzt wird, oder wesentliche chemische oder physische Änderungen aufweist. Dadurch, daß sowohl der Bereich der Mündung als auch der der Mündung gegenüberliegende Wandbereich mit der abriebfesten Schicht überzogen sind, sind gerade die Bereiche der Probenkammer beschichtet, auf die das sehr heiße in die Probenkammer einströmende, flüssige Metall auftrifft. Gerade diese Bereiche neigen bei einem unbeschichteten Probennehmer dazu, daß das flüssige Metall sich beim Erstarren mit dem Probennehmer verbindet. Die Prallfläche bildet die unmittelbar dem Einlaufstutzen gegenüberliegende Wandfläche, auf die das in die Probenkammer einströmende flüssige Metall auftrifft. Bei einem solchen in mehrere Teil-Kammern unterteilten Probennehmer erübrigt es sich, die von dem Einlaufstutzen in Richtung des einströmenden Metalles gesehen am weitestens entfernt liegende Wand der Probenkammer zu beschichten, da das dort auftreffende Metall durch das sich bildende Gaspolster ein unmittelbares Verbinden mit den Wandbereichen der Probenkammer verhindert. Durch die unbeschichteten Stirnflächen der schalenförmigen, metallischen Teilkörper ist eine passgenaue Ausrichtung der Teilkörper gegeben. Auch wird dadurch erreicht, daß das flüssige Metall dort schneller abkühlt und damit die Bildung eines Grades zwischen den Stirnflächen, zwischen die ansonsten flüssiges Metall fließt, unterbunden werden kann. Da nur Bereiche der Probennahme-Kammer beschichtet werden, die als kritisch anzusehen sind, wird das benötigte Material für die abriebfeste Schicht sehr gering gehalten. Die nicht zu beschichtenden Bereiche können beim Aufbringen der abriebfesten Schicht mit einer entsprechenden Maske abgedeckt werden.This object is achieved according to claim 1 in that the chamber is at least in the area of the mouth and the opposite of the mouth, the baffle for the incoming metal wall area with an abrasion-resistant, up to about 1700 ° C temperature-stable layer, which is covered by the inlet port When viewed in the direction of the incoming metal, the wall furthest away remains uncoated, and that the end faces of the shell-shaped partial bodies remain coating-free from the abrasion-resistant coating material. Abrasion-resistant is understood to mean that this layer remains connected to the metallic partial bodies both during storage and when the liquid metal flows in. Stable in the temperature range up to approximately 1700 ° C. is understood to mean that the layer is not decomposed in relation to liquid steel, or that it exhibits significant chemical or physical changes. Because both the area of the mouth and the wall area opposite the mouth are coated with the abrasion-resistant layer, the areas of the sample chamber that are coated with the very hot liquid metal flowing into the sample chamber are coated. It is precisely these areas with an uncoated sampler that the liquid metal bonds to the sampler when it solidifies. The baffle forms the wall surface directly opposite the inlet nozzle, which the liquid metal flowing into the sample chamber hits. In the case of such a sampler divided into several partial chambers, it is not necessary to coat the wall of the sample chamber which is furthest away from the inlet nozzle in the direction of the incoming metal, since the metal impinging there has a direct connection to the wall areas due to the gas cushion forming the sample chamber prevented. Due to the uncoated end faces of the shell-shaped, metallic partial bodies, the partial bodies are precisely aligned. It is also achieved in this way that the liquid metal cools down more quickly and thus the formation of a degree between the end faces, between which otherwise liquid metal flows, can be prevented. Because only Areas of the sampling chamber are coated, which are to be regarded as critical, the material required for the abrasion-resistant layer is kept very low. The areas not to be coated can be covered with an appropriate mask when the abrasion-resistant layer is applied.

Eine Dicke der abriebfesten Schicht von 5 bis 200 Mikro-Meter, bevorzugt von 30 bis 100 Mikro-Meter, hat sich als ausreichend erwiesen. Besonders gute Ergebnisse hinsichtlich des Nichthaftens der abriebfesten Schicht und folglich die Qualität der erstarrten Probenoberfläche werden mit einer Dicke der abriebfesten Schicht von etwa 60 Mikro-Meter erreicht; die Dicke der Schicht kann im Bereich von ± 10 Mikro-Meter schwanken.A thickness of the wear-resistant layer of 5 to 200 micrometers, preferably 30 to 100 micrometers, has proven to be sufficient. Particularly good results with regard to the non-sticking of the abrasion-resistant layer and consequently the quality of the solidified sample surface are achieved with a thickness of the abrasion-resistant layer of approximately 60 micrometers; the thickness of the layer can vary in the range of ± 10 micrometers.

Die beschichteten Teile des Probennehmers sollten sich wenigstens im Bereich der Mündung etwa bis zur Hälfte seiner Länge in den Einlaufstutzen hinein erstrecken und den Bereich der Wände der Probenkammer etwa 5 mm in die Probennahme-Kammer hinein überziehen.The coated parts of the sampler should extend into the inlet nozzle at least in the area of the mouth about half of its length and cover the area of the walls of the sample chamber about 5 mm into the sampling chamber.

Auch im Bereich der Abstufung oder Prallfläche hat es sich als vorteilhaft erwiesen, die daran angrenzenden Wände der Kammer in einem Bereich von mindestens 5 mm mit der abriebfesten Schicht zu bedecken.Also in the area of the gradation or impact surface, it has proven to be advantageous to cover the adjoining walls of the chamber with the abrasion-resistant layer in an area of at least 5 mm.

Bei einem Probennehmer mit einer Kammer, die eine größere Breite als Höhe quer zur Einlaufrichtung des Metalls aufweist, sollten bevorzugt im Rahmen einer großflächigen Beschichtung die Wände mit der größeren Breite vollständig beschichtet sein.In the case of a sampler with a chamber that has a greater width than the height transverse to the direction of entry of the metal, the walls with the greater width should preferably be completely coated as part of a large-area coating.

Bevorzugt wird eine abriebfeste Schicht in Form einer keramischen Schicht aufgebracht. Besonders gute Ergebnisse werden mit einer keramischen Schicht in Form einer im wesentlichen oxidischen Schicht erzielt. Es hat sich gezeigt, daß gerade mit einer solchen oxidischen Schicht die metallischen Teilkörper des Probennehmers leicht trennbar und die erstarrte Probe herausnehmbar ist. Bevorzugt werden oxidische Schichten aus Al2O3 und ZrO2 verwendet. Vor allem die Beschichtung mit Al2O3 ist billig und einfach aufzutragen, während eine Schicht aus ZrO2 bevorzugt wird, wenn die Temperatur der Schmelze 100°C überschreitet. Diese Schichten haben den Vorteil, daß sie den eigentlichen Abkühlvorgang der Metall-Probe nur wenig beeinflußen, da sie eine gute Wärmeleitfähigkeit aufweisen. Auch enthalten sie keine Bindemittel oder sonstige Materialien, die zur Vergasung oder zum Auflösen neigen. Außerdem ist mit diesen Schichten eine sehr dünne und glatte Oberfläche erreichbar.An abrasion-resistant layer is preferably applied in the form of a ceramic layer. Particularly good results are achieved with a ceramic layer in the form of an essentially oxidic layer. It has been shown that the metallic partial body of the sampler can be easily separated and the solidified sample can be removed with such an oxide layer. Oxidic layers of Al 2 O 3 and ZrO 2 are preferably used. Above all, the coating with Al 2 O 3 is cheap and easy to apply, while a layer of ZrO 2 is preferred if the temperature of the melt exceeds 100 ° C. These layers have the advantage that they have little influence on the actual cooling process of the metal sample, since they have good thermal conductivity. They also contain no binders or other materials that tend to gasify or dissolve. In addition, a very thin and smooth surface can be achieved with these layers.

Weiterhin hat sich als abriebfeste Schicht eine im wesentlichen aus Nitriden bestehende Schicht im Hinblick auf ein leichtes Öffnen des Probennehmers nach Erstarren des flüssigen Metalles als vorteilhaft erwiesen, insbesondere bei Schmelzen mit hoher Temperatur. Solche Schichten haben den Vorteil, daß die damit erzielbare Oberfläche sehr abriebsfest ist und eine hinsichtlich der Poren sehr dichte und geschlossene Oberfläche bilden. Als Auftrageverfahren für die abriebfeste Schicht auf die zu beschichtenden Flächen der Probennahme-Kammer hat sich das Plasmaspritzen und das Flammspritzen als vorteilhaft erwiesen. Insbesondere mit dem Plasmaspritzen ist eine sehr gleichmäßige, dünne Schicht erzielbar. Das Aufbringen einer Schicht mittels Flammspritzen hat sich dann als vorteilhaft bewährt, wenn ein billiges Beschichtungsverfahren erwünscht ist.Furthermore, a layer consisting essentially of nitrides has proven to be advantageous as an abrasion-resistant layer with regard to an easy opening of the sampler after solidification of the liquid metal, in particular in the case of melts at high temperature. Such layers have the advantage that the surface that can be achieved is very abrasion-resistant and form a very dense and closed surface with regard to the pores. Plasma spraying and flame spraying have proven to be advantageous as an application method for the abrasion-resistant layer on the surfaces of the sampling chamber to be coated. A very uniform, thin layer can be achieved in particular with plasma spraying. Applying a layer using flame spraying has proven to be advantageous when an inexpensive coating process is desired.

Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeipieles anhand der Zeichnung. In der Zeichnung zeigt

Figur 1:
eine Draufsicht auf einen Teilkörper eines Probennehmers mit zwei Kammer-Bereichen,
Figur 2:
einen Längsschnitt entlang der Schnittlinie II-II in Figur 1,
Figur 3:
eine teilweise geschnittene Darstellung des Probennehmers nach Figur 1, wie er in einem Meßkopf eingesetzt ist,
Figur 4:
einen Schnitt entlang der Schnittlinie lV-lV in Figur 3.
Further details and features of the invention result from the following description of an exemplary embodiment with reference to the drawing. In the drawing shows
Figure 1:
2 shows a plan view of a partial body of a sampler with two chamber areas,
Figure 2:
2 shows a longitudinal section along the section line II-II in FIG. 1,
Figure 3:
2 shows a partially sectioned illustration of the sampler according to FIG. 1, as used in a measuring head,
Figure 4:
a section along the section line IV-IV in Figure 3.

Der Probennehmer 1 nach den Figuren 1 und 2, sowie der Probennehmer 1 nach den Figuren 3 und 4 weist zwei identisch aufgebaute schalenförmige, metallische Teilkörper 2, 3 auf, die mit ihren Stirnflächen 4 aufeinander liegen und so eine Kammer 5 umschließen. Von dem Probennehmer 1 ist in Figur 1 nur einer der Teilkörper 2, 3 in einer Draufsicht gezeigt, während die Figuren 3 und 4 den kompletten, aus den zwei schalenförmigen, metallischen Teilkörpern 2, 3 zusammengesetzten Probennehmer 1 zeigen, der dort in das Ende eines Meßkopfes 9 eingesetzt ist. in diese Kammer 5 mündet ein Einlaufstutzen 6, wobei dieser Einlaufstutzen 6 im Bereich seiner Mündung 7 in die Kammer 5 geringfügig verengt ausgebildet ist. Die Verengung dient als Anschlagbereich für ein Quarzröhrchen 8, das in den Einlaufstutzen 6, wie dies die Figuren 3 und 4 zeigen, eingesetzt ist.The sampler 1 according to FIGS. 1 and 2, and the sampler 1 according to FIGS. 3 and 4, have two identically constructed, shell-shaped, metallic partial bodies 2, 3 which lie on one another with their end faces 4 and thus enclose a chamber 5. Of the sampler 1, only one of the partial bodies 2, 3 is shown in a plan view in FIG. 1, while FIGS. 3 and 4 show the complete sampler 1, which is composed of the two shell-shaped, metallic partial bodies 2, 3 and which there is in the end of a Measuring head 9 is inserted. An inlet nozzle 6 opens into this chamber 5, this inlet nozzle 6 being slightly narrowed in the region of its mouth 7 into the chamber 5. The constriction serves as a stop area for a quartz tube 8, which is inserted into the inlet connection 6, as shown in FIGS. 3 and 4.

Der Probennehmer ist durch eine Abstufung 10 in zwei Kammer-Bereiche 11, 12 unterteilt. In Richtung des über den Einlaufstutzen 6 einströmenden flüssigen Metalles gesehen, wobei diese Einströmrichtung in den Figuren durch den Strömungspfeil 13 angedeutet ist, liegt der Kammer-Bereich 11 mit der größeren Breite 14 näher an der Mündung 7 des Einlaufstutzens 6, während der Kammer-Bereich 12 mit der geringeren Breite 15 in Strömungsrichtung 13 gesehen das Ende der Kammer bildet. Durch die Abstufung 10, die in etwa rechtwinklig zu den seitlichen Wänden des Probennehmers 1 verläuft, entsteht eine Prallfläche 16, auf die das in den Probennehmer 1 einströmende flüssige Metall auftrifft. Wie ebenfalls die Figuren 3 und 4 zeigen, werden die Teilkörper 2, 3 des Probennehmers 1 mittels einer Feder-Klammer 17 zusammengehalten.The sampler is divided into two chamber areas 11, 12 by a gradation 10. Seen in the direction of the liquid metal flowing in via the inlet connection 6, this inflow direction being indicated in the figures by the flow arrow 13, the chamber region 11 with the greater width 14 is closer to the mouth 7 of the inlet connection 6, while the chamber region 12 with the smaller width 15 seen in the flow direction 13 forms the end of the chamber. The gradation 10, which is approximately at right angles to the side walls of the sampler 1, creates an impact surface 16 on which the liquid metal flowing into the sampler 1 impinges. As also shown in FIGS. 3 and 4, the partial bodies 2, 3 of the sampler 1 are held together by means of a spring clip 17.

Die kritischen Bereiche der Kammer 5 des Probennehmers 1 sind mit einer abriebfesten Schicht 18 überzogen. Diese kritischen Bereiche sind der Bereich der Mündung 7 des Einlaufstutzens 6 in die Kammer 5 sowie der gegenüberliegende die Prallfläche für das einströmende Metall bildenden Wandbereich 16 des Probennehmers 1. Diese Bereiche neigen dazu, daß sich das flüssige Metall mit den metallischen Teilkörpern 2, 3 verbinden würde, falls diese abriebfesten Schichten 18 nicht vorgesehen wären. Die Breite 20 der abriebfesten Schicht 18, in Strömungsrichtung 13 gesehen, erstreckt sich von der Mündung 7, aus in die Hälfte des Einlaufstutzen 6 hinein und über einen Bereich von 5 mm in die Kammer 5. Entsprechend ist die Kammer 5 um eine Breite 20 von 5 mm von dem Wandbereich 16 aus gesehen beschichtet.The critical areas of the chamber 5 of the sampler 1 are covered with an abrasion-resistant layer 18. These critical areas are the area of the mouth 7 of the inlet connection 6 into the chamber 5 and the opposite wall area 16 of the sampler 1 forming the impact surface for the inflowing metal. These areas tend to cause the liquid metal to connect to the metallic partial bodies 2, 3 would if these abrasion-resistant layers 18 were not provided. The width 20 of the abrasion-resistant layer 18, viewed in the direction of flow 13, extends from the mouth 7 into half of the inlet connection 6 and over a range of 5 mm into the chamber 5. Accordingly, the chamber 5 is 20 mm wide 5 mm from the wall area 16 coated.

Die Beschichtung besteht aus Al2O3 oder ZrO2 mit einer Schichtdicke 21 von etwa 60 µm.The coating consists of Al 2 O 3 or ZrO 2 with a layer thickness 21 of approximately 60 μm.

Bei einem Probennehmer 1 mit der in die zwei Kammer-Bereiche 11, 12 unterteilten Kammer 5 ist wesentlich, daß , wie die Figuren 1 und 2 zeigen, zumindest die Prallfläche 16 mit einer abriebfesten Schicht 18 beschichtet ist. Auch im Bereich dieser Prallflächen 16 - eigentlich handelt es sich bei dieser Prallfläche 16 um zwei einzelne Flächen des einen Teilkörpers 2 und des anderen Teilkörpers 3 ist die keramische Schicht in Strömungsrichtung 13 des flüssigen Metalles gesehen in einer Breite 20 ausgeführt derart, daß die Beschichtung 5 mm vor der Prallfläche 16 beginnt und 5 mm nach der Prallfläche endet.In the case of a sampler 1 with the chamber 5 divided into the two chamber regions 11, 12, it is essential that, as FIGS. 1 and 2 show, at least the impact surface 16 is coated with an abrasion-resistant layer 18. Also in the area of these baffles 16 - this baffle 16 is actually two individual surfaces of one part body 2 and the other part body 3, the ceramic layer is designed with a width 20 in the flow direction 13 of the liquid metal such that the coating 5 mm begins before the impact surface 16 and ends 5 mm after the impact surface.

Falls es erforderlich wird, kann die gesamte Kammer 5, das heißt die Wände der Kammer 11 mit der größten Breite quer zur Strömungsrichtung, mit der abriebfesten Schicht 18 überzogen werden. Eine solche durchgehende Beschichtung ist in den Figuren 1 und 2 des Probennehmers 1 gezeigt. Eine solche durchgehende keramische Schicht 18 ist allerdings bei dem in dem Meßkopf 9 eingesetzten Probennehmer 1 der Figuren 3 und 4 nicht gezeigt, wobei es sich für einen solchen Probennehmer 1 mit zwei Kammer-Bereichen als ausreichend erwiesen hat, daß nur der Kammer-Bereich 11 mit der großen Breite 14 beschichtet wird, wobei auch hier die Beschichtung in Richtung des Strömungspfeiles 13 gesehen etwa 5 mm im Anschluß an die Prallfläche 16 sich in den Kammer-Bereich 12 mit der kleineren Breite 15 hinein erstreckt.If necessary, the entire chamber 5, that is to say the walls of the chamber 11 with the greatest width transverse to the direction of flow, can be covered with the abrasion-resistant layer 18. Such a continuous coating is shown in Figures 1 and 2 of the Sampler 1 shown. Such a continuous ceramic layer 18 is, however, not shown in the sampler 1 of FIGS. 3 and 4 used in the measuring head 9, it having proven sufficient for such a sampler 1 with two chamber regions that only the chamber region 11 is coated with the large width 14, here also the coating, viewed in the direction of the flow arrow 13, extends approximately 5 mm following the impact surface 16 into the chamber region 12 with the smaller width 15.

Um dem Probennehmer 1, wie er in Figur 3 und 4 gezeigt ist, die erstarrte Probe zu entnehmen, wird der Probennehmer 1 aus dem Meßkopf 9 herausgebrochen, die Feder-Klammer 17 gelöst und werden die beiden Teilkörper 2, 3 voneinander getrennt. Durch die Beschichtung der Innenseiten der Probennahme-Kammer 5 mit der abriebfesten Schicht 18 lassen sich die beiden Teilkörper 2, 3 leicht voneinander trennen, ohne daß diese an der Probe haften.In order to take the solidified sample from the sampler 1, as shown in FIGS. 3 and 4, the sampler 1 is broken out of the measuring head 9, the spring clamp 17 is released and the two partial bodies 2, 3 are separated from one another. By coating the inside of the sampling chamber 5 with the abrasion-resistant layer 18, the two partial bodies 2, 3 can be easily separated from one another without them adhering to the sample.

Claims (11)

  1. A sampler (1) for molten metal, with at least two dish-shaped, metallic partial bodies (2,3) which are arranged with respect to each other so that their front faces (4) lie opposite each other, in which the metallic partial bodies form a sampling chamber (5), and with an inlet connection (6) opening via an orifice (7) into the chamber, in which the chamber formed by the dish-shaped, metallic partial bodies is divided into at least two chamber regions (11,12) of differing thickness, in which these chamber regions lie one behind the other in the direction of the inlet connection, viewed in the direction of the inflowing metal, and in each case are separated from each other by a graduation (10) which forms an impact surface (16) for the liquid metal, in which the chamber region (12) with the smaller thickness (15) forms the end of the sampling chamber lying opposite the inlet connection, characterised in that the chamber (5), at least in the region of the orifice (7) and the wall region (16) lying opposite the orifice (7), forming the impact surface for the inflowing metal, is coated with an abrasion-proof layer (18) which is stable with respect to temperature up to approximately 1700° C, in which the wall lying furthest away from the inlet connection (6), viewed in the direction of the inflowing metal, remains uncoated. and that the front faces (4) of the dish-shaped partial bodies (2,3) remain free of coating by the abrasion-proof coating material.
  2. A sampler according to Claim 1, characterised in that the abrasion-proof layer (18) has a thickness of 5 to 200 micrometres.
  3. sampler according to Claim 2, characterised in that the abrasion-proof layer (18) has a thickness of 30 to 100 micrometres.
  4. A sampler according to Claim 3, characterised in that the abrasion-proof layer (18) has a thickness of approximately 60 micrometres.
  5. A sampler according to one of Claims 1 to 4, characterised in that the abrasion-proof layer (18), from the orifice (7), covers the region of the inlet connection (6) to approximately half its length and covers the region of the walls of the sample chamber approximately 5 mm into the sampling chamber (5).
  6. A sampler according to one of Claims 1 to 5, characterised in that the abrasion-proof layer is a ceramic layer (18).
  7. A sampler according to one of Claims 1 to 6, characterised in that the layer (18) is a substantially oxidic layer.
  8. A sampler according to Claim 7, characterised in that the oxidic layer is Al2O3.
  9. A sampler according to Claim 7, characterised in that the oxidic layer is ZrO2.
  10. A sampler according to one of Claims 1 to 6, characterised in that the layer (18) is a layer consisting substantially of nitrides.
  11. A sampler according to one of Claims 1 to 10, characterised in that the layer (18) is applied by plasma spraying or by flame spraying.
EP90119782A 1990-03-22 1990-10-16 Sampler for molten metals Expired - Lifetime EP0447613B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4009167 1990-03-22
DE4009167A DE4009167A1 (en) 1990-03-22 1990-03-22 SAMPLER FOR METAL MELTING

Publications (3)

Publication Number Publication Date
EP0447613A2 EP0447613A2 (en) 1991-09-25
EP0447613A3 EP0447613A3 (en) 1992-04-15
EP0447613B1 true EP0447613B1 (en) 1997-01-02

Family

ID=6402784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119782A Expired - Lifetime EP0447613B1 (en) 1990-03-22 1990-10-16 Sampler for molten metals

Country Status (10)

Country Link
US (1) US5156799A (en)
EP (1) EP0447613B1 (en)
JP (1) JP2537705B2 (en)
AT (1) ATE147159T1 (en)
AU (1) AU632225B2 (en)
BR (1) BR9101081A (en)
CA (1) CA2038901A1 (en)
DE (2) DE4009167A1 (en)
ES (1) ES2096571T3 (en)
ZA (1) ZA908726B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574720B2 (en) * 1994-05-13 1997-01-22 リケン工業株式会社 Mold for sampling molten metal
WO2000026635A1 (en) * 1998-10-29 2000-05-11 Kawasaki Steel Corporation Method of preparing slag sample for x-ray fluorescence analysis and sampler
JP4509403B2 (en) * 2000-02-18 2010-07-21 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ Sample collection equipment for melt
KR20020000676A (en) * 2000-06-27 2002-01-05 이구택 Auto-sampler with function cutting probe
DE10360625B3 (en) * 2003-12-19 2005-01-13 Heraeus Electro-Nite International N.V. Sampler for molten metal comprises sample chamber mounted in support tube with inlet section which carries quartz glass inlet tube which curves in at both ends
KR100951877B1 (en) * 2008-03-04 2010-04-12 우진 일렉트로나이트(주) Sampling device for direct forwarding of analytical sample
DE102008057797B4 (en) 2008-11-17 2013-11-28 Heraeus Electro-Nite International N.V. Apparatus for sampling molten metal
DE102010053710B4 (en) * 2010-12-07 2012-12-27 Heraeus Electro-Nite International N.V. Method and device for analyzing samples of molten metal
ES2950398T3 (en) 2016-12-13 2023-10-09 Heraeus Electro Nite Int Direct analysis sampler
EP3336511B1 (en) * 2016-12-13 2019-06-12 Heraeus Electro-Nite International N.V. Direct analysis sampler

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685359A (en) * 1967-05-11 1972-08-22 Electro Nite Eng Co Expendable lance
GB1239547A (en) * 1970-01-31 1971-07-14
JPS5023839A (en) * 1973-07-03 1975-03-14
FR2254249A5 (en) * 1973-12-05 1975-07-04 Lorraine Decolletage Device for collecting gas samples from molten slag - comprising double bulb which is immersed collecting slag and gas
US3915002A (en) * 1974-08-16 1975-10-28 Leeds & Northrup Co Sampler for molten materials
DE2609945B1 (en) * 1976-03-08 1977-08-25 Gustav Kolb PROBE WITH A CERAMIC FORM FOR TAKING A SAMPLE FROM A STEEL MELT
US4037478A (en) * 1976-09-15 1977-07-26 Electro-Nite Co. Device for collecting samples of molten metal
FR2406822A1 (en) * 1977-10-19 1979-05-18 Lorraine Decolletage Sampling effervescent molten metal, esp. steel - using mould in end of tubular envelope of dehydrated cardboard, with tube allowing mould to fill without forming cavities
US4401389A (en) * 1981-01-24 1983-08-30 Electro-Nite Co. Measuring probe for taking a sample from a metal bath and for measuring the bath temperatures
DE3127038A1 (en) * 1981-07-09 1983-01-20 Robert Bosch Gmbh, 7000 Stuttgart Method for avoiding states of non-equilibrium in the exhaust gases of internal combustion engines
DE3368764D1 (en) * 1982-09-29 1987-02-05 Electro Nite Sampling device for molten metals
GB8313343D0 (en) * 1983-05-14 1983-06-22 Hamblin M J Heat resistant means
US4535640A (en) * 1983-11-02 1985-08-20 Falk Richard A Ceramic fiber molten metal sampler
FR2555745B1 (en) * 1983-11-28 1986-06-13 Soled METHOD, MOLD AND DEVICE INCLUDING SAID MOLD FOR TAKING SAMPLES FROM A FUSED METAL BATH, WHICH METAL, ESPECIALLY CAST IRON, IS BROKEN IN THE SOLIDIFIED CONDITION
DE3402818C2 (en) * 1984-01-26 1986-07-03 Gustav 5870 Hemer Kolb Device for taking immersion samples from iron melts
JPS60131857U (en) * 1984-02-13 1985-09-03 川崎製鉄株式会社 Mine slag sample collection container
JPS60131856U (en) * 1984-02-13 1985-09-03 川崎製鉄株式会社 Mine slag sample collection container
FR2560993B1 (en) * 1984-03-09 1988-03-25 Solmer LANCE MEASUREMENT AND SAMPLING DEVICE FOR DETERMINING CHARACTERISTICS OF A FUSED METAL
DE3539973A1 (en) * 1985-11-11 1987-05-14 Heigl Helmuth Separating and contacting device
DE3540228C2 (en) * 1985-11-13 1993-10-14 Heraeus Electro Nite Int Measuring head for taking measurements in molten metals and for taking samples
US4699014A (en) * 1986-07-24 1987-10-13 Midwest Instrument Co., Inc. Molten metal sampler with sand cast mold part
DE8707781U1 (en) * 1987-06-01 1987-07-23 Vsesojuznyj naučno-issledovatel'skij, proektno-konstruktorskij i technologičeskij institut elektrotermičeskogo oborudovanija, Moskau/Moskva Device for determining the carbon content and temperature of a liquid metal
JPS63196100U (en) * 1987-06-05 1988-12-16
FR2616540B3 (en) * 1987-06-10 1989-06-09 Inst Elektrotermicheskogo Ob DEVICE FOR DETERMINING THE CARBON CONTENT AND THE TEMPERATURE OF LIQUID METAL
DE8910869U1 (en) * 1989-09-12 1989-10-26 Electro-Nite International N.V., Antwerpen Device for taking samples from metal melts

Also Published As

Publication number Publication date
ATE147159T1 (en) 1997-01-15
ZA908726B (en) 1991-08-28
ES2096571T3 (en) 1997-03-16
CA2038901A1 (en) 1991-09-23
DE59010624D1 (en) 1997-02-13
AU632225B2 (en) 1992-12-17
US5156799A (en) 1992-10-20
BR9101081A (en) 1991-11-05
JPH04223269A (en) 1992-08-13
AU7373491A (en) 1991-10-03
JP2537705B2 (en) 1996-09-25
DE4009167C2 (en) 1992-01-02
DE4009167A1 (en) 1991-09-26
EP0447613A3 (en) 1992-04-15
EP0447613A2 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
EP0447613B1 (en) Sampler for molten metals
DE1573161C3 (en) Temperature sensor for melt pools
DE102012016697B3 (en) Measuring probe for sampling in molten metals
EP2584336B1 (en) Device for measuring parameters or for sampling in iron or steel melts
DE69014616T2 (en) ENCLOSURE SENSOR FOR METAL MELT FOR CONTINUOUS USE.
DE102013022096A1 (en) Apparatus and method for crucible-free melting of a material and for atomizing the molten material to produce powder
EP1127250A1 (en) Device for measuring at least one parameter of a flowing medium
DE102007035035A1 (en) gas sensor
DE2609945B1 (en) PROBE WITH A CERAMIC FORM FOR TAKING A SAMPLE FROM A STEEL MELT
DE102004013853A1 (en) Sensor for determining a physical property of a sample gas
DE19512111C2 (en) Heat transfer control and / or measuring device
EP1126036B1 (en) Sampling probe for melts
EP1544591B1 (en) Sampler for liquid metals
DE4303688C2 (en) Sampler for molten metal
DE102006060312A1 (en) gas sensor
DE4204952C2 (en) Immersion sampler for molten metal
DE3402818C2 (en) Device for taking immersion samples from iron melts
DE19857006A1 (en) Device and method for extracting exhaust gases
DE7711433U1 (en) EXHAUST PIPE WITH BUILT-IN PROBE FOR DETERMINING CHANGES IN THE COMPOSITION OF A GAS MIXED FLOW
EP1298426A1 (en) Sampling probe for melts
DE2849333C3 (en) Ceramic sampling device for molten metal, in particular molten steel
DE4118549A1 (en) PYROMETER AND A METHOD APPLICABLE TO ITS MANUFACTURE FOR MELTING AN ALUMINUM OXIDE TUBE HIGH PURITY
DD285190A5 (en) DIVING SAMPLES FOR SAMPLING IN METAL MELTS
DE10049253C2 (en) Sampler for melting
EP0148492A1 (en) Device for measuring the concentration of oxygen and temperature of molten metals during refining

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901025

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS ELECTRO-NITE INTERNATIONAL N.V.

17Q First examination report despatched

Effective date: 19940425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 147159

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970102

REF Corresponds to:

Ref document number: 59010624

Country of ref document: DE

Date of ref document: 19970213

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2096571

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051003

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051013

Year of fee payment: 16

Ref country code: SE

Payment date: 20051013

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051014

Year of fee payment: 16

Ref country code: FR

Payment date: 20051014

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051017

Year of fee payment: 16

Ref country code: ES

Payment date: 20051017

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051108

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061016

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

BERE Be: lapsed

Owner name: *HERAEUS ELECTRO-NITE INTERNATIONAL N.V.

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061017

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071016

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031