EP0433413A1 - Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique, procede de preparation et utilisation. - Google Patents

Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique, procede de preparation et utilisation.

Info

Publication number
EP0433413A1
EP0433413A1 EP19900909461 EP90909461A EP0433413A1 EP 0433413 A1 EP0433413 A1 EP 0433413A1 EP 19900909461 EP19900909461 EP 19900909461 EP 90909461 A EP90909461 A EP 90909461A EP 0433413 A1 EP0433413 A1 EP 0433413A1
Authority
EP
European Patent Office
Prior art keywords
less
vegetable
micronized
equal
micrometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19900909461
Other languages
German (de)
English (en)
Other versions
EP0433413B1 (fr
Inventor
Daniel Gomez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT90909461T priority Critical patent/ATE97457T1/de
Publication of EP0433413A1 publication Critical patent/EP0433413A1/fr
Application granted granted Critical
Publication of EP0433413B1 publication Critical patent/EP0433413B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L11/00Manufacture of wood shavings, chips, powder, or the like; Tools therefor
    • B27L11/06Manufacture of wood shavings, chips, powder, or the like; Tools therefor of wood powder or sawdust
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/02Material of vegetable origin

Definitions

  • the present invention relates, as a new industrial product, to a porous, micronized, sparse plant charge, of controlled particle size and of small specific physical and hydraulic surfaces.
  • It also relates to the process for preparing said vegetable charge, as well as its use in the field of pulp, paper, cardboard, and nonwovens on the one hand, and in the field of plastics, composites, paint, coatings and materials. on the other hand.
  • articles for sanitary and domestic uses sanitary napkins, household paper towels, handkerchiefs, napkins and tablecloths, hand towels and industrial wiping articles, fluff products for baby diapers , for periodical linings, hygienic protective articles, absorbent pads, use cellulosic base supports, creped or not, possibly embossed, smoothed, calenders and of composition suitable for obtaining the properties required by the market and which are: the water absorption capacity depending on the fibrous structure of the material, its bulk, its porosity, its ability to crepe, its softness, its elasticity, its flexibility, its mechanical resistance, its appearance properties.
  • the paper industry uses different cellulosic or synthetic fibrous materials, on the one hand, and various organic, mineral or synthetic chemical adjuvants, on the other.
  • CTMP or B.CTMP pastes are made from wood shavings which undergo, after washing, chemical pretreatment with sodium sulfite, baking between 120 ° C and 170 ° C, refining under pressure and, as required, bleaching with hydrogen peroxide and oxygen for example in one stage or two stages.
  • a CTMP paste of 15 to 25 ° SR is particularly intended for the manufacture of absorbent papers or fluff paste.
  • a moderately refined pulp of 30-40 ° SR can be used for the manufacture of multijet cartons and an even more refined pulp of 40-50 ° SR will rather be used for the manufacture of fine papers or printing-writing.
  • CTMP computed tomography
  • TCMP heat treatment first
  • PAX process operated in the USA
  • SCMP advanced sodium sulfite treatment
  • Bisulfite chemical pulps richer in hemicelluloses than kraft pulps, are also used for the manufacture of household and sanitary articles. Fluff pastes are more resistant than chemical mechanical pastes but with much less interesting hydrophilic properties. Bisulfite pastes are obtained from a complex and expensive process.
  • All of these cellulose paper pulps have specific surfaces greater than 1 m 2 / g.
  • specific surfaces of a pulp of bleached softwood fibers vary between 1.3 and 4 m 2 / g.
  • the absorbency of a paper can also be improved by the incorporation of chemical additives such as wetting agents: polyglycolic ethers of nonylphenol, octylphenol, fatty alcohols, mixed polyglycolic ethers ethylenepropylene, d fatty acids and derivatives, sorbitan esters, polyglycols, glycerol, alkyl aryl sulfonic acid, ammonium lauryl sulfate, ammonium lauryl ethers sulfate, phosphoric esters, ethoxylated fatty amines, derivatives d 'quaternary ammonium for example, but these expensive additives generate foams and can therefore disturb the course of the manufacture of the material.
  • chemical additives such as wetting agents: polyglycolic ethers of nonylphenol, octylphenol, fatty alcohols, mixed polyglycolic ethers ethylenepropylene, d fatty acids and derivatives, sorbit
  • these are, for example, the standard dyes of the paper industry which belong to 3 groups: basic dyes with a cationic nature having a particularly high affinity for unbleached fibrous materials and mechanical pulps, anionic acid dyes, direct dyes or nouns with anionic or cationic charge.
  • opacifying fillers such as titanium oxide.
  • opacifying fillers such as titanium oxide.
  • process adaptations to correctly fix these materials on the fibers (anionic or cationic retention agents, pH adjustment, etc.), and this, in order to reduce losses and pollution.
  • various conventional mass adjuvants for reinforcing properties in the dry and wet cane state for example natural or synthetic organic binders, anionic or cationic, in particular starchy products, polyvinyl alcohols, latex, vegetable proteins, cellulose esters, urea-formaldehyde and melamine-formaldehyde resins, glyoxal, in particular cationic and crosslinked polyalkyleneamines, condensation products of raelamine formaldehyde and amino caproic acid, polyacrylamides, etc.
  • natural or synthetic organic binders anionic or cationic, in particular starchy products, polyvinyl alcohols, latex, vegetable proteins, cellulose esters, urea-formaldehyde and melamine-formaldehyde resins, glyoxal, in particular cationic and crosslinked polyalkyleneamines, condensation products of raelamine formaldehyde and amino caproic acid, polyacrylamides, etc.
  • mass adjuvants may also be used to obtain particular characteristics concerning the aspect: shading, brightening, coloring, special surface effect, or additives favorable to dimensional stability, inertia, fungicidal, bactericidal or flame retardant agents.
  • the manufacture of certain special papers also uses chemical reagents to identify or forge the papers. All these products are generally incorporated directly into the mass with the need to retain them well in the fibrous texture to reduce material losses during the draining operation and the formation of the sheet but also to reduce pollution : mineral and organic fillers are also used which, as a general rule, improve the drying of the sheet, therefore the productivity, but at the expense of the hand and the rigidity.
  • the manufacture of composites, coatings and building materials also uses a wide variety of organic, mineral, natural or synthetic plant materials to obtain specific characteristics, but these materials are not made from specific plant charges for be favorable to the fixing of polymers, resins and / or which can confer interesting technical and economic properties on the final material such as sound insulation properties, thermal and electrical properties.
  • a process of preparation by the papermaking process of a fibrous or sheet material which comprises the introduction of a pulverulent vegetable load in an aqueous dispersion containing fibers, being characterized in that said vegetable load is micronized, has a density lower than 500 kg / m 3 and has a particle size such that (i) at least 95% by weight of the particles of said vegetable load have dimensions less than 150 micrometers, and (ii) at most 80% by weight of the particles of said vegetable load have dimensions greater than 10 micrometers.
  • the micronized vegetable load according to said international application has a density of less than 300 kg / m 3 and is obtained by a grinding-micronization operation from plant waste having an average particle size of less than 5 mm and a residual humidity of less than 20%.
  • the aforementioned summary No. 8739 recommends, for the manufacture of electrically insulating panels, the use of a mixture of 70-95% by weight of cellulose pulp (kraft fibers) and 30-5%
  • US Pat. No. 3,184,373 relates to the improvement of the retention of fillers in paper and cardboard by means of a retention agent such as polyethyleneimine, melamine-formaldehyde resins and urea-formaldehyde resins, said " fillers "being defined (see column 2, lines 3-34) as being solid or liquid substances and comprising in particular the mineral paper fillers themselves, metal powders, thermosetting resin powders, thermoplastic resins, binders, flocculants and wood powder (see column 2, line 27).
  • the particle size of said "fillers” is indicated as being between 60 mesh and 2000 mesh (see column 1, lines 70-71).
  • document US-A-3184 373 gives no example illustrating the use of said wood powder introduced into the mass; moreover, it neither describes nor suggests the specific particle size and density of the plant charge according to the invention.
  • Document DE-C-415 675 proposes a sizing process according to which a colloidal dispersion of a submicronic substance (that is to say of a particle size less than 1) is incorporated into an aqueous suspension of fibers (i) micrometer) containing cellulose and coming from the grinding of wood or straw, then (ii) a flocculant.
  • Said submicron substance which therefore has a particle size significantly smaller than that of the plant charge according to the invention, fulfills a role completely different from that of said plant charge; indeed said submicron substance is presented in DE-C-415 675 as reducing the porosity of the resulting paper by sealing and / or filling the pores of the fibrous web, while according to the invention an increase in porosity is sought.
  • FR-A-2 612 828 (which was made public on 30.09.1988) of products which may be incorporated into paper and cardboard, containing cellulose and obtained by physico-chemical treatment of wood shavings or cellulose fibers .
  • Said products containing cellulose have a composition different from that of the vegetable or fibrous source from which they are derived. Indeed, the physical and chemical treatments to which said source has been subjected do not preserve the integrity of the components of said source.
  • the cellulose thus obtained is different from the composition of the vegetable filler according to the invention having regard to the nature of the components of the latter.
  • the aforementioned summary No. 7191 describes the use of microfibrillated cellulose for the production of coating plasters. Again the cellulose microfibrils are different by their structure and their composition of the plant charge according to the invention.
  • the present invention differs from the teaching of said summaries No 1523 and No 7191 and of said document FR-A-2 612 828 by the fact that the vegetable load, the use of which is recommended in the mass, has retained substantially all of the components of the plant source; in the vegetable load according to the invention only the water content and the content of volatile substances (such as essences of low boiling point) could be affected with respect to the starting vegetable source. So if the vegetable source is wood, we will find in the vegetable load practically all the components of wood as described in the book by FEN3EL et al., W00D CHEMESTRY ULTRASTRUCTURE REACTIONS, pages 26-33, editor D. GRUYTER (1984 ), incorporated here for reference. OBJECT OF THE INVENTION
  • the present invention recommends a new technical solution which uses a micronized vegetable filler of particular characteristics for use in the manufacture of pulp, paper, cardboard, nonwovens, plastics, composites, paints, coatings and building materials.
  • This vegetable load is obtained for economic reasons from vegetable waste which can be mainly wood waste.
  • the new porous micronized vegetable charge which is recommended according to the invention is characterized in that,
  • (1d) a density less than 500 kg / mr and preferably less than or equal to 300 kg / m 3 ;
  • This new charge according to the invention is prepared according to a process which is characterized in that a vegetable source to be micronized is subjected to a grinding-micronization operation at a temperature below 150 ° C., preferably at a lower temperature. or equal to 100 ° C, and better at a temperature less than or equal to 70 ° C.
  • a vegetable source to be micronized is subjected to a grinding-micronization operation at a temperature below 150 ° C., preferably at a lower temperature. or equal to 100 ° C, and better at a temperature less than or equal to 70 ° C.
  • the micronized vegetable load has, at a residual moisture content of less than 20% and preferably less than 15% by weight relative to the total weight of said vegetable load, a particle size d 95 less than 200 micrometers, and preferably a particle size d 95 less than or equal to 150 micrometers [that is to say that in the latter case at least 95% of the particles (percentage expressed by weight) pass through a mesh screen square stainless steel opening 150 ⁇ 150 micro-meters, according to French standard NF X 11501].
  • At least 80% by weight of the particles have an average particle size greater than 10 micrometers.
  • the vegetable load according to the invention has, at a residual moisture content of less than 20% and preferably less than 15% by weight relative to the total weight of said vegetable load, a specific physical surface and a surface specific hydraulic less than 2 m 2 / g and preferably less than 1 m 2 / g.
  • the physical specific surface can be determined by means of a mercury porosimeter such as the "Micrometric 9200" device which can reach a maximum pressure of 60,000 psi (or about 4,137 ⁇ 10 8 Pa).
  • This technique essentially allows the determination of the dimensions and quantities of the empty spaces and (open) pores of the porous material as well as its specific surface and its density. Mercury is penetrated by immersing the material in the mercury and increasing the isostatic impression.
  • A contact angle of mercury with the material. This physical specific surface can also be measured by the BET method (designated by the initials of the authors Brunauer, Emett, Teller) by adsorption of krypton in liquid nitrogen.
  • the hydraulic specific surface is determined by the Pulmac method from the equations:
  • R p specific resistance of a test piece
  • W weight of the test piece expressed in g
  • v viscosity expressed in poises (g / cm / s) [one poise corresponds to 0.1 Pa.s],
  • c density of the test specimen expressed in g / cm 3 .
  • the density of the micronized plant charge measured by means of a mercury porosimeter, at a residual moisture content of less than 20% and preferably less than 15% by weight relative to the weight total of said plant load, is less than 500 kg / m 3 and preferably less than 300 kg / m 3 .
  • micronized vegetable filler according to the invention has a strong adsorbent or absorbent capacity.
  • the present micronized vegetable filler as a carrier, vehicle or fixer for various conventional or special mass adjuvants in the paper industry in order to improve homogenization, distribution and retention in the fibrous texture of said adjuvants.
  • These adjuvants can be introduced directly into the fibrous pulp containing the micronized vegetable filler or preferably into said micronized vegetable filler before incorporating it into the aqueous suspension of fibers.
  • the strong adsorptive or absorbent power of the micronized vegetable filler according to the invention is advantageously exploited for strengthening the mechanical properties in the dry and wet state by fixing on said micronized vegetable filler of polymers, binders, organic resins natural or synthetic.
  • This strong adsorbent or absorbent power can also be used for modifying the appearance of the material and its optical properties by fixing dye, shading agents, brightening agents, fluorescent agents or else on said micronized vegetable charge. specific chemical reagents.
  • the strong adsorbent or absorbent power can be advantageously used in the field of identification or forging of papers and in particular so-called security papers.
  • the micronized plant charge can also fix certain particular additives such as bactericidal means, fungicidal means and enzymes in order to give the finished material the special characteristics sought such as rot-proofing; the fixation of enzymes, proteins, antibodies or antigens is also useful in. field of microbiological assays using in particular reactions of the antigen / antibody type.
  • the high adsorbent or absorbent power of the micronized vegetable filler according to the invention is also useful for fixing oils and fats and in particular thus making it possible to manufacture materials for packaging, wiping or even combating pollution.
  • the strong adsorbent or absorbent power of the micronized vegetable filler according to the invention also makes it possible to fix the organic and / or mineral materials suspended in the dough such as pitch, sticky substances and other undesirable pollutants liable to disturb productivity by fouling of dressings, wet presses, on the one hand, and likely to disturb production on paper and / or cardboard machines due to dusting and linting of fibrous webs.
  • micronized vegetable filler according to the invention can be subjected to a chemical treatment, in particular to a bleaching operation according to a conventional papermaking technique, without giving rise to any re-agglomeration.
  • the micronized vegetable load according to the invention can be subjected to a chemical treatment or associated with an organic or mineral, natural or synthetic material to give said micronized vegetable load of appearance characteristics that it does not have to natural state and to modify the optional properties of said micronized plant charge or of any material containing said micronized plant charge.
  • These characteristics appearance relate in particular to whiteness, opacity, color and regularity of surface.
  • chemical treatment is understood here to mean, in particular, bleaching, coloring or any mixture with a mineral or organic, natural or synthetic material, such as for example titanium oxide used as a means of increasing opacity.
  • the micronized vegetable filler according to the invention improves the bulk of fibrous materials including in particular paper and cardboard and is favorable to the rigidity of said paper and cardboard.
  • the micronized vegetable load according to the invention allows, after incorporation into the aqueous fiber suspension, a significant reduction in dusting and linting by comparison with the other conventional solutions using mechanical, chemical-mechanical and chemical-thermal fluff pastes.
  • all plant sources are suitable, in particular the softwood species such as fir, pine, spruce, hardwoods such as birch, beech, hornbeam, chestnut, and others.
  • the vegetable source will come from vegetable waste and in particular wood waste.
  • Wood waste can for example come from logging (bark, stumps, slash, crowns, small branches which together represent 65% by weight of the standing tree), from the primary or secondary wood processing industry , sawing industry, planing, veneer (crusts, edging, sawdust, planing shavings, scraps of machining, cutting, cutting, slicing and unwinding in parquetry, industrial carpentry, cabinet making, manufacture of particle board and fibrous board).
  • Wood waste usable as a vegetable source can also come from the industries of the use or transformation of wood products, in particular light wooden packaging (crates, crates, boxes, trays), and heavy wooden packaging (boxes, pallets, demolition and construction wood and the like). Wood waste can also come from chemical pulp production facilities, these facilities produce sawdust, small chips or matches, which as a general rule must be eliminated in order not to affect the cooking yields and the quality of said pulp.
  • the vegetable source can also come from vegetable waste from the harvest of cereals such as notably corn cob.
  • the grinding-micronization operation When implementing the preparation process of the invention for the preparation of the micronized vegetable filler, it is important to carry out the grinding-micronization operation at a temperature below 150 ° C. Above 150 ° C, the grinding-micronization operation deeply denatures the composition of the plant source and the resulting plant charge, denaturation by heat treatment above 150 ° C being liable to lead to the re-agglomeration of said micronized vegetable charge. In addition, the grinding-micronization operation at a temperature of the order of 200-400 ° C is likely to cause the ignition of the vegetable source and load.
  • the grinding-micronization temperature will be less than or equal to 100 ° C., and better said temperature will be less than or equal to 70 ° C.
  • the micronized plant charge according to the invention of natural unbleached color can be subjected to a conventional bleaching treatment in the stationery field in order to obtain a vegetable charge having a desired whiteness. situated for example between 60 and 90 degrees of white (the measurement of the degree of white being carried out in accordance with the determination of the factor of
  • the unbleached micronized vegetable filler can be subjected to a coloring treatment with conventional dyes from the stationery industry, in particular by means of cationic basic dyes with good affinity for unbleached vegetable matter.
  • material is meant here any paper product such as pulp, paper, cardboard, sheets, rolls or any other form of complexes and particularly any product for domestic and sanitary use known as “dish” presented in sheets or reels, or any product called “fluff”, that is to say any complex product composed of various ingredients arranged around or in an absorbent mattress composed partially or entirely of defibrated wood pulp “fluff”, on the one hand, and any product not stationer chosen from the group consisting of composites, paints, coatings, coatings and construction articles, on the other hand.
  • this new micronized plant charge is its excellent ability to disperse or paste in water at very variable concentrations, and this feature will in particular be advantageously exploited according to the invention for the coloring of the plant charge. with small amounts of water (the vegetable load / colorant pasting can be carried out at a concentration greater than 60% and in particular at a concentration of 70-80%).
  • This feature will be advantageously exploited according to the invention for the manufacture of paints, coatings or solutions (aqueous or non-aqueous) for impregnation or coating, on the one hand, but also for the manufacture of composites or materials colored low density, on the other hand.
  • micronized vegetable filler according to the invention can be combined, as a paper filler, with other conventional additives in the paper and cardboard industry, such as in particular mineral fillers, bonding agents, resins and polymers for reinforcing mechanical properties in the dry or wet state, retention agents, etc.
  • micronized vegetable filler according to the invention can be combined with all organic or synthetic paper fibers, that said paper fibers are alone or mixed together. It is therefore in particular possible to introduce the micronized vegetable filler according to the invention into a mixture of fibers made up of so-called recovery cellulose fibers or into a mixture of recovery cellulose fibers and noble cellulosic fibers.
  • the micronized vegetable filler according to the invention can be introduced into the pulp before the manufacture of fibrous sheets, or into the aqueous suspension of fibers at the head circuits of the paper machine during the manufacture of said sheets. fibrous.
  • said micronized vegetable filler can be incorporated into the dough before or after refining of said dough.
  • All the known devices for the manufacture of fibrous sheets, such as paper, cardboard and nonwovens, are suitable for the use of the micronized vegetable load according to the invention, such as for example machines at one table or with several flat tables, machines with single-jet or multi-jet formation, machines with inclined or vertical formation.
  • the weight ratio of pulverulent plant charge / fibers according to the invention will generally be in the range from 1/100 to 6/1.
  • a vegetable / fiber weight ratio in the range of 1/100 to 2/10 (and better still from 1/100 to 1/10) will be used, for that of printing media.
  • the fibers which can be used for these various applications are in particular natural or synthetic organic fibers such as cellulosic fibers, polyamide fibers, polyester, polyalkylene fibers, polyacrylate fibers, mineral fibers such as glass fibers, ceramic fibers, acicular gypsum fibers, carbon fibers and rock wool, and finally regeneration fibers cellulose. These fibers can be used alone or as a mixture.
  • the most commonly used fibers will be cellulosic fibers originating from kraft or bisulfite chemical pulps, mechanical, thermomechanical or chemico-thermomechanical pulps. These pastes produced from softwood or hardwood species can be unbleached, semi-bleached or bleached.
  • cellulosic pulps called recovery from old paper (such as print-writing media, newspapers, cardboard boxes, packaging paper, magazines and the like), alone or in combination with fibers.
  • noble cellulosics as indicated above.
  • the vegetable fillers of controlled particle size can be associated with other organic or synthetic mineral fillers or their mixtures, these fillers or pigments customary or special from the stationery industry are those which have already been mentioned above.
  • the plant charge will replace part of the essential ingredient of the material, namely fibers in the paper industry, on the one hand, and will be able to replace all or only a fraction of the charge. usual including mineral material, on the other hand.
  • micronized vegetable filler can also usefully intervene in the composition of household and sanitary papers as a replacement for part or all of the mechanical, thermomechanical and CTMP pulps.
  • the micronized vegetable load can also replace in particular
  • the surface and absorption properties of the micronized vegetable filler also allow prior fixing of the binding agent, mainly starch binders, on the vegetable filler for the overall optimization of the mechanical performance of the final product.
  • micronized vegetable filler according to the invention confers an improvement in the bulk and rigidity of the packaging papers with a very favorable impact on the cost price.
  • manufacture of kraft fibrous sheets, unbleached or whitened manufacture of flexible packaging, of pouches, envelopes, "kraft liner” and “test liner”
  • the vegetable load is also interesting in the manufacture of printing-writing papers with or without wood, magazine papers, L.W.C.
  • said vegetable charge in particular allows the regulation of the formation of the fibrous sheet to be regulated while promoting bulk and opacity.
  • the manufacture of multi-jet cartons is also in the field where the vegetable load according to the invention favorably satisfies a large number of important applications in particular with regard to the technical and economic plans.
  • the micronized vegetable filler according to the invention offers the advantage of dispersing or of becoming very easily impaled in water without any particular additive, in particular up to concentrations up to 85% of dry extract. This property is advantageously used in the field of coloring of said vegetable charge, on the one hand, and in the manufacture of paints and coatings comprising said vegetable charge.
  • the unbleached, bleached or colored vegetable load confers on the material into which it is introduced or on which it is applied, particular properties of appearance, bulk, opacity and may, as required, contribute to the improvement of sound, thermal and electrical insulation properties.
  • the plant filler which is the subject of the invention can also bring a certain number of advantages in the manufacture of filtration papers: homogeneity of the porometric properties, increase in the absorbing power, reduction of linting, dusting, by better optimization of the refining and reduction of the cost of composition, because these papers are produced from expensive special pulp and delicate processing.
  • the quantity of vegetable fillers which is recommended is in particular from 2 to 8% relative to the weight of the fibers. At this quantity and at an appropriate level of refining, the vegetable fillers can also increase the porosity of the papers and this result is appreciated for the manufacture of certain packaging krafts, such as in particular the krafts for large capacity bags.
  • the micronized vegetable filler will replace part of the essential ingredient of the material, namely paper fibers, on the one hand, but also depending on the destination, part of the other ingredients of the composition of the fibrous sheet such as fillers, mineral and organic pigments, opacifying agents and the like, on the other hand.
  • the process for preparing a fibrous sheet which is recommended according to the invention by the papermaking process and which comprises the aqueous dispersion of fibers and a micronized plant filler, is characterized in that said porous and micronized plant filler
  • (1) has, at a residual moisture content of less than 20% and preferably less than 15%, (1a) a particle size d 95 of less than 200 micrometers (that is to say that at least 95% in
  • (1d) a density of less than 500 kg / m and preferably less than or equal to 300 kg / m 3 ;
  • the vegetable filler has been previously incorporated into the fibrous pulp or is introduced into the aqueous suspension of fibers during the operations for manufacturing the material.
  • said vegetable charge is likely to have been bleached, colored or to have undergone a particular chemical treatment to obtain specific properties.
  • table A lists the units and standards for assessing the characteristics of paper and board.
  • micronized vegetable fillers according to the invention The influence of the incorporation of micronized vegetable fillers according to the invention on the absorption properties of a paper pulp used in products for household and sanitary uses has been evaluated.
  • Hydraulic specific surface 0.55 m 2 / g.
  • Density 300 kg / m 3 .
  • Hydraulic specific surface 0.52 m 2 / g.
  • Whiteness 70% obtained by bleaching with 4% hydrogen peroxide, with 2% soda, 3% silicate and 0.25% DTPA.
  • Dough 1 unbleached kraft of maritime pine from the Austin.
  • Pulp 3 Swedish softwood CTMP pulp
  • compositions used and the results obtained are listed in Tables 1, 2 and 3 below.
  • the loss of whiteness measured with the Suntest UV filter for 30 minutes on the CTMP paste is 4 to 6 points while the loss of whiteness is 2.5 points on the unbleached natural vegetable load.
  • Tissue paper is prepared from a weakly refined bleached softwood and leafy Kraft fibrous composition, in which a certain content of bleached vegetable fillers CV2 of the type used in the previous series of tests with other adjuvants is incorporated. usual for this product: softening and shading agents and the characteristics of this paper are checked in relation to a fabric of conventional formulation. These compositions and results are shown in Table 4 below.
  • the low specific surface area of the plant charge allows a slight increase in the refining of the dough without harming the absorption and resistance properties of the final product.
  • the composition comprising the micronized vegetable filler according to the invention is more economical.
  • the sheets are produced on a pilot machine.
  • the plant load is favorable for the hand, with improved physical characteristics. This new formulation drips better and is more economical.
  • a paper with vegetable fillers is prepared in order to improve the bulk and the rigidity and compared to a conventional formula.
  • the sheets are drawn on a dynamic form.
  • Table 6 below highlights the advantage of using the micronized vegetable filler according to the invention.
  • the micronized vegetable filler is used as an additive for improving productivity (reduction of linting and clogging of coatings) and mechanical performance.
  • This colored vegetable charge is useful in many materials: composites, building materials, coatings for the reduction in particular of the density or of obtaining specific properties: thermal, acoustic, electrical insulation.
  • a pinched composition for coating is prepared containing a micronized vegetable filler according to the invention, in order to improve the insulation properties of the coated material and to reduce the density.
  • Alumina hydrate 20 parts by weight
  • Acrylic dispersant 0.15 parts by weight
  • Polyvinyl alcohol 4 parts by weight
  • Acrylic binder 20 parts by weight
  • Carboxymethylcellulose 3 parts by weight
  • One part of the kaolin is replaced by 20 parts by weight of vegetable filler CV2. This substitution does not affect the rheological properties of the coating bath and the coating allows a decrease in the density of the coated material and improves its characteristics of dimensional stability and insulation.
  • the present series of tests relates to obtaining a kraft intended for the impregnation of phenolic resins for laminated panels.
  • the compositions and results are shown in Table 7.
  • the micronized vegetable load contributes in said series of tests to a significant improvement of the hand and of the absorption characteristics with identical physical properties. This result is interesting for productivity, the new composition according to the invention with CV1 also allows a significant reduction in the price.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Paper (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne, en tant que produit industriel nouveau, une charge végétale poreuse, micronisée, peu dense, de granulométrie contrôlée et de faibles surfaces spécifiques physique et hydraulique. Cette charge végétale est caractérisée en ce que (1) à une teneur en humidité résiduelle inférieure à 20% et de préférence inférieure à 15%, elle présente (1a) une granulométrie d95 inférieure à 200 micromètres (c'est-à-dire qu'au moins 95% en poids des particules de ladite charge végétale passent à travers un tamis à mailles carrées d'ouverture 200 x 200 micromètres), (1b) une surface spécifique physique inférieure à 2 m2/g, (1c) une surface spécifique hydraulique inférieure à 2 m2/g, et (1d) une densité inférieure à 500 kg/m3 et de préférence inférieure ou égale à 300 kg/m3; et, (2) elle a été obtenue par broyage-micronisation à une température inférieure à 150°C et de préférence à une température inférieure ou égale à 100°C. Cette charge végétale micronisée est utile dans le domaine des pâtes, papiers, cartons, et non tissés d'une part, et dans le domaine des composites, peinture, enduits et matériaux de construction, d'autre part.

Description

CHARGE VEGSTALE POREUSE, MICRONISEE, PEP DENSE, DEGRANULOMETRIE
CONTROLEE ET DE FAIBLES SDRFACES SPECIFIQUES PHYSIQUE ET HYDRADLIQUE
PROCEDE DE PREPARATION ET UTILISATION
DOMAINE DE L'INVENTION
La présente invention concerne, en tant que produit industriel nouveau, une charge végétale poreuse, micronisée, peu dense, de granulométrie contrôlée et de faibles surfaces spécifiques physique et hydraulique.
Elle concerne également le procédé de préparation de ladite charge végétale, ainsi que son utilisation dans le domaine des pâtes, papiers, cartons, et non-tissés d'une part, et dans le domaine des plastiques, des composites, peinture, enduits et matériaux de construction, d'autre part.
ART ANTERIEUR
L'industrie papetière et celle des non-tissés utilisent une grande variété de matières premières organiques, minérales et synthétiques, l'utilisation de ces matières premières répond à différents objectifs technico-économiques en fonction des usages.
Il est par exemple bien connu que les articles pour usages sanitaires et domestiques : les serviettes hygiéniques, les essuie-tous ménagers, les mouchoirs, serviettes et nappes, les essuie-mains et articles d'essuyage industriel, les produits fluffs pour couches de bébés, pour garnitures périodiques, les articles hygiéniques de protection, les alèses absorbantes, font appel à des supports de base cellulosiques, crêpés ou non, éventuellement gauffrés, lissés, calandres et de composition adaptée pour l'obtention des propriétés exigées par le marché et qui sont : la capacité d'absorption d'eau dépendant de la structure fibreuse du matériau, de son bouffant, de sa porosité, son aptitude au crépage, sa douceur, son élasticité, sa flexibilité, ses résistances mécaniques, ses propriétés d'aspect. Pour pouvoir répondre à ses objectifs techniques et économiques, l'industrie papetière fait appel à différentes matières fibreuses cellulosiques ou synthétiques, d'une part, à divers adjuvants chimiques organiques, minéraux ou de synthèse, d'autre part.
Il est bien connu que la composition fibreuse d'un papier a un rôle fondamental sur son bouffant, et sur ses propriétés porométriques et d'absorption.
Dans les papiers à usages domestiques ou sanitaires, les ouates de cellulose, les articles dénommés "tissues", l'emploi de pâtes mécaniques ou chimico-mécaniques est courant. Ce sont par exemple les pâtes mécaniques de meule ou de raffineur, écrues ou blanchies, de résineux ou de feuillus, les pâtes thermomécaniques (TMP) et les pâtes chimico-mécaniques écrues ou blanchies de résineux et de feuillus (CMP ou B.CMP). Les pâtes qui connaissent l'évolution la plus spectaculaire sont les pâtes thermomécaniques écrues ou blanchies de résineux ou de feuillus (CTMP ou B.CTMP) qui sont intermédiaires entre les pâtes mécaniques et chimiques. Ces pâtes CTMP ou B.CTMP sont fabriquées à partir de copeaux de bois qui subissent après lavage un prétraitement chimique au sulfite de sodium, un étuvage entre 120°C et 170°C, un raffinage sous pression et selon les besoins, un blanchiment au peroxyde d'hydrogène et à l'oxygène par exemple en un stade ou deux stades.
le raffinage est une étape importante du procédé car la qualité finale de la pâte dépend de son niveau d'engraissement ou de raffinage également appelé indice d'égouttage. Une pâte CTMP de 15 à 25°SR est particulièrement destinée à la fabrication de papiers absorbants ou de pâte fluff. Une pâte moyennement raffinée de 30-40°SR pourra être utilisée pour la fabrication de cartons multijets et une pâte encore plus raffinée de 40-50°SR sera plutôt utilisée pour la fabrication des papiers fins ou d'impression-écriture.
Ces pâtes mécaniques, chimico-mécaniques ou thermomécaniques sont couramment employées en mélange avec des pâtes chimiques de résineux ou de feuillus kraft ou bisulfite et il est aussi usuel d'incorporer dans la composition fibreuse un certain pourcentage de fibres recyclées dites pâtes de vieux papiers. Le principal inconvénient du procédé CTMP [comme d'ailleurs d'autres procédés proches : OPCO (procédé exploité au Canada), TCMP (traitement thermique en premier), PAX (procédé exploité aux USA), SCMP (traitement poussé au sulfite de sodium)] est sa consommation élevée d'énergie, qui peut varier, selon le niveau de raffinage requis, de 2400 à plus de 3000 kWh par tonne de pâte.
Les pâtes mécaniques traditionnelles ont des caractéristiques variables de par leur teneur en fibres, bûchettes et fines et cette forte hétérogénéité de la composition a une influence sur l'homogénéité de la formation, sur la régularité des propriétés physiques et optiques et ces pâtes ralentissent l'égouttage.
Les pâtes chimiques au bisulfite, plus riches en hémicelluloses que les pâtes krafts, sont également employées pour la fabrication d'articles domestiques et sanitaires. Les pâtes fluffs sont plus résistantes que les pâtes chimico-mécaniques mais avec des propriétés hydrophiles bien moins intéressantes. Les pâtes au bisulfite sont obtenues à partir d'un procédé complexe et coûteux.
Toutes ces pâtes papetières de cellulose ont des surfaces spécifiques supérieures à 1 m2/g. A titre d'exemple, selon le degré d'engraissement (entre 20°SR et 50°SR), les surfaces spécifiqties d'une pâte de fibres de résineux blanchies varient entre 1,3 et 4 m2/g.
La capacité d'absorption d'un papier peut être également améliorée par l'incorporation d'adjuvants chimiques comme les agents mouillants : les éthers polyglycolique de nonyl-phénol, d'octylphénol, d'alcools gras, les éthers polyglycoliques mixtes éthylènepropylène, d'acides gras et dérivés, les esters de sorbitan, de polyglycols, de glycérol, l'acide alkyl-aryl-sulfonique, le laurylsulfate d'ammonium, le lauryléthersulfate d'ammonium, les esters phosphoriques, les aminés grasses éthoxylées, les dérivés d'ammonium quaternaires par exemple, mais ces additifs, chers, sont générateurs de mousses et peuvent donc perturber le déroulement de la fabrication du matériau.
L'usage de fibres synthétiques, de coût bien plus élevé que celui des fibres de cellulose, n'est réservé qu'à certaines applications spéciales et leur emploi fait appel à des conditions de procédé particulières pour la régularité souhaitée de la formation de la feuille.
En 1986, sont apparus les agents super absorbants permettant notamment la réduction de la quantité de pâte fluff dans les couches pour bébés, les garnitures périodiques, les articles d'hygiène, mais ces polymères tels que ceux fabriqués par Nippon Shokubai Kegaku, Sanyo Chemical, Kao, Arakawa Chemical au Japon ou Alco Chemical aux USA, affectent sensiblement le coût de revient du matériau final.
La fabrication de papiers et cartons et notamment celle des papiers à usages domestiques et sanitaires ou pour certaines applications industrielles comme les papiers pour imprégnation de résines, fait aussi appel à divers additifs pour la modification des propriétés optiques. Ce sont, par exemple, les matières colorantes classiques de l'industrie papetière qui appartiennent à 3 groupes : les colorants basiques à caractère cationique possédant une affinité particulièrement élevée pour les matières fibreuses écrues et les pâtes mécaniques, les colorants acides anioniques, les colorants directs ou substantifs avec charge anionique ou cationique.
Il est aussi usuel d'utiliser des charges opacifiantes comme l'oxyde de titane. L'emploi de ces adjuvants, qui jouent sur les propriétés d'aspect du matériau, exigent des adaptations de procédé pour fixer correctement ces matières sur les fibres (agents de rétention anioniques ou cationiques, réglage du pH etc...) et ceci, afin de réduire les pertes et la pollution.
Les fabricants de papiers et cartons incorporent également dans la suspension fibreuse, différents adjuvants classiques de masse pour le renforcement des propriétés à l'état sec et humide canne par exemple, les liants organiques naturels ou synthétiques anioniques ou cationiques, notamment les produits amylacés, les alcools polyvinyliques, les latex, les protéines végétales, les esters cellulosiques, les résines urée-formol et mélamine-formol, le glyoxal, les polyalkylèneamines notamment cationiques et réticulées, les produits de condensation de raélamine formaldéhyde et d'acide amino-caproïque, les polyacrylamides... Ces adjuvants de masse peuvent être également utilisés pour l'obtention de caractéristiques particulières concernant l'aspect : nuançage, azurage, coloration, effet de surface spécial, ou des additifs favorables à la stabilité dimensionnelle, l'inertie, les agents fongicides, bactéricides ou ignifuges. La fabrication de certains papiers spéciaux fait aussi appel à des réactifs chimiques pour l'identification ou l'infalsification des papiers. Tous ces produits sont en règle générale incorporés directement dans la masse avec la nécessité de bien les retenir dans la texture fibreuse pour réduire les pertes matières au cours de l'opération d'égouttage et de la formation de la feuille mais aussi pour réduire la pollution : on utilise également des charges minérales et organiques qui, en règle générale, améliorent le séchage de la feuille, donc la productivité, mais au détriment de la main et de la rigidité.
Les charges minérales classiques comme par exemple le kaolin, le carbonate de calcium, le talc qui sont de densité élevée et supérieure à celle de la cellulose, ne jouent pas sur le pouvoir absorbant du matériau dans lequel elles sont introduites. Leur bonne fixation sur la texture fibreuse exige aussi des additifs de rétention ou spéciaux. On sait aussi que les fabricants de papier et carton et notamment ceux qui sont intégrés à leur matière première mais aussi ceux qui utilisent des fibres recyclées ou des vieux papiers rencontrent souvent des difficultés de production liées à la présence, dans la masse, de matières organiques ou minérales en suspension ou de polluants qui encrassent les habillages et les presses humides et qui affectent la productivité. Les fabricants de papier et carton recherchent aussi pour certaines applications une augmentation de la porosité du papier mais ce résultat est souvent difficile à atteindre ou est obtenu en soulevant d'autres problèmes tels que : peluchage et diminution des résistances mécaniques. La fabrication des composites, des enduits et des matériaux de construction fait aussi appel à une grande variété de matières organiques, minérales, végétales naturelles ou synthétiques pour l'obtention de caractéristiques spécifiques mais ces matériaux ne sont pas réalisés à partir de charges végétales particulières pour être favorables à la fixation de polymères, de résines et/ou qui peuvent conférer des propriétés techniques et économiques intéressantes au matériau final comme les propriétés d'isolation phonique, les propriétés thermiques et électriques.
On connaît de la demande internationale déposée le
14 décembre 1988 sous le No PCT/FR 88/00610 (sous le bénéfice d'une priorité française No 87 17 400 du 14 décembre 1987), opposable uniquement au titre de la nouveauté et non de l'activité inventive, un procédé de préparation par voie papetière d'un matériau fibreux ou en feuille, ledit procédé, qui comprend l'introduction d'une charge végétale pulvérulente dans une dispersion aqueuse contenant des fibres, étant caractérisé en ce que ladite charge végétale est micronisée, a une densité inférieure à 500 kg/m3 et a une granulométrie telle que (i) au moins 95 % en poids des particules de ladite charge végétale ont des dimensions inférieures à 150 micromètres, et (ii) au plus 80 % en poids des particules de ladite charge végétale ont des dimensions supérieures à 10 micromètres.
De façon avantageuse la charge végétale micronisée selon ladite demande internationale a une densité inférieure à 300 kg/m3 et est obtenue par une opération de broyage-micronisation à partir de déchets végétaux ayant une granulométrie moyenne inférieure à 5 mm et une humidité résiduelle inférieure à 20 % .
On sait que l'on a déjà signalé dans le passé la possibilité d'utiliser de la poudre ou farine de bois en tant que charge introduite dans la masse ou déposée en surface par couchage lors de la fabrication de papiers et cartons.
On sait notamment que le résumé No 8739 de la revue ABSTRACT BULLETIN 0F THE INSTITUTE 0F PAPER CHEMISTRY, 48, (No 8), page 938, (février 1978), le brevet US-A-3184373 et le brevet allemand DE-C-415 675 prévoient l'incorporation de poudre de bois dans la masse fibreuse.
Le résumé No 8739 précité préconise, pour la fabrication de panneaux électriquement isolants, l'utilisation d'un mélange de 70-95 % en poids de pâte cellulosique (fibres kraft) et de 30-5 %
en poids de farine de bois, ces panneaux étant signalés comme étant plus absorbants vis-à-vis des huiles et plus résistants aux décharges superficielles. Ce document ne décrit ni ne suggère l'utilisation d'une charge végétale ayant la granulométrie. et densité spécifiques de la présente invention.
Le brevet US-A-3 184 373 concerne l'amélioration de la rétention de charges dans les papiers et cartons au moyen d'un agent de rétention tel que la polyéthylèneimine, les résines mélamine-formaldéhyde et les résines urée-formaldéhyde, lesdites "charges" étant définies (voir colonne 2, lignes 3-34) comme étant des substances solides ou liquides et comprenant notamment les charges minérales papetières proprement dites, les poudres métalliques, les poudre de résines thermodurcissables, les résines thermoplastiques, les liants, les floculants et la poudre de bois (voir colonne 2, ligne 27). La granulométrie desdites "charges" est signalée comme étant comprise entre 60 mesh et 2 000 mesh (voir colonne 1, lignes 70-71). Toutefois, le document US-A-3184 373 ne donne aucun exemple illustrant l'utilisation de ladite poudre de bois introduite dans la masse; de plus il ne décrit ni ne suggère la granulométrie et la densité spécifiques de la charge végétale selon l'invention.
Le document DE-C-415 675 propose un procédé d'encollage selon lequel on incorpore à une suspension aqueuse de fibres (i) une dispersion colloïdale d'une substance submicronique (c'est-à-dire d'une granulométrie inférieure à 1 micromètre) contenant de la cellulose et provenant du broyage de bois ou de paille, puis (ii) un floculant. Ladite substance submicronique, qui présente donc une granulométrie nettement inférieure à celle de la charge végétale selon l'invention, remplit un rôle totalement différent de celui de ladite charge végétale ; en effet ladite substance submicronique est présentée dans DE-C-415 675 comme diminuant la porosité du papier résultant en obturant et/ou remplissant les pores de la nappe fibreuse, alors que selon l'invention on recherche l'augmentation de la porosité.
On connaît par ailleurs des techniques de revêtement (sur support non fibreux) ou de surfaçage (sur support fibreux en feuille tel que les papiers et cartons), notamment du brevet belge BE-A-425 432, de la demande internationale PCT publiée WO 86/05195
et du brevet britannique GB-A-1 464 381, selon lesquelles on enduit un support avec une composition contenant de la poudre de bois. Il se trouve que ces techniques ne décrivent ni ne suggèrent l'incorporation dans la masse fibreuse de la charge végétale de granulométrie et densité spécifique suivant l'invention.
On connaît en outre, notamroent du résumé No 1523 de la revue ABSTRACT BULLETIN OF THE IN5TITUTE 0F PAPER CHEMISTRY, 58
(No 2), page 184 (août 1987), du résumé No 7191, ibidem 55 (No 6), page 754, (décembre 1984), et de la demande de brevet publiée
FR-A-2 612 828 (qui a été rendue publique le 30.09.1988) des produits susceptibles d'être incorporés dans les papiers et cartons, contenant de la cellulose et obtenus par traitement physico-chimiques de copeaux de bois ou de fibres cellulosiques. Lesdits produits contenant de la cellulose ont une composition différente de celle de la source végétale ou fibreuse dont ils dérivent. En effet les traitements physiques et chimiques auxquels a été soumise ladite source ne conservent pas l'intégrité des composants de ladite source.
Plus précisément, le résxmé No 1523 précité décrit l'obtention de cellulose sous forme de particules micronisées (ayant une granulométrie comprise entre 5 et 75 micromètres et un
degré de cristallinité supérieur à 65 %) par un traitement hydrolytique de pâtes cellulosiques. La cellulose ainsi obtenue est différente de la composition de la charge végétale selon l'invention eu égard à la nature des composants de cette dernière.
Le résumé No 7191 précité décrit l'utilisation de cellulose microfibrillée pour la réalisation d'enduits de revêtement. Là encore les microfibrilles de cellulose sont différentes par leur structure et leur composition de la charge végétale selon l'invention.
Le document FR-A-2 612 828 est déceptif en ce sens que sa revendication 1, telle que publiée, fait état de l'utilisation de particules de bois dans la préparation de feuilles fibreuses, alors qu'il s'agit en fait de l'utilisation d'un extrait, sous forme pulvérulente, obtenu par traitement de poudre de bois, ledit traitement comprenant (voir description de ce document de la
page 1, ligne 28, à la page 2, ligne 12) notamnent (i) l'imprégnation de la poudre de bois avec un agent chimique liquide approprié, (ii) l'autolyse éclair (ou l'antohydrolyse éclair) de la poudre de bois ainsi imprégnée sous une pression supérieure ou égale à 30 bars à une température supérieure ou égale à 230°C pendant au moins 90 secondes, puis une détente rapide (brutale), (iii) le lavage du produit résultant avec l'eau ou un mélange eau-dioxanne afin d'éliminer les hémicelluloses et la majeure partie de la lignine, des acides gras et des acides résiniques, puis (iv) le séchage du produit pulvérulent ainsi extrait contenant des matières insolubles dans l'eau et dépourvu de matières hydrosolubles.
La présente invention se différencie de l'enseignement desdits résumés No 1523 et No 7191 et dudit document FR-A-2 612 828 par le fait que la charge végétale, dont on préconise l'utilisation dans la masse, a conservé substantiellement la totalité des composants de la source végétale; dans la charge végétale selon l'invention seules la teneur en eau et la teneur en substances volatiles (telle que les essences de bas point d'ébullition) ont pu être affectées par rapport à la source végétale de départ. Ainsi si la source végétale est le bois on va retrouver dans la charge végétale pratiquement tous les composants du bois tels que décrits dans l'ouvrage de FEN3EL et al., W00D CHEMESTRY ULTRASTRUCTURE REACTIONS, pages 26-33, éditeur D. GRUYTER (1984), incorporé ici à titre de référence. OBJET DE L'INVENTION
La présente invention préconise une nouvelle solution technique qui fait appel à une charge végétale micronisée de caractéristiques particulières pour une utilisation dans la fabrication des pâtes, papiers, cartons, non-tissés, plastiques, composites, peintures, enduits et matériaux de construction.
Cette charge végétale est obtenue pour des raisons économiques à partir de déchets végétaux qui peuvent être principalement des déchets de bois.
La nouvelle charge végétale poreuse micronisée que l'on préconise suivant l'invention est caractérisée en ce que,
(1) à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 %, elle présente
(1a) une granulométrie dnc inférieure à 200 micro- mètres (c'est-à-dire que au moins 95 % en
poids des particules de ladite charge végétale passent à travers un tamis à mailles carrées d'ouverture 200 × 200 micromètres),
(1b) une surface spécifique physique inférieure à 2 m2/g,
(1c) une surface spécifique hydraulique inférieure
à 2 m2/g, et
(1d) une densité inférieure à 500 kg/mr et de préférence inférieure ou égale à 300 kg/m3; et,
(2) elle a été obtenue par broyage-micronisation à une
température inférieure à 150°C et de préférence à une température inférieure ou égale à 100°C. Cette nouvelle charge suivant l'invention est préparée selon un procédé qui est caractérisé en ce que l'on soumet une source végétale à microniser, à une opération de broyage-micronisation à une température inférieure à 150°C, de préférence à une température inférieure ou égale à 100°C, et mieux à une température inférieure ou égale à 70°C. De façon avantageuse, pour la micronisation finale,on pourra partir d'une source végétale ayant subi un traitement préalable pour une granulométrie moyenne inférieure ou égale à 5 mm évaluée à une humidité résiduelle inférieure à 20 %.
DESCRIPTION DETAILLEE DE L'INVENTION
Une des caractéristiques fondamentales de l'invention réside dans le fait que la charge végétale micronisée a, à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 % en poids par rapport au poids total de ladite charge végétale, une granulométrie d95 inférieure à 200 micromètres, et de préférence une granulométrie d95 inférieure ou égale à 150 micromètres [c'est-à-dire que dans ce dernier cas au moins 95 % des particules (pourcentage exprimé en poids) traversent un tamis à mailles carrées en acier inoxydable d'ouverture 150 × 150 micro-mètres, selon la norme française NF X 11501].
En pratique au moins 80% en poids des particules ont une granulométrie moyenne supérieure à 10 micromètres.
Suivant une autre caractéristique, la charge végétale selon l'invention a, à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 % en poids par rapport au poids total de ladite charge végétale, une surface spécifique physique et une surface spécifique hydraulique inférieures à 2 m2/g et de préférence inférieures à 1 m2/g.
La surface spécifique physique peut être déterminée au moyen d'un porosimètre à mercure tel que l'appareil "Micrometric 9200" qui peut atteindre une pression maximale de 60 000 psi (soit environ 4,137 × 108 Pa). Cette technique permet essentiellement la détermination des dimensions et des quantités des espaces vides et des pores (ouverts) du matériau poreux ainsi que sa surface spécifique et sa densité. La pénétration du mercure s'effectue en immergeant le matériau dans le mercure et en augmentant l'impression isostatique.
La relation entre le diamètre D des pores et la pression appliquée P est donnée par l'équation : (1) D = -4TP-1 cosA où
T = tension superficielle du mercure,
A = angle de contact du mercure avec le matériau. Cette surface spécifique physique peut également être mesurée par la méthode BET (désignée par les initiales des auteurs Brunauer, Emett, Teller) par adsorption de krypton dans l'azote liquide.
La surface spécifique hydraulique est déterminée par la méthode Pulmac à partir des équations :
(2) Rp = A2Dp/q(W)v
(3) c = W/AL
(4) (c/Rp)1/3 = (1/kSh 2)1/3(1-vc)
Rp = résistance spécifique d'une éprouvette
constituée par une matière à tester, à se
faire traverser par un fluide (eau), exprimée en cm/g,
A = surface de l'éprouvette exprimée en cm2,
D = variation de pression exprimée en dynes/cm2
[une dyne correspond à 10-5 N],
q = débit exprimé en cm2/s,
W = poids de l'éprouvette exprimé en g,
v = viscosité exprimée en poises (g/cm/s) [une poise correspond à 0,1 Pa.s],
L = épaisseur de l'éprouvette exprimée en cm, k = constante,
Sh = surface spécifique hydraulique de la matière à tester exprimée en cm2/g,
v = volume spécifique de la matière à tester
exprimé en cm2/g, et
c = densité de l'éprouvette à tester exprimée en g/cm3.
La surface spécifique hydraulique est, compte tenu des équations 2-4, donnée par la relation :
(5) Sh = [(1-vW/AL)3A2Dp/qWvck]1/2 Une surface spécifique physique ou hydraulique inférieure à 2 m2/g et mieux inférieure à 1 m2/g, qui est notamment inférieure à celle mesurée sur les fibres de cellulose constitue une caractéristique importante sur le plan de l'égouttage. On a en effet constaté nue plus les surfaces spécifiques physique et hydraulique sont faibles, c'est-à-dire inférieures à 1 m2/g, plus l'égouttage est amélioré.
Selon une autre caractéristique de l'invention, la densité de la charge végétale micronisée, mesurée au moyen d'un porosimètre à mercure, à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 % en poids par rapport au poids total de ladite charge végétale, est inférieure à 500 kg/m3 et de préférence inférieure à 300 kg/m3.
On a constaté de façon surprenante que la charge végétale micronisée selon l'invention possède un fort pouvoir adsorbant ou absorbant.
ComDte tenu de cette propriété, on préconise selon l'invention d'utiliser la présente charge végétale micronisée en tant qυe support, véhicule ou fixateur de divers adjuvants classiques ou spéciaux de masse de l'industrie papetière afin d'améliorer l'homogénéisation, la répartition et la rétention dans la texture fibreuse desdits adjuvants. Ces adjuvants peuvent être introduits direct ment dans la pâte fibreuse renfermant la charge végétale micronisée ou de préférence dans ladite charge végétale micronisée a^ant l'incorporation de celle-ci dans la suspension aqueuse de fibres. Le fort pouvoir adsorbant ou absorbant de la charge végétale micronisée selon l'invention est avantageusement exploité pour le renforcement des propriétés mécaniques à l'état sec et à l'état humide par la fixation sur ladite charge végétale micronisée de polymères, liants, résines organiques naturels ou synthétiques. Ce fort pouvoir adsorbant ou absorbant peut aussi être utilisé pour la modification de l'aspect du matériau et de ses propriétés optiques en fixant sur ladite charge végétale micronisée des colorants, des agents de nuançage, des agents d'azurage, des agents fluorescents ou encore des réactifs chimiques spécifiques. Le fort pouvoir adsorbant ou absorbant peut être avantageusement utilisé dans le domaine de l'identification ou de l'infalsification des papiers et notamment des papiers dits de sécurité. La charge végétale micronisée peut également fixer certains additifs particuliers tels que les moyens bactéricides, les moyens fongicides et les enzymes afin de conférer au matériau fini les caractéristiαues spéciales recherchées telles que l'imputrescibilité; la fixation d'enzymes, de protéines, d'anticorps ou d'antigènes est également utile dans le. domaine des dosages microbiologiques mettant en oeuvre notamment des réactions du type antigène/anticorps.
Le fort pouvoir adsorbant ou absorbant de la charge végétale micronisée selon l'invention est également utile pour la fixation des huiles et matières grasses et notamment permettre ainsi la fabrication de matériaux pour l'emballage, l'essuyage ou encore la lutte contre la pollution.
Le fort pouvoir adsorbant ou absorbant de la charge végétale micronisée selon l'invention permet également de fixer les matières organiques et/ou minérales en suspension dans la pâte telles que la poix, les substances poisseuses et les autres polluants indésirables susceptibles de perturber la productivité par encrassement des habillages, des presses humides, d'une part, et susceptibles de perturber sur machines à papier et/ou carton la production en raison du poudrage et du peluchage des nappes fibreuses.
On a également découvert de façon surprenante que la charge végétale micronisée selon l'invention peut être soumise à un traitement chimique, notamment à une opération de blanchiment suivant une technique papetière classique,sans donner lieu à une quelconque réagglomération.
Ainsi, la charge végétale micronisée selon l'invention peut être soumise à un traitement chimique ou associée à une matière organique ou minérale, naturelle ou synthétique pour conférer à ladite charge végétale micronisée des caractéristiques d'aspect qu'elle n'a pas à l'état naturel et pour modifier les propriétés optiαues de ladite charge végétale micronisée ou de tout matériau renfermant ladite charge végétale micronisée. Ces caractéristiques d'aspect portent notanment sur la blancheur, l'opacité, la couleur et la régularité de surface. Par traitement chimique, on entend notamment ici le blanchiment, la coloration ou encore tout mélange avec une matière minérale ou organique, naturelle ou synthétique, telle que par exemple l'oxyde de titane utilisé comme moyen augmentant l'opacité.
La charge végétale micronisée selon l'invention améliore le bouffant des matériaux fibreux la renfermant notamment les papiers et cartons et est favorable à la rigidité desdits papiers et cartons.
Dans les applications pâtes fluffs pour produits à usages domestiques et sanitaires, la charge végétale micronisée selon l'invention permet, après incorporation à la suspension aqueuse de fibres, une diminution du poudrage et du peluchage significative par conparaison avec les autres solutions classiques mettant en oeuvre des pâtes fluffs mécaniques, chimicomécaniques et chimicothermomécaniques.
Pour l'obtention de la charge végétale micronisée selon l'invention, toutes les sources végétales conviennent, en particulier les essences de bois de résineux tels que sapin, pin, épicéa, les bois de feuillus tels que bouleau, hêtre, charme, châtaigner, et autres. Pour des raisons essentiellement économiques, la source végétale proviendra de déchets végétaux et notamment de déchets de bois. Les déchets de bois peuvent par exemple provenir de l'exploitation forestière (écorces, souches, rémanents, cimes, petites branches qui représentent globalement 65 % en poids de l'arbre sur pied), de l'industrie de première ou seconde transformation du bois, de l'industrie du sciage, du rabotage, du placage (croûtes, délignures, sciures, copeaux de rabotage, chutes d'usinage, de tronçonnage, de tranchage, de déroulage et de massicotage en parqueterie, menuiserie industrielle, ébénisterie, fabrication de panneaux de particules et de panneaux fibreux). Les déchets de bois utilisables comme source végétale peuvent également provenir des industries de l'utilisation ou transformation de produits en bois en particulier d'emballages légers en bois (cageots, cagettes, caissettes, plateaux), et d'emballages lourds en bois (caisses, palettes, bois de démollition et de chantier et analogues). Les déchets de bois peuvent également venir des installations de production de pâtes chimiques, ces installations produisent des sciures, de petits copeaux ou allumettes, qui en règle générale doivent être éliminés pour ne pas affecter les rendements des cuissons et la qualité de ladite pâte. La source végétale peut également provenir de déchets végétaux provenant de la récolte de céréales tels que notamment les raffles de maïs.
Lors de la mise en oeuvre du procédé de préparation de l'invention pour la préparation de la charge végétale micronisée, il est important de procéder à l'opération de broyage-micronisation à une température inférieure à 150°C. Au-dessus de 150°C, l'opération de broyage-micronisation dénature profondément la composition de la source végétale et de la charge végétale résultante, la dénaturation par traitement thermique au-dessus de 150°C étant susceptible de conduire à la réagglomération de ladite charge végétale micronisée. De plus, l'opération de broyage-micronisation à une température de l'ordre de 200-400°C est susceptible de provoquer l'inflammation de la source et de la charge végétales.
De préférence, la température de broyage-micronisation sera inférieure ou égale à 100°C, et mieux ladite température sera inférieure ou égale à 70°C.
Comme indiqité plus haut, en fonction des applications recherchées, la charge végétale micronisée selon l'invention de couleur naturelle écrue peut être soumise à un traitement de blanchiment classique dans le domaine de la papeterie afin d'obtenir une charge végétale ayant une blancheur souhaitée se situant par exemple entre 60 et 90 degrés de blanc (la mesure du degré de blanc étant réalisée conformément à la détermination du facteur de
réflectance diffuse des papiers et cartons selon la norme française Q 03039; ledit degré de blanc étant exprimé en pourcentage par rapport à un témoin ayant pour valeur 100 %).
Selon un autre aspect de l'invention, la charge végétale micronisée écrue peut être soumise à un traitement de coloration avec des colorants classiques de la papeterie, notamment au moyen de colorants basiques cationiques possédant une bonne affinité vis-à-vis des matières végétales écrues.
Ces différents traitements peuvent être réalisés soit après la miicronisation, soit encore lors de l'utilisation de ladite charge végétale micronisée.
Par le terme "matériau" on entend ici tout produit papetier tel que pâte, papier, carton, en feuilles, rouleaux ou tout autre forme de complexes et particulièrement tout produit pour usage domestique et sanitaire dit "plat" présenté en feuilles ou bobines, ou tout produit dit "fluff" c'est-à-dire tout produit complexe composé de divers ingrédients disposés autour ou dans un matelas absorbant composé partiellement ou en totalité de pâtes de bois défibrés "fluff", d'une part, et tout produit non papetier choisi parmi l'ensemble constitué par les composites, les peintures, les enduits, les revêtements et articles de construction, d'autre part.
Une des particularités importantes de cette nouvelle charge végétale micronisée, est son excellente aptitude à se disperser ou s'empâter dans l'eau à des concentrations très variables, et cette particularité sera notamment avantageusement exploitée selon l'invention pour la coloration de la charge végétale avec de faibles quantités d'eau (l'empâtage charge végétale/colorant peut être réalisé à une concentration supérieure à 60 % et notamment à une concentration de 70-80 %). Cette particularité sera avanta-geusement exploitée selon l'invention pour la fabrication de pein-tures, enduits ou solutions (aqueuses ou non-aqueuses) pour impré-gnation ou couchage, d'une part, mais encore pour la fabrication de composites ou matériaux colorés de faible densité, d'autre part.
Ainsi, la charge végétale micronisée selon l'invention pourra être associée, en tant que charge papetière, à d'autres adjuvants classiques de l'industrie du papier et du carton, tels que notamment les charges minérales, les agents de collage, les résines et polymères de renforcement des propriétés mécaniques à l'état sec ou humide, les agents de rétention etc...
La charge végétale micronisée selon l'invention peut être associée à toutes les fibres papetières organiques ou synthétiques, que lesdites fibres papetières soient seules ou mélangées entre elles. Il est donc notamment possible d'introduire la charge végétale micronisée selon l'invention dans un mélange de fibres constituées de fibres cellulosiques dites de récupération ou dans un mélange de fibres cellulosiques de récupération et de fibres cellulosiques nobles.
Comme indiqué plus haut, la charge végétale micronisée selon l'invention peut être introduite dans la pâte avant la fabrication de feuilles fibreuses, ou dans la suspension aqueuse de fibres au niveau des circuits de tête de la machine à papier lors de la fabrication desdites feuilles fibreuses. De plus, ladite charge végétale micronisée peut être incorporée dans la pâte avant ou après raffinage de ladite pâte.
Tous les dispositifs connus pour la fabrication des feuilles fibreuses, telles que papiers, cartons et non-tissés, conviennent pour l'utilisation de la charge végétale micronisée selon l'invention, comme par exemple les machines à une table ou à plusieurs tables plates, les machines à formation mono-jet ou multi-jets, les machines à formation inclinée ou verticale.
Le rapport pondéral charge végétale pulvérulente/fibres selon l'invention se situera généralement dans la gamme allant de 1/100 à 6/1. On utilisera avantageusement pour la fabrication de papiers d'emballage un rapport pondéral charge végétale/fibres dans la gamme de 1/100 à 2/10 (et mieux de 1/100 à 1/10), pour celle de supports d'impression-écriture un rapport pondéral dans la gamme de 0,3/10 à 5/10 (et mieux de 0,3/10 à 2/10), pour celle des cartons un rapport pondéral dans la gamme de 0,5/10 à 5/10, pour celle de papiers pour imprégnation un rapport pondéral dans la gamme de 1,5/10 à 5/10 (et mieux de 2/10 à 3/10) et pour celle des papiers spéciaux un rapport pondéral dans la gamme de 6/100 à 6/1 (et mieux de 3/10 à 8/10).
Les fibres utilisables pour ces diverses applications sont notamment les fibres organiques naturelles ou synthétiques comme les fibres cellulosiques, les fibres de polyamide, les fibres de polyester, les fibres de polyalkylène, les fibres de polyacrylate, les fibres minérales comme les fibres de verre, les fibres de céramique, les fibres de gypse aciculaire, les fibres de carbone et la laine de roche, et enfin les fibres de régénération de la cellulose. Ces fibres peuvent être utilisées seules ou en mélange. Les fibres les plus couramment employées seront les fibres cellulosiques provenant des pâtes chimiques kraft ou bisulfite, des pâtes mécaniques, thermomécaniques ou chimico-thermomécaniques. Ces pâtes produites à partir des essences de résineux ou de feuillus peuvent être écrues, mi-blanchies ou blanchies.
Il est aussi possible d'utiliser des pâtes cellulosiques dites de récupération provenant de vieux papiers (tels que supports d'impression-écriture, journaux, caisses en carton, papiers d'emballage, magazines et analogues), seules ou en association avec des fibres cellulosiques nobles, comme indiqué plus haut.
Selon l'invention, les charges végétales de granulométrie contrôlée peuvent être associées à d'autres charges minérales organiques ou synthétiques ou leurs mélanges, ces charges ou pigments usuels ou spéciaux de la papeterie sont ceux qui ont déjà été cités ci-dessus.
En pratique, selon l'invention, la charge végétale va remplacer une partie de l'ingrédient essentiel du matériau, à savoir les fibres dans le domaine papetier, d'une part, et va pouvoir remplacer la totalité ou une fraction seulement de la charge usuelle notamment minérale du matériau, d'autre part.
Ainsi, la charge végétale micronisée peut également intervenir utilement dans la composition des papiers domestiques et sanitaires en remplacement d'une partie ou de la totalité des pâtes mécaniques, thermomécaniques et CTMP.
Pour une bonne optimisation, quand on utilise un mélange fibreux constitué par une pâte chimique en association ou non avec des fibres de vieux papiers et des charges minérales, on recommande d'utiliser avantageusement 5 à 25 % en poids de charge végétale micronisée par rapport au poids des fibres. On a en effet constaté que l'utilisation de 5 à 25 % en poids de charge végétale micronisée par rapport au poids des fibres a une influence très favorable sur la qualité globale du produit fini, notamment en ce qui concerne les propriétés d'absorption et ceci à un coût de revient plus intéressant.
La charge végétale micronisée peut aussi remplacer notamment
5 à 25 % en poids de la pâte TMP et CTMP lors de la fabrication d'un papier journal avec un effet bénéfique sur le plan de la productivité sans nuire aux propriétés essentiellement recherchées pour ce type de produit, à savoir : la main, la résistance à la déchirure, la résistance à la traction, la rugosité de surface et la résistance de surface pour une bonne imprimabilité. Les propriétés de surface et d'absorption de la charge végétale micronisée permettent aussi une fixation préalable de l'agent liant, principalement les liants amylacés, sur la charge végétale pour l'optimisation globale des performances mécaniques du produit final.
La charge végétale micronisée selon l'invention, confère une amélioration du bouffant et de la rigidité des papiers d'emballage avec un impact très favorable sur le coût de revient. Selon la destination : fabrication de feuilles fibreuses kraft, écrues ou blancnies, fabrication d'emballages souples, de pochettes, enveloppes, "krafts liner" et "tests liner", l'on recommande d'utiliser 3 à 15 % en poids de charge végétale micronisée selon l'invention, par rapport au poids des fibres.
La charge végétale est aussi intéresessante dans la fabrication des papiers impression-écriture avec ou sans bois, les papiers pour magazine, les papiers L.W.C. Dans ce cas, ladite charge végétale permet notamment la régulation de la formation de la feuille fibreuse tout en favorisant le bouffant et l'opacité.
La fabrication des cartons multi-jets est également dans le domaine où la charge végétale selon l'invention satisfait favorablement un grand nombre d'applications importantes notamment en ce qui concerne les plans technique et économique. Dans ce cas d'utilisation, l'on recommande d'utiliser 3 à 30 % en poids de ladite charge végétale micronisée, éventuellement associée à un liant amylacé, pour l'amélioration du bouffant et la rigidité. La charge végétale micronisée selon l'invention offre l'avantage de se disperser ou de s'empâter très facilement dans l'eau sans additif particulier, notamment jusqu'à des concentrations pouvant atteindre 85 % d'extrait sec. Cette propriété est avantageusèment utilisée dans le rlomaine de la coloration de ladite charge végétale, d'une part, et dans la fabrication de peintures et enduits comportant ladite charge végétale. Pour ce type d'application, la charge végétale écrue, blanchie ou colorée confère au matériau dans lequel elle est introduite ou sur lequel elle est appliquée, des propriétés particulières d'aspect, de bouffant, d'opacité et peut, selon les besoins, contribuer à l'amélioration des propriétés d'isolation phonique, thermique et électrique.
Dans le domaine de la fabrication des papiers pour panneaux stratifiés, l'on préconise l'utilisation de 8 à 30 % en poids de ladite charge végétale micronisée selon l'invention, pour avoir un effet très favorable sur la qualité (meilleure absorption) et la diminution des coûts de production.
La charge végétale objet de l'invention peut également apporter un certain nombre d'avantages dans la fabrication des papiers de filtration : homogénéité des propriétés porométriques, augmentation du pouvoir absorbant, diminution du peluchage, poudrage, par une meilleure optimisation du raffinage et réduction du coût de composition, car ces papiers sont produits à partir de pâtes spéciales chères et de mise en oeuvre délicate.
II est aussi avantageux pour la fabrication de papiers et cartons avec pâtes intégrées, d'incorporer dans les circuits de tête de machine, un faible pourcentage de charge végétale objet de l'invention, pour minimiser les problèmes d'encrassement des habillages et de peluchage aux presses humides. Pour cet usage, la quantité introduite de charges végétales que l'on préconise est notamment de 2 à 8 % par rapport au poids des fibres. A cette quantité et à un niveau de raffinage adapté, les charges végétales peuvent aussi augmenter la porosité des papiers et ce résultat est apprécié pour la fabrication de certains krafts d'emballage, comme notamment les krafts pour sacs de grande contenance. En pratique, selon l'invention, la charge végétale micronisée va remplacer une partie de l'ingrédient essentiel du matériau, à savoir les fibres papetières, d'une part, mais aussi selon la destination, une partie des autres ingrédients de la composition de la feuille fibreuse tels que les charges, les pigments minéraux et organiques, les agents opacifiants et analogues, d'autre part.
Le procédé de préparation par voie papetière d'une feuille fibreuse que l'on préconise selon l'invention et qui comprend la mise en dispersion aqueuse de fibres et d'une charge végétale micronisée, est caractérisé en ce que ladite charge végétale poreuse et micronisée
(1) présente, à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 %, (1a) une granulométrie d95 inférieure à 200 micromètres (c'est-à-dire que au moins 95 % en
poids des particules de ladite charge végétale passent à travers un tamis à mailles carrées d'ouverture 200 × 200 micromètres),
(1b) une surface spécifique physique inférieure à 2 m2/g,
(1c) une surface spécifique hydraulique inférieure
à 2 m2/g, et
(1d) une densité inférieure à 500 kg/m et de préférence inférieure ou égale à 300 kg/m3; et,
(2) et a été obtenue par broyage-micronisation à une
température inférieure à 150°C et de préférence à une température inférieure ou égale à 100°C.
Dans ce procédé de préparation, la charge végétale a été préalablement incorporée à la pâte fibreuse ou est introduite dans la suspension aqueuse de fibres au cours des opérations de fabrication du matériau.
De plus, ladite charge végétale est susceptible d'avoir été blanchie, colorée ou d'avoir subie un traitement chimique particulier pour l'obtention de propriétés spécifiques. Dans le tableau A qui suit, on a consigné par commodité les unités et les normes concernant l'évaluation des caractéristiques des papiers et cartons.
D'autres avantages et caractéristiques de l'invention seront mieux compris à la lecture qui va suivre d'exemples de préparation nullement limitatifs mais donnés à titre d'illustration.
PREMIERE SERIE D'ESSAIS COMPARATIFS
On a évalué l'influence de l'incorporation de charges végétales micronisées selon l'invention, sur les propriétés d'absorption d'une pâte papetière utilisée dans les produits à usages domestiques et sanitaires.
Les essais correspondants ont été réalisés comparativement à des pâtes chimiques Kraft, bisulfite et une pâte CTMP fluff, à trois niveaux d'engraissement (ou raffinage).
Conditions opératoires :
- Désintégration et mise en suspension aqueuse des pâtes à une concentration de 5 % et raffinage en pile Valley à 2 % .
- Fabrication de feuilles fibreuses pour le contrôle des caractéristiques physiques et d'absorption sur formette Franck.
- Pressage selon les conditions standards de la formette et séchage 4 minutes à 93°C.
- Formettes de 60 g/m2.
- Les charges végétales sont incorporées à la pâte après raffinage.
- Taux de charges végétales = 25 %, qualité écrue et blanchie.
- Qualités de la charge végétale :
QUALITE ECRUE = CV1 :
d95 < 150 micromètres.
Surface spécifique physique = 0,80 m2/g.
Surface spécifique hydraulique = 0,55 m2/g.
Densité = 300 kg/m3.
Blancheur = 48 % .
Humidité = 12 % .
QUALITE BLANCHIE = CV2 :
Charge végétale blanchie produite à partir de déchets de bois de pin maritime des Landes.
d95 < 150 micromètres. Surface spécifique physique = 0,65 m2/g.
Surface spécifique hydraulique = 0,52 m2/g.
Blancheur = 70 % obtenue par blanchiment au peroxyde d'hydrogène à 4 %, avec 2 % de soude, 3 % de silicate et 0,25 % de DTPA.
Pâtes testées :
Pâte 1 : kraft écrue de pin maritime des Landes.
Pâte 2 : Pâte bisulfite fluff, blancheur = 87 % .
Pâte 3 : Pâte CTMP fluff suédoise de résineux,
Blancheur = 70 % .
Pâte 4 : Kraft blanchi de résineux, blancheur = 80 % .
Les compositions utilisées et les résultats obtenus sont consignés dans les tableaux 1, 2 et 3 ci-après.
Les résultats de la première série d'essais illustrés par les tableaux 1, 2 et 3, relatifs à l'introduction de charges végétales dans une pâte chimique écrue ou blanchie (sans optimisation du procédé et de la quantité produite) montrent que :
1°) la charge végétale a un effet très favorable sur les propriétés hydrophiles de la pâte;
2°) à tin très faible niveau de raffinage, se situant entre 15 et 20°SR, tel que requis en règle générale pour la fabrication des papiers à usages domestiques et sanitaires, le remplacement de 25 % de pâte chimique par de la charge végétale est sensiblement favorable aux propriétés d'absorption qui se retrouvent à un niveau comparable à celles des pâtes fluff bisulfite ou CTMP avec des avantages pour les résistances mécaniques d'ensemble et notamment de la résistance à la déchirure; ledit mélange pâte-charge végétale micronisée est également moins sensible au poudrage et au peluchage et a une meilleure aptitude à l'égouttage qu'une pâte CTMP et ce résultat est particulièrement important pour la productivité d'autant plus que ladite charge végétale micronisée se disperse très facilement dans l'eau et peut donc être aisément incorporée dans la pâte avec une bonne homogénéisation d'ensemble.
Il est important de signaler que la perte de blancheur mesurée au Suntest filtre UV durant 30 minutes sur la pâte CTMP est de 4 à 6 points alors que la perte de blancheur est de 2,5 points sur la charge végétale naturelle écrue.
DEUXIEME SERIE D'ESSAIS
Obtention d'un papier "tissue"
On prépare un papier tissue à partir d'une composition fibreuse Kraft blanchi de résineux et feuillu, faiblement raffinée, dans laquelle on incorpore une certaine teneur en charges végétales blanchies CV2 du type de celles utilisées dans la série d'essais précédente avec les autres adjuvants usuels de ce produit : agents d'adoucissage et de nuançage et on contrôle les caractéristiques de ce papier par rapport à un tissue de formulation classique. Ces compositions et résultats figurent dans le tableau 4 ci-après.
La faible surface spécifique de la charge végétale permet une légère augmentation du raffinage de la pâte sans nuire aux propriétés d'absorption et de résistance du produit final. La composition comportant la charge végétale micronisée selon l'invention est plus économique.
TROISIEME SERIE D'ESSAIS
Obtention d'un papier d'impression-écriture de main élevée
On prépare une feuille fibreuse de bouffant élevé pour impression-écriture de 70 g/m2 avec, soit une. composition classique fibreuse pâtes chimiques/CTMP ou pâte mécanique, soit avec la charge végétale objet de l'invention produite à partir de déchets de scierie en mélange bois résineux/bois feuillu : charge végétale écrue de 49,3 de blancheur avec un d95 < 150 micromètres, une densité = 280 kg/m3 pour une humidité de 14 %, une surface spécifique physique = 0,47 m2/g. Les feuilles sont produites sur machine pilote.
La charge végétale est favorable à la main, avec des caractéristiques physiques améliorées. Cette nouvelle formulation s'égoutte mieux et est plus économique.
Les compositions et résultats figurent dans le tableau 5.
QUATRIEME SERIE D'ESSAIS
Obtention de papier écru pour emballage
On prépare un papier avec charges végétales afin d'améliorer le bouffant et la rigidité et comparativement à une formule classique. Les feuilles sont tirées sur formette dynamique.
Le tableau 6 ci-après, met en évidence l'intérêt de l'utilisation de la charge végétale micronisée selon l'invention.
CINQUIEME SERIE D'ESSAIS
La charge végétale micronisée est utilisée comme additif pour l'amélioration de la productivité (réduction du peluchage et de l'encrassement des habillages) et des performances mécaniques.
On incorpore dans la suspension fibreuse 100 % kraft écru de résineux (raffinage 20°SR) 3 % de charges végétales type CV1 et on mesure les avantages du papier réalisé avec cette nouvelle matière première :
Par rapport à l'essai témoin, on obtient avec la charge végétale micronisée selon l'invention, les améliorations suivantes :
Main = + 10 %;
Résistance à la traction = + 3 %;
Rigidité dynamique = + 15 %;
Rigidité statique = + 9 %;
Un tel résultat est avantageusement exploitable dans le domaine des papiers d'emballage flexibles comme les pochettes, les enveloppes, les couvertures de caisses en carton ondulé, les papiers pour ondulé et les cartons notamment. Il convient de noter, pour ces applications, l'avantage de la faible surface spécifique de la charge végétale, qui permet un meilleur égouttage et la fixation de polluants dans la masse qui affectent en général la productivité. SIXIEME SERIE D'ESSAIS
Utilisation d'une charge végétale micronisée pour la fabrication de papiers de sécurité.
On incorpore dans une composition classique pour papier de sécurité 1 % de charges végétales blanchie type CV2 préalablement empâtée à concentration élevée (entre 60 et 85 %), avec un agent de fluorescence à la dose de 0,3 % par rapport à la charge et 0,01 % de polyacrylamide cationique. La répartition régulière des particules dans la texture fibreuse et leur forme spécifique, permet une identification aisée du papier. La charge peut êter associée à tout autre produit chimique d'infalsification (colorants classiques ou particuliers). SEPTIEME SERTE D'ESSAIS
Utilisation d'une charge végétale micronisée colorée pour composites ou peintures et enduits.
La charge végétale naturelle type CV1 ci-dessus est soumise, après micronisation, ou avant son emploi dans le matériau, à un traitement préalable de coloration avec un colorant cationique et à une concentration élevée (80-85 %); la composition étant alors: CV1 = 100 % et Rouge astraphoxin = 0,5 % par rapport à la charge végétale. Ceci peut être également obtenu avec d'autres colorants selon les teintes recherchées.
Cette charge végétale colorée est utile dans de nombreux matériaux : composites, matériaux de construction, revêtements pour la diminution notamment de la densité ou de l'obtention de propriétés spécifiques : isolation thermique, accoustique, électrique.
HUITIEME SERIE D'ESSAIS
On prépare une composition pignentée pour enduction renfermant une charge végétale micronisée selon l'invention, afin d'améliorer les propriétés d'isolation du matériau enduit et de réduire la densité.
Composition témoin
Kaolin : 80 parties en poids
Hydrate d'alumine : 20 parties en poids
Dispersant acrylique : 0,15 parties en poids
Alcool polyvinylique : 4 parties en poids
Liant acrylique : 20 parties en poids
Carboxyméthylcellulose : 3 parties en poids
Stéarate de calcium : 2 parties en poids
Agents auxiliaires pour nuançage, anti-oxydation et anti mousse : q.s.p.
Eau : q.s.p.
Composition essai
On remplace une partie du kaolin par 20 parties en poids de charge végétale CV2. Cette substitution n'affecte pas les propriétés rhéologiques du bain de couchage et l'enduction permet une diminution de la densité du matériau enduit et améliore ses caractéristiques de stabilité dimensionnelle et d'isolation.
DIXIEME SERIE D'ESSAIS
La présente série d'essais concerne l'obtention d'un kraft destiné à l'imprégnation des résines phênoliques pour les panneaux stratifiés. Les compositions et résultats figurent dans le tableau 7.
la charge végétale micronisée contribue dans ladite série d'essais à une amélioration sensible de la main et des caractéristiques d'absorption avec des propriétés physiques identiques. Ce résultat est intéressant pour la productivité, la nouvelle composition selon l'invention avec CV1 permet aussi une diminution sensible du prix.

Claims

REVENDICATIONS
1. Charge végétale poreuse et micronisée, caractérisée en ce que
(1) à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 %, elle présente
(1a) une granulométrie d95 inférieure à 200 micromètres (c'est-à-dire que au moins 95 % en poids des particules de ladite charge végétale passent à travers un tamis à mailles carrées d'ouverture 200 × 200 micromètres), (1b) une surface spécifique physique inférieure à 2 m2/g,
(1c) une surface spécifique hydraulique inférieure à 2 m2/g, et
(1d) une densité inférieure à 500 kg/m3 et de préférence inférieure ou égale à 300 kg/m3; et,
(2) elle a été obtenue par broyage-micronisation à une
température inférieure à 150°C et de préférence à une température inférieure ou égale à 100°C.
2. Charge végétale selon la revendication 1, caractérisée en ce qu'elle présente, à une teneur en humidité résiduelle inférieure à 20 %, une surface spécifique physique inférieure à 1 m2/g et une surface spécifique hydraulique inférieure à 1 m2/g.
3. Charge végétale selon la revendication 1, caractérisée en ce qu'elle présente, à une teneur en humidité résiduelle inférieure à 15 % une surface spécifique physique inférieure à 1 m2/g et une surface spécifique hydraulique inférieure à 1 m2/g.
4. Charge végétale selon la revendication 1, caractérisée en ce qu'elle a été obtenue par broyage-micronisation à une température inférieure ou égale à 100ºC.
5. Charge végétale selon la revendication 1, caractérisée en ce qu'elle a été obtenue par broyage-micronisation à une température inférieure ou égale à 70°C.
6. Charge végétale selon la revendication 1, caractérisée en ce que
(1) à une teneur en humidité résiduelle inférieure à 15 %, elle présente
(1a) une granulométrie dg^ inférieure à 150 micromètres (c'est-à-dire que au moins 95 % en poids des particules de ladite charge végétale passent à travers un tamis à mailles carrées d'ouverture 150 × 150 micromètres),
(1b) une surface spécifique physique inférieure à 1 m2/g,
(1c) une surface spécifique hydraulique inférieure à 1 m2/g, et
(1d) une densité inférieure ou égale à 300 kg/m3; et,
(2) elle a été obtenue par broyage-micronisation à une
température inférieure ou égale à 100°C et de préférence à une température inférieure ou égale à 70°C.
7. Procédé de préparation d'une charge végétale poreuse et micronisée suivant la revendication 1, caractérisé en ce que l'on soumet une source végétale à microniser à une opération de broyage-micronisation à une température inférieure à 150°C, de préférence à une température inférieure ou égale à 100°C, et mieux à une température inférieure ou égale à 70°C.
8. Procédé suivant la revendication 7, caractérisé en ce que l'opération de broyage-micronisation a été réalisée à une température inférieure ou égale à 70°C.
9. Procédé de préparation par voie papetière d'une feuille fibreuse, qui comprend la mise en dispersion aqueuse de fibres et d'une charge végétale micronisée, caractérisé en ce que ladite charge végétale poreuse et micronisée
(1) présente, à une teneur en humidité résiduelle inférieure à 20 % et de préférence inférieure à 15 %, (la) une granulométrie àg^ inférieure à 200 micromètres (c'est-à-dire que au moins 95 % en poids des particules de ladite charge végéta le passent à travers un tamis à mailles carrées d'ouverture 200 × 200 micromètres), et de préférence une granulométrie d95 inférieure à 150 micromètres,
(lb) une surface spécifique physique inférieure à 2 m2/g,
(le) une surface spécifique hydraulique inférieure à 2 m2/g, et
(ld) une densité inférieure à 500 kg/m3 et de préférence inférieure ou égale à 300 kg/m3; et,
(2) et a été obtenue par broyage-micronisation à une
température inférieure à 150ºC et de préférence à une température inférieure ou égale à 100°C.
10. Procédé suivant la revendication 9, caractérisé en ce que ladite charge végétale micronisée a été préalablement incorporée dans la pâte.
11. Procédé suivant la revendication 9, caractérisé en ce que ladite charge végétale micronisée est introduite dans les circuits de tête dans la suspension aqueuse de fibres.
12. Procédé suivant la revendication 9, caractérisé en ce que ladite charge végétale micronisée a été préalablement blanchie.
13. Procédé selon la revendication 9, caractérisé en ce que ladite charge végétale micronisée a été préalablement colorée.
EP19900909461 1989-06-15 1990-06-13 Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique, procede de preparation et utilisation Expired - Lifetime EP0433413B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90909461T ATE97457T1 (de) 1989-06-15 1990-06-13 Poroeser, wenigdichter mikronisierter pflanzlicher fuellstoff mit kontrollierter granulometrie und kleinen physikalischen und hydraulischen oberflaechenkennzahlen und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907963A FR2648488B1 (fr) 1989-06-15 1989-06-15 Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique; procede de preparation et utilisation
FR8907963 1989-06-15

Publications (2)

Publication Number Publication Date
EP0433413A1 true EP0433413A1 (fr) 1991-06-26
EP0433413B1 EP0433413B1 (fr) 1993-11-18

Family

ID=9382767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900909461 Expired - Lifetime EP0433413B1 (fr) 1989-06-15 1990-06-13 Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique, procede de preparation et utilisation

Country Status (8)

Country Link
EP (1) EP0433413B1 (fr)
BR (1) BR9006808A (fr)
CA (1) CA2034507A1 (fr)
DE (1) DE69004671T2 (fr)
ES (1) ES2049035T3 (fr)
FI (1) FI910700A0 (fr)
FR (1) FR2648488B1 (fr)
WO (1) WO1990015900A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202598C1 (fr) * 1992-01-30 1993-09-02 Stora Feldmuehle Ag, 4000 Duesseldorf, De
FR2729096A1 (fr) * 1995-01-06 1996-07-12 Atochem Elf Sa Procede de blanchiment d'une poudre vegetale micronisee
FI20075954L (fi) * 2007-12-21 2009-06-22 Upm Kymmene Oyj Menetelmä orgaanisen pigmentin valmistamiseksi
EP3055454A4 (fr) 2013-10-11 2017-07-12 UPM-Kymmene Corporation Procédé de fabrication d'un papier, papier et son utilisation, composition de fabrication et composition à base de bois

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362528A (en) * 1942-06-03 1944-11-14 Libbey Owens Ford Glass Co Preparation of fine cellulose flour
FR2612828A1 (fr) * 1987-03-24 1988-09-30 Louche Yves Utilisation de bois micronise et seche comme agent d'amelioration des caracteristiques des pates a papier, papiers, cartons et panneaux de particules de bois

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9015900A1 *

Also Published As

Publication number Publication date
DE69004671D1 (de) 1993-12-23
FI910700A0 (fi) 1991-02-13
CA2034507A1 (fr) 1990-12-16
EP0433413B1 (fr) 1993-11-18
FR2648488A1 (fr) 1990-12-21
FR2648488B1 (fr) 1991-09-13
ES2049035T3 (es) 1994-04-01
BR9006808A (pt) 1991-08-06
DE69004671T2 (de) 1994-03-24
WO1990015900A1 (fr) 1990-12-27

Similar Documents

Publication Publication Date Title
RU2374374C1 (ru) Картон, содержащий микропластинчатые целлюлозные частицы
JP5918126B2 (ja) 新規な紙及びその製造方法
FI123289B (fi) Menetelmä nanofibrilloidun selluloosamassan valmistamiseksi ja massan käyttö paperinvalmistuksessa tai nanofibrilloiduissa selluloosakomposiiteissa
EP3433428A1 (fr) Planche présentant une résistance à la compression améliorée
MXPA01010203A (es) Productos de papel y un metodo para aplicar un aditivo quimico adsorbible a fibras celulosicas.
CN112575618A (zh) 多层纸板
JP2015514884A (ja) 紙または板紙の繊維ウェブおよびその製造方法
EP3011108B1 (fr) Produit fibreux et procede de fabrication d&#39;une bande de matiere fibreuse
TW200842225A (en) Method of producing a paper product
CN107735528A (zh) 无木纤维组合物及在纸板包装中的用途
Sheikhi et al. An optimum mixture of virgin bagasse pulp and recycled pulp (OCC) for manufacturing fluting paper
RU2731770C1 (ru) Связующая композиция на основе растительных волокон и минеральных наполнителей, ее получение и применение
SE543552C2 (en) Refined cellulose fiber composition
EP0433413B1 (fr) Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique, procede de preparation et utilisation
EP0344265B1 (fr) Materiau de densite diminuee contenant une charge vegetale
US20190211508A1 (en) Paper Processing Composition and Process of Production
KR20120094393A (ko) 리그노셀룰로오스계 제지용 충전제의 제조방법 및 이에 의해 제조된 리그노셀룰로오스계 제지용 충전제
KR101178727B1 (ko) 표백 목분을 함유하는 종이 및 이의 제조 방법
EP0985069A1 (fr) Procede de fabrication de papier utilisant un systeme gelifiant
Chugh et al. Nanocellulose in paper and wood industry
CN105696424A (zh) 仿石制作工艺及其产品
Latibari et al. Alkaline peroxide mechanical pulping of fast-growth paulownia wood.
Tozluoğlu Potential Use of Nanofibrillated Cellulose-loaded Cationic Starch Solutions as Coating Formulation for Recycled Fluting Papers.
RU2233930C1 (ru) Бумага для гофрирования и тара с использованием бумаги
SE2230196A1 (en) Improved process for production of pulp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19921127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931118

Ref country code: DK

Effective date: 19931118

REF Corresponds to:

Ref document number: 97457

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931115

REF Corresponds to:

Ref document number: 69004671

Country of ref document: DE

Date of ref document: 19931223

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049035

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940607

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940630

Ref country code: LI

Effective date: 19940630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: GOMEZ DANIEL

Effective date: 19940630

EAL Se: european patent in force in sweden

Ref document number: 90909461.7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE FAUTE DE PAIEMENT, DE LA 5E ANNUITE.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020531

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030614

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080625

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090615

Year of fee payment: 20

Ref country code: FR

Payment date: 20090615

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090622

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100613