EP0432623B1 - Failure detection circuit for multifilament lamps in signalling devices - Google Patents

Failure detection circuit for multifilament lamps in signalling devices Download PDF

Info

Publication number
EP0432623B1
EP0432623B1 EP90123329A EP90123329A EP0432623B1 EP 0432623 B1 EP0432623 B1 EP 0432623B1 EP 90123329 A EP90123329 A EP 90123329A EP 90123329 A EP90123329 A EP 90123329A EP 0432623 B1 EP0432623 B1 EP 0432623B1
Authority
EP
European Patent Office
Prior art keywords
filament
circuit according
optical coupler
switch
main filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123329A
Other languages
German (de)
French (fr)
Other versions
EP0432623A1 (en
Inventor
Hellmuth Fricke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0432623A1 publication Critical patent/EP0432623A1/en
Application granted granted Critical
Publication of EP0432623B1 publication Critical patent/EP0432623B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/10Circuits providing for substitution of the light source in case of its failure

Definitions

  • the invention relates to a circuit according to the preamble of claim 1.
  • Such a circuit is known from DE-PS 11 81 792.
  • a monitoring circuit for main and secondary threads of incandescent lamps, in particular signal lamps, is described there, in which, when the main thread is switched on, its operational behavior and, at the same time, a voltage indicator monitor the readiness for switch-on of the associated secondary thread by means of a current indicator.
  • Two monitoring messages are generated for each signal lamp, one for the main thread and one for the secondary thread; the two monitoring messages are transmitted to a preferably remote evaluation device and evaluated there individually or they are summarized and evaluated together.
  • the object of the invention is to provide a circuit according to the preamble of claim 1, which enables the identification of the respective operating state of a signal lamp and the readiness to switch on its secondary thread when the main thread is switched on by means of a single monitoring message via a single transmission channel to a remote monitoring point.
  • FIG. 1 shows a signal lamp L which, if required, can be switched on when voltage is applied to the primary winding of a lamp transformer T1.
  • the signal lamp L has a main thread HF and a secondary thread NF connected in parallel with it.
  • the main thread HF usually lights up; the secondary thread NF is switched off and only takes over its function if the main thread fails.
  • a current indicator JH is connected in series with the main thread HF, which serves to switch on the secondary thread if the main thread is defective. As long as a lamp current flows over the main thread, the secondary thread circuit is separated via the normally closed contact JH / 1 of the main thread monitor.
  • the signal lamp is switched on, current flows briefly over both lamp threads until the current indicator JH responds.
  • a current-sensitive detector M connected in series with the secondary thread NF of the signal lamp is connected in parallel with the normally closed contact JH / 1 of the current indicator JH lying in series with the main thread HF.
  • This detector is used to output a fault message to a remote evaluation device (not shown) in the event that the supply circuit leading via the main thread HF is switched off when the signal lamp is switched on or the monitoring circuit of the signal lamp is broken via the secondary thread NF when the main thread is intact.
  • the detector M transmits a monitoring message, which characterizes the respective operating state of the signal lamp monitored by it, to the remote evaluation device via a contact M / 1.
  • the detector M is excited and sends a message to the evaluation device which indicates the correct operating state of the signal lamp.
  • the detector M is so high-impedance or the detection circuit is so high-impedance that the signaling current flowing through the secondary thread NF not yet warmed the secondary thread. This prevents the secondary thread from being electrically loaded when the main thread is still intact.
  • the current indicator JH drops and closes its normally closed contact JH / 1 in the feed circuit of the secondary thread.
  • the secondary thread is automatically switched on and takes over the tasks of the defective main thread of the signal lamp.
  • the detector M is short-circuited via the closed normally closed contact JH / 1 of the dropped current indicator JH.
  • the detector M drops and reports via its contact M / 1 to the remote evaluation device that a fault has occurred on the signal lamp L, which necessitates the use of the fault or maintenance service.
  • a fault message can also be triggered when the feed circuit leading over the main thread has become so high-resistance that the main thread no longer lights up at full brightness.
  • the monitoring circuit leading over the secondary thread and the detector is interrupted while the signal lamp is switched on and the main thread is intact, there is no longer any redundancy for the main thread. This should also be reported to the malfunction and maintenance personnel as early as possible so that the malfunction that has occurred can, if possible, be remedied before a malfunction occurs in the main thread circle. If the monitoring circuit led over the secondary thread and the detector is opened, the detector M reacts to it in the same way as if the current indicator JH had indicated a fault in the main thread circuit of the signal lamp, i.e. it drops out and reports this fault via its contact M / 1 to the remote evaluation point.
  • FIG 2 shows an embodiment of the circuit according to the invention with only electronic switching means for monitoring the operating state of a signal lamp L.
  • the supply circuits of the two lamp filaments of the signal lamp are drawn out thick as in Figure 1, while the switching means of the actual monitoring circuit by thin lines together are connected.
  • the signal lamp is in turn supplied via a lamp transformer T1, to the primary winding of which an alternating supply voltage can be connected if necessary.
  • the monitoring circuit is supplied with power from a rectifier G which is connected on the input side to the secondary winding of the lamp transformer T1.
  • the current indicator JH which is in series with the main thread HF of the signal lamp L, is formed from an optocoupler U1 coupled to the main thread feed circuit via a current transformer T2 and having input diodes connected in anti-parallel.
  • the switching transistor of the optocoupler U1 is switched to a low resistance and controls a downstream electronic switch S1 designed as a field effect transistor.
  • This switch short-circuits the transmission diode of an optoelectronically controlled AC switch U2, which is used to control a triac TR.
  • This triac has the function of the switching contact JH / 1 shown in FIG. 1.
  • Main thread monitor JH, switch S1, AC switch U2 and triac TR together form a main / auxiliary thread switch HNU1.
  • the triac TR has a high resistance and interrupts the feed circuit for the secondary thread NF.
  • the transmission diodes of a further optocoupler U3 are connected in parallel with the triac TR via a series resistor R.
  • the switching transistor of this optocoupler has a low resistance when the secondary thread feed circuit is opened.
  • the control potential then present at the gate of a further electronic switch S2 designed as a field effect transistor has the effect that the source-drain path of this switch has a low resistance.
  • the transmission diode of another optocoupler U4 is short-circuited; the associated switching transistor has a high impedance for sending a message to the remote evaluation device which indicates the correct operating state of the monitored signal lamp.
  • the switching transistor of the optocoupler U1 becomes high-resistance and the electronic switch S1 arranged downstream of it is blocked.
  • the Transmitting diode of the AC switch U2 is then no longer short-circuited; it is energized and causes the internal AC switch to switch; this results in the control of the triac, via which the auxiliary thread of the signal lamp is switched on.
  • the triac TR briefly switches the input diodes of the optocoupler U3, so that the switching path of the associated switching transistor becomes high-resistance.
  • the control potential present at the gate of the electronic switch S2 changes, as a result of which the source-drain path of this switch becomes high-resistance.
  • the short circuit for the input diode of the optocoupler U4 is eliminated, so that the optocoupler responds and outputs a fault message for the monitored signal lamp via its switching transistor.
  • a corresponding fault message is also triggered if the secondary thread circuit of the signal lamp is interrupted while the intact main thread is switched on.
  • the transmission diodes of the optocoupler U3 are also de-energized, so that the associated switching transistor becomes high-resistance and the positive control potential is separated from the gate of the electronic switch S2.
  • the switch S2 becomes high-resistance and the optocoupler U4 can respond.
  • the optocoupler U1 used as a current indicator does not necessarily have to be connected to the secondary winding of a current transformer; it can also be connected in parallel to a burden lying in the main thread circle.
  • a main thread monitor designed as a relay or optocoupler any other known monitor, in particular also voltage-controlled monitors, can be used. An embodiment of this is shown in Fig. 3; the designations introduced in FIG. 2 are retained for corresponding components.
  • the main / secondary thread switch HNU2 shown in FIG. 3 differs essentially from that of FIG. 2 in that the indicator lying in series with the main thread of the signal lamp L does not show the feed current flowing over the main thread the signal lamp, but an independent current that can only flow when the main thread is intact.
  • the optocoupler U1 used as an indicator is fed on the input side via the main thread HF of the signal lamp from the lamp transformer T1.
  • the current-carrying state that is to say with the main thread intact, it switches through an AC switch TRM designed as a triac in the supply circuit of the main thread of the signal lamp and thus causes the signal lamp L to be switched on via its main thread.
  • the switching distance of the AC switch TRH becomes high-resistance because the holding current of the AC switch is undercut.
  • the sequence of effects of the other switching means of the main / secondary thread switch HNU2 corresponds to that of the main / secondary thread switch HNU1 in FIG Signal lamp signals.
  • a corresponding optocoupler in series with the switching path of the electronic switch S1 or in series with the switching path of the switching transistor of the first optocoupler U1 could serve to identify the switched main thread HF of the signal lamp.
  • the detector M is activated to output a fault message and that the monitored signal lamp is to be switched off when the operating state is operating properly.
  • the switching transistor of the optocoupler U1 can also short-circuit the transmitting diode of the optoelectronically controllable AC switch U2 directly or the supply circuit thereof cut open. Because of the ripple of the voltage supplied to the transmitter diodes of the optocoupler U1, a very low pulsating DC voltage will be able to be tapped at the switching path of the optocoupler switching transistor. In order to prevent the optoelectronically controllable AC switch U2 from turning on as a result of this DC voltage, a capacitor for smoothing this voltage must be connected in parallel with the switching path of the optocoupler switching transistor.
  • a zener diode is to be connected in series with the transmitter diode of the optoelectronically controllable AC switch U2, the zener voltage of which is at least equal to the voltage across the capacitor when the optocoupler switching transistor is controlled.
  • This Zener voltage is added to the forward voltage of the transmitter diode of the optoelectronically controllable AC switch and prevents the control of this switch when the main thread is illuminated.
  • This optocoupler can also be controlled directly by the switching transistor of the optocoupler U3 by short-circuiting the transmitting diode of the optocoupler U4 as required or opening its supply circuit.
  • special precautions must be taken to render the residual voltage applied to the switching path of the optocoupler U3 when the switching transistor is turned on ineffective.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The circuit is designed such that it assumes a first switching state when a monitored signalling lamp (L) is operating correctly, and a second switching state in the event of a fault. A fault is regarded as the interruption of the supply circuit passing through the main filament (HF) when the signalling lamp is switched on and, when the main filament is intact, lack of readiness of the standby filament (NF) of this signalling lamp to switch on. An alarm (M), which is connected in series with the standby filament of the signalling lamp in a high-resistance manner, is used to emit a monitoring alarm. This alarm is short-circuited by the switching means (JH/1) of an indicator (JH) connected in series with the main filament, when the main filament circuit is broken, and is also deactivated when the standby filament circuit is broken. The circuit is particularly suitable for functional monitoring of signalling lamps in railway signalling lights. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Schaltung nach dem Oberbegriff des Patentanspruches 1.The invention relates to a circuit according to the preamble of claim 1.

Eine derartige Schaltung ist aus der DE-PS 11 81 792 bekannt. Dort ist eine Überwachungsschaltung für Haupt- und Nebenfäden von Glühlampen, insbesondere Signallampen, beschrieben, bei der bei angeschaltetem Hauptfaden durch einen Stromindikator dessen Funktionsverhalten und gleichzeitig durch einen Spannungsindikator die Einschaltbereitschaft des zugehörigen Nebenfadens überwacht wird. Für jede Signallampe werden zwei Überwachungsmeldungen gebildet, eine für den Haupt- und eine für den Nebenfaden; die beiden Überwachungsmeldungen werden an eine vorzugsweise ferne Auswerteeinrichtung übertragen und dort einzeln bewertet oder sie wer den zusammengefaßt und gemeinsam bewertet.Such a circuit is known from DE-PS 11 81 792. A monitoring circuit for main and secondary threads of incandescent lamps, in particular signal lamps, is described there, in which, when the main thread is switched on, its operational behavior and, at the same time, a voltage indicator monitor the readiness for switch-on of the associated secondary thread by means of a current indicator. Two monitoring messages are generated for each signal lamp, one for the main thread and one for the secondary thread; the two monitoring messages are transmitted to a preferably remote evaluation device and evaluated there individually or they are summarized and evaluated together.

Aufgabe der Erfindung ist es, eine Schaltung nach dem Oberbegriff des Patentanspruches 1 anzugeben, welche die Kennzeichnung des jeweiligen Betriebszustandes einer Signallampe und die Kennzeichnung der Einschaltbereitschaft ihres Nebenfadens bei angeschaltetem Hauptfaden mittels einer einzigen Überwachungsmeldung über einen einzigen Übertragungskanal zu einer fernen Überwachungsstelle ermöglicht.The object of the invention is to provide a circuit according to the preamble of claim 1, which enables the identification of the respective operating state of a signal lamp and the readiness to switch on its secondary thread when the main thread is switched on by means of a single monitoring message via a single transmission channel to a remote monitoring point.

Die Erfindung löst diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruches 1. Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Schaltung sind in den Unteransprüchen angegeben.The invention solves this problem by the characterizing features of claim 1. Advantageous refinements and developments of the circuit according to the invention are specified in the subclaims.

Ausführungsbeispiele der Erfindung sind nachstehend unter Bezugnahme auf die Zeichnung näher erläutert. Die Zeichnung zeigt:

in Figur 1
das der erfindungsgemäßen Schaltung zugrundeliegende Schaltprinzip,
in Figur 2
eine Ausführungsform dieser Schaltung, wie sie für moderne Lichtsignalanlagen mit elektronischen Bauelementen verwendet sein kann und
in Figur 3
eine Ausführungsform der Schaltung mit einem anders aufgebauten Haupt/Nebenfadenumschalter.
Embodiments of the invention are explained in more detail below with reference to the drawing. The drawing shows:
in Figure 1
the switching principle on which the circuit according to the invention is based,
in Figure 2
an embodiment of this circuit, as it can be used for modern traffic signal systems with electronic components and
in Figure 3
an embodiment of the circuit with a differently constructed main / secondary thread switch.

Figur 1 zeigt eine Signallampe L, die beim Anlegen von Spannung an die Primärwicklung eines Lampentransformators T1 bedarfsweise anschaltbar ist. Die Signallampe L besitzt einen Hauptfaden HF und einen diesem parallelgeschalteten Nebenfaden NF. Bei angeschalteter Signallampe leuchtet üblicherweise der Hauptfaden HF auf; der Nebenfaden NF ist abgeschaltet und übernimmt erst bei Ausfall des Hauptfadens dessen Funktion. Mit dem Hauptfaden HF ist ein Stromindikator JH in Reihe geschaltet, der dazu dient, den Nebenfaden bei defektem Hauptfaden anzuschalten. Solange ein Lampenstrom über den Hauptfaden fließt, ist der Nebenfadenkreis über den Ruhekontakt JH/1 des Hauptfadenüberwachers aufgetrennt. Beim Anschalten der Signallampe fließt bis zum Ansprechen des Stromindikators JH kurzzeitig über beide Lampenfäden Strom.FIG. 1 shows a signal lamp L which, if required, can be switched on when voltage is applied to the primary winding of a lamp transformer T1. The signal lamp L has a main thread HF and a secondary thread NF connected in parallel with it. When the signal lamp is switched on, the main thread HF usually lights up; the secondary thread NF is switched off and only takes over its function if the main thread fails. A current indicator JH is connected in series with the main thread HF, which serves to switch on the secondary thread if the main thread is defective. As long as a lamp current flows over the main thread, the secondary thread circuit is separated via the normally closed contact JH / 1 of the main thread monitor. When the signal lamp is switched on, current flows briefly over both lamp threads until the current indicator JH responds.

Dem Ruhekontakt JH/1 des mit dem Hauptfaden HF in Reihe liegenden Stromindikators JH ist ein mit dem Nebenfaden NF der Signallampe in Reihe geschalteter stromempfindlicher Melder M parallelgeschaltet. Dieser Melder dient zur Ausgabe einer Störungsmeldung an eine nicht dargestellte ferne Auswerteeinrichtung für den Fall, daß bei angeschalteter Signallampe der über den Hauptfaden HF führende Speisekreis oder bei intaktem angeschaltetem Hauptfaden der über den Nebenfaden NF geführte Überwachungskreis der Signallampe unterbrochen ist. Der Melder M gibt eine den jeweiligen Betriebszustand der von ihm überwachten Signallampe kennzeichnende Überwachungsmeldung über einen Kontakt M/1 an die ferne Auswerteeinrichtung weiter. In dem angenommenen Ausführungsbeispiel mit intaktem Haupt- und intaktem Nebenfaden ist der Melder M erregt und gibt eine den ordnungsgerechten Betriebszustand der Signallampe kennzeichende Meldung an die Auswerteeinrichtung. Der Melder M ist dabei so hochohmig bzw. der Meldekreis ist so hochohmig ausgeführt, daß der über den Nebenfaden NF fließende Meldestrom den Nebenfaden noch nicht erwärmt. Damit wird verhindert, daß der Nebenfaden bei noch intaktem Hauptfaden elektrisch belastet wird.A current-sensitive detector M connected in series with the secondary thread NF of the signal lamp is connected in parallel with the normally closed contact JH / 1 of the current indicator JH lying in series with the main thread HF. This detector is used to output a fault message to a remote evaluation device (not shown) in the event that the supply circuit leading via the main thread HF is switched off when the signal lamp is switched on or the monitoring circuit of the signal lamp is broken via the secondary thread NF when the main thread is intact. The detector M transmits a monitoring message, which characterizes the respective operating state of the signal lamp monitored by it, to the remote evaluation device via a contact M / 1. In the assumed embodiment with the main thread and the secondary thread intact, the detector M is excited and sends a message to the evaluation device which indicates the correct operating state of the signal lamp. The detector M is so high-impedance or the detection circuit is so high-impedance that the signaling current flowing through the secondary thread NF not yet warmed the secondary thread. This prevents the secondary thread from being electrically loaded when the main thread is still intact.

Brennt der Hauptfaden der Signallampe durch oder wird der über den Hauptfaden führende Speisekreis in irgendeiner Weise unterbrochen, dann fällt der Stromindikator JH ab und schließt seinen Ruhekontakt JH/1 im Speisekreis des Nebenfadens. Dabei wird der Nebenfaden automatisch angeschaltet und übernimmt die Aufgaben des defekten Hauptfadens der Signallampe. Über den geschlossenen Ruhekontakt JH/1 des abgefallenen Stromindikators JH wird der Melder M kurzgeschlossen. Der Melder M fällt ab und meldet über seinen Kontakt M/1 an die ferne Auswerteeinrichtung, daß an der Signallampe L eine Störung aufgetreten ist, die den Einsatz des Störungs- oder Wartungsdienstes erforderlich macht. Eine Störungsmeldung kann auch bereits dann ausgelöst werden, wenn der über den Hauptfaden führende Speisekreis so hochohmig geworden ist, daß der Hauptfaden nicht mehr in voller Leuchtstärke aufleuchtet.If the main thread of the signal lamp burns out or the feed circuit leading over the main thread is interrupted in any way, then the current indicator JH drops and closes its normally closed contact JH / 1 in the feed circuit of the secondary thread. The secondary thread is automatically switched on and takes over the tasks of the defective main thread of the signal lamp. The detector M is short-circuited via the closed normally closed contact JH / 1 of the dropped current indicator JH. The detector M drops and reports via its contact M / 1 to the remote evaluation device that a fault has occurred on the signal lamp L, which necessitates the use of the fault or maintenance service. A fault message can also be triggered when the feed circuit leading over the main thread has become so high-resistance that the main thread no longer lights up at full brightness.

Wird bei angeschalteter Signallampe und intaktem Hauptfaden der über den Nebenfaden und den Melder führende Überwachungskreis unterbrochen, besteht für den Hauptfaden keine Redundanz mehr. Auch dies ist dem Störungs- und Wartungspersonal möglichst frühzeitig anzuzeigen, damit die aufgetretene Störung nach Möglichkeit behoben werden kann, bevor eine Störung im Hauptfadenkreis auftritt. Ist der über den Nebenfaden und den Melder geführte Überwachungskreis aufgetrennt, so reagiert der Melder M darauf in gleicher Weise, als ob der Stromindikator JH eine Störung im Hauptfadenkreis der Signallampe angezeigt hätte, d.h. er fällt ab und meldet diese Störung über seinen Kontakt M/1 an die ferne Auswertestelle.If the monitoring circuit leading over the secondary thread and the detector is interrupted while the signal lamp is switched on and the main thread is intact, there is no longer any redundancy for the main thread. This should also be reported to the malfunction and maintenance personnel as early as possible so that the malfunction that has occurred can, if possible, be remedied before a malfunction occurs in the main thread circle. If the monitoring circuit led over the secondary thread and the detector is opened, the detector M reacts to it in the same way as if the current indicator JH had indicated a fault in the main thread circuit of the signal lamp, i.e. it drops out and reports this fault via its contact M / 1 to the remote evaluation point.

Figur 2 zeigt eine Ausführungsform der erfindungsgemäßen Schaltung mit ausschließlich elektronischen Schaltmitteln zum Überwachen des Betriebszustandes einer Signallampe L. Die Speisekreise der beiden Lampenfäden der Signallampe sind wie in Figur 1 dick ausgezogen, während die Schaltmittel der eigentlichen Überwachungsschaltung durch dünnere Linien miteinander verbunden sind. Die Speisung der Signallampe erfolgt wiederum über einen Lampentransformator T1, an dessen Primärwicklung bedarfsweise eine Speisewechselspannung anschaltbar ist. Die Stromversorgung der Überwachungsschaltung erfolgt aus einem Gleichrichter G, der eingangsseitig an die Sekundärwicklung des Lampentransformators T1 angeschlossen ist. Der mit dem Hauptfaden HF der Signallampe L in Reihe liegende Stromindikator JH wird gebildet aus einem über einen Stromwandler T2 an den Hauptfaden-Speisekreis angekoppelten Optokoppler U1 mit antiparallel geschalteten Eingangsdioden. Bei einem ausreichend hohen über den Hauptfaden fließenden Lampenstrom wird der Schalttransistor des Optokopplers U1 niederohmig geschaltet und steuert einen nachgeordneten, als Feldeffekttransistor ausgebildeten elektronischen Schalter S1 durch. Dieser Schalter schließt dabei die Sendediode eines optoelektronisch angesteuerten Wechselstromschalters U2 kurz, der zur Steuerung eines Triacs TR dient. Dieser Triac hat die Funktion des in Figur 1 dargestellten Schaltkontaktes JH/1. Hauptfadenüberwacher JH, Schalter S1, Wechselstromschalter U2 und Triac TR bilden zusammen einen Haupt/Nebenfadenumschalter HNU1. Solange der elektronische Schalter S1 die Sendediode des Wechselstromschalters U2 kurzschließt, ist der Triac TR hochohmig und unterbricht den Speisekreis für den Nebenfaden NF. Dem Triac TR über einen Vorwiderstand R parallelgeschaltet sind die Sendedioden eines weiteren Optokopplers U3. Der Schalttransistor dieses Optokopplers ist bei aufgetrenntem Nebenfaden-Speisekreis niederohmig. Das dann am Gate eines als Feldeffekttransistor ausgebildeten weiteren elektronischen Schalters S2 anliegende Steuerpotential bewirkt, daß die Source-Drain-Strecke dieses Schalters niederohmig ist. Bei diesem Schaltzustand des elektronischen Schalters ist die Sendediode eines weiteren Optokopplers U4 kurzgeschlossen; der zugehörige Schalttransistor ist hochohmig zur Abgabe einer den ordnungsgerechten Betriebszustand der überwachten Signallampe kennzeichnenden Meldung an die ferne Auswerteeinrichtung.Figure 2 shows an embodiment of the circuit according to the invention with only electronic switching means for monitoring the operating state of a signal lamp L. The supply circuits of the two lamp filaments of the signal lamp are drawn out thick as in Figure 1, while the switching means of the actual monitoring circuit by thin lines together are connected. The signal lamp is in turn supplied via a lamp transformer T1, to the primary winding of which an alternating supply voltage can be connected if necessary. The monitoring circuit is supplied with power from a rectifier G which is connected on the input side to the secondary winding of the lamp transformer T1. The current indicator JH, which is in series with the main thread HF of the signal lamp L, is formed from an optocoupler U1 coupled to the main thread feed circuit via a current transformer T2 and having input diodes connected in anti-parallel. If the lamp current flowing through the main thread is sufficiently high, the switching transistor of the optocoupler U1 is switched to a low resistance and controls a downstream electronic switch S1 designed as a field effect transistor. This switch short-circuits the transmission diode of an optoelectronically controlled AC switch U2, which is used to control a triac TR. This triac has the function of the switching contact JH / 1 shown in FIG. 1. Main thread monitor JH, switch S1, AC switch U2 and triac TR together form a main / auxiliary thread switch HNU1. As long as the electronic switch S1 short-circuits the transmission diode of the AC switch U2, the triac TR has a high resistance and interrupts the feed circuit for the secondary thread NF. The transmission diodes of a further optocoupler U3 are connected in parallel with the triac TR via a series resistor R. The switching transistor of this optocoupler has a low resistance when the secondary thread feed circuit is opened. The control potential then present at the gate of a further electronic switch S2 designed as a field effect transistor has the effect that the source-drain path of this switch has a low resistance. In this switching state of the electronic switch, the transmission diode of another optocoupler U4 is short-circuited; the associated switching transistor has a high impedance for sending a message to the remote evaluation device which indicates the correct operating state of the monitored signal lamp.

Ist der Hauptfadenkreis der Signallampe gestört, so wird der Schalttransistor des Optokopplers U1 hochohmig und der ihm nachgeordnete elektronische Schalter S1 wird gesperrt. Die Sendediode des Wechselstromschalters U2 wird dann nicht mehr kurzgeschlossen; sie ist stromdurchflossen und bewirkt ein Durchschalten des internen Wechselstromschalters; dies hat die Durchsteuerung des Triacs zur Folge, über den die Anschaltung des Nebenfadens der Signallampe erfolgt. Außerdem schaltet der Triac TR die Eingangsdioden des Optokopplers U3 kurz, so daß die Schaltstrecke des zugehörigen Schalttransistors hochohmig wird. Dabei ändert sich das am Gate des elektronischen Schalters S2 anliegende Steuerpotential, wodurch die Source-Drain-Strecke dieses Schalters hochohmig wird. Bei diesem Schaltzustand des elektronischen Schalters S2 ist der Kurzschluß für die Eingangsdiode des Optokopplers U4 aufgehoben, so daß der Optokoppler anspricht und über seinen Schalttransistor eine Störungsmeldung für die überwachte Signallampe ausgibt.If the main thread circuit of the signal lamp is disturbed, the switching transistor of the optocoupler U1 becomes high-resistance and the electronic switch S1 arranged downstream of it is blocked. The Transmitting diode of the AC switch U2 is then no longer short-circuited; it is energized and causes the internal AC switch to switch; this results in the control of the triac, via which the auxiliary thread of the signal lamp is switched on. In addition, the triac TR briefly switches the input diodes of the optocoupler U3, so that the switching path of the associated switching transistor becomes high-resistance. The control potential present at the gate of the electronic switch S2 changes, as a result of which the source-drain path of this switch becomes high-resistance. In this switching state of the electronic switch S2, the short circuit for the input diode of the optocoupler U4 is eliminated, so that the optocoupler responds and outputs a fault message for the monitored signal lamp via its switching transistor.

Eine entsprechende Störungsmeldung wird auch ausgelöst, wenn bei angeschaltetem intaktem Hauptfaden der Nebenfadenkreis der Signallampe unterbrochen wird. In diesem Fall werden die Sendedioden des Optokopplers U3 ebenfalls stromlos, so daß der zugehörige Schalttransistor hochohmig wird und das positive Steuerpotential vom Gate des elektronischen Schalters S2 abtrennt. Der Schalter S2 wird dabei hochohmig und der Optokoppler U4 kann ansprechen.A corresponding fault message is also triggered if the secondary thread circuit of the signal lamp is interrupted while the intact main thread is switched on. In this case, the transmission diodes of the optocoupler U3 are also de-energized, so that the associated switching transistor becomes high-resistance and the positive control potential is separated from the gate of the electronic switch S2. The switch S2 becomes high-resistance and the optocoupler U4 can respond.

Der als Stromindikator verwendete Optokoppler U1 muß nicht unbedingt an die Sekundärwicklung eines Stromwandlers angeschlossen sein; er kann auch einer im Hauptfadenkreis liegenden Bürde parallelgeschaltet sein. Anstelle eines als Relais oder Optokoppler ausgebildeten Hauptfadenüberwachers kann jeder andere bekannte Überwacher, insbesondere auch spannungsgesteuerte Überwacher, verwendet sein. Ein Ausführungsbeispiel hierfür ist in Fig. 3 dargestellt; für einander entsprechende Bauelemente werden die in Fig. 2 eingeführten Bezeichnungen beibehalten.The optocoupler U1 used as a current indicator does not necessarily have to be connected to the secondary winding of a current transformer; it can also be connected in parallel to a burden lying in the main thread circle. Instead of a main thread monitor designed as a relay or optocoupler, any other known monitor, in particular also voltage-controlled monitors, can be used. An embodiment of this is shown in Fig. 3; the designations introduced in FIG. 2 are retained for corresponding components.

Der in Fig. 3 dargestellte Haupt/Nebenfadenumschalter HNU2 unterscheidet sich im wesentlichen dadurch von dem der Fig. 2, daß der mit dem Hauptfaden der Signallampe L in Reihe liegende Indikator nicht den über den Hauptfaden fließenden Speisestrom der Signallampe bewertet, sondern einen davon unabhängigen Strom, der nur dann fließen kann, wenn der Hauptfaden intakt ist. Zu diesem Zweck wird der als Indikator verwendete Optokoppler U1 eingangsseitig über den Hauptfaden HF der Signallampe aus dem Lampentransformator T1 gespeist. Er schaltet in stromdurchflossenem Zustand, also bei intaktem Hauptfaden, einen als Triac ausgebildeten Wechselstromschalter TRM im Speisekreis des Hauptfadens der Signallampe durch und veranlaßt damit die Anschaltung der Signallampe L über deren Hauptfaden. Brennt der Hauptfaden durch, so wird die Schaltstrecke des Wechselstromschalters TRH hochohmig, weil der Haltestrom des Wechselstromschalters unterschritten wird. Der Wirkungsablauf der übrigen Schaltmittel des Haupt/Nebenfadenumschalters HNU2 entspricht dem des Haupt/Nebenfadenumschalters HNU1 der Fig. 2. Mit der Leuchtdiode des optoelektronischen Wechselstromschalters U2 ist die Leuchtdiode eines weiteren Optokopplers U5 in Reihe geschaltet, deren Leuchten im Stellwerk das Anschalten des Nebenfadens NF der Signallampe signalisiert. Ein entsprechender Optokoppler in Reihe mit der Schaltstrecke des elektronischen Schalters S1 oder in Reihe mit der Schaltstrecke des Schaltransistors des ersten Optokopplers U1 könnte zur Kennzeichnung des angeschalteten Hauptfadens HF der Signallampe dienen.The main / secondary thread switch HNU2 shown in FIG. 3 differs essentially from that of FIG. 2 in that the indicator lying in series with the main thread of the signal lamp L does not show the feed current flowing over the main thread the signal lamp, but an independent current that can only flow when the main thread is intact. For this purpose, the optocoupler U1 used as an indicator is fed on the input side via the main thread HF of the signal lamp from the lamp transformer T1. In the current-carrying state, that is to say with the main thread intact, it switches through an AC switch TRM designed as a triac in the supply circuit of the main thread of the signal lamp and thus causes the signal lamp L to be switched on via its main thread. If the main thread burns out, the switching distance of the AC switch TRH becomes high-resistance because the holding current of the AC switch is undercut. The sequence of effects of the other switching means of the main / secondary thread switch HNU2 corresponds to that of the main / secondary thread switch HNU1 in FIG Signal lamp signals. A corresponding optocoupler in series with the switching path of the electronic switch S1 or in series with the switching path of the switching transistor of the first optocoupler U1 could serve to identify the switched main thread HF of the signal lamp.

Bei den vorstehend beschriebenen Ausführungsbeispielen ist angenommen, daß der Melder M zum Ausgeben einer Störungsmeldung aktiviert wird und bei ordnungsgerechtem Betriebszustand der überwachten Signallampe abgeschaltet sein soll. Es ist jedoch auch möglich, den Melder bei ordnungsgerechtem Betriebszustand der Signallampe zu aktivieren und im Störungsfall abzuschalten. Hierzu ist es lediglich erforderlich, die Source-Drain-Strecke des elektronischen Schalters S2 nicht parallel zur Sendediode des Optokopplers U4 anzuordnen, sondern mit dieser in Reihe zu schalten.In the exemplary embodiments described above, it is assumed that the detector M is activated to output a fault message and that the monitored signal lamp is to be switched off when the operating state is operating properly. However, it is also possible to activate the detector when the signal lamp is in the correct operating state and to switch it off in the event of a fault. For this purpose, it is only necessary not to arrange the source-drain path of the electronic switch S2 parallel to the transmission diode of the optocoupler U4, but to connect them in series with the latter.

In Abweichung von den in Fig. 2 und Fig. 3 dargestellten Ausführungsbeispielen kann der Schalttransistor des Optokopplers U1 die Sendediode des optoelektronisch steuerbaren Wechselstromschalters U2 auch unmittelbar kurzschließen bzw. deren Speisekreis auftrennen. Wegen der Welligkeit der den Sendedioden des Optokopplers U1 zugeführten Spannung wird dabei an der Schaltstrecke des Optokoppler-Schalttransistors eine sehr geringe pulsierende Gleichspannung abgreifbar sein. Um zu verhindern, daß als Folge dieser Gleichspannung der optoelektronisch steuerbare Wechselstromschalter U2 durchschaltet, ist der Schaltstrecke des Optokoppler-Schalttransistors ein Kondensator zum Glätten dieser Spannung parallelzuschalten. Gegebenenfalls ist mit der Sendediode des optoelektronisch steuerbaren Wechselstromschalters U2 noch eine Zenerdiode in Reihe zu schalten, deren Zenerspannung mindestens gleich der bei durchgesteuertem Optokoppler-Schalttransistor am Kondensator liegenden Spannung ist. Diese Zenerspannung addiert sich zu der Durchlaßspannung der Sendediode des optoelektronisch steuerbaren Wechselstromschalters und verhindert bei leuchtendem Hauptfaden das Durchsteuern dieses Schalters.In a departure from the exemplary embodiments shown in FIGS. 2 and 3, the switching transistor of the optocoupler U1 can also short-circuit the transmitting diode of the optoelectronically controllable AC switch U2 directly or the supply circuit thereof cut open. Because of the ripple of the voltage supplied to the transmitter diodes of the optocoupler U1, a very low pulsating DC voltage will be able to be tapped at the switching path of the optocoupler switching transistor. In order to prevent the optoelectronically controllable AC switch U2 from turning on as a result of this DC voltage, a capacitor for smoothing this voltage must be connected in parallel with the switching path of the optocoupler switching transistor. If necessary, a zener diode is to be connected in series with the transmitter diode of the optoelectronically controllable AC switch U2, the zener voltage of which is at least equal to the voltage across the capacitor when the optocoupler switching transistor is controlled. This Zener voltage is added to the forward voltage of the transmitter diode of the optoelectronically controllable AC switch and prevents the control of this switch when the main thread is illuminated.

Gleiches gilt für das Schalten des Optokopplers U4 (Fig. 2) zum Ausgeben der Überwachungsmeldung. Auch dieser Optokoppler läßt sich vom Schalttransistor des Optokopplers U3 direkt steuern, indem dieser die Sendediode des Optokopplers U4 bedarfsweise kurzschließt oder deren Speisekreis auftrennt. Auch hier müssen ggf. gesonderte Vorkehrungen zum Unwirksammachen der bei durchgesteuertem Schalttransistor des Optokopplers U3 an dessen Schaltstrecke anstehenden Restspannung getroffen sein.The same applies to the switching of the optocoupler U4 (FIG. 2) to output the monitoring message. This optocoupler can also be controlled directly by the switching transistor of the optocoupler U3 by short-circuiting the transmitting diode of the optocoupler U4 as required or opening its supply circuit. Here, too, special precautions must be taken to render the residual voltage applied to the switching path of the optocoupler U3 when the switching transistor is turned on ineffective.

Claims (18)

  1. A circuit for function-monitoring of a double filament lamp in a light signal, in particular in a railway light signal, with in each case one main filament and a secondary filament connected in parallel thereto, only the main filament of which is usually illuminated when the signal lamp is connected, whilst the secondary filament remains dark and in which the secondary filament automatically takes over the function of the associated main filament when this is burnt out using an indicator monitoring the respective main filament, which cuts the connection of the associated secondary filament when the lamp current is flowing through the main filament, and with an additional indicator for function control of the secondary filament when the intact main filament is connected, characterised in that connected in series with the secondary filament (NF) of the signal lamp (L) there is a current indicator (M) for triggering monitoring information and in that the main filament monitor (JH) short-circuits this current indicator (M) with the switch means (JH/1) controlled by said monitor, when the lamp current flowing over the main filament is too low.
  2. A circuit according to claim 1, characterised in that the supply circuit for the secondary filament, guided by way of the current indicator (M) of the secondary filament (NF), is formed with high-resistance such that the secondary filament does not yet light up.
  3. A circuit according to claim 1 and/or 2, characterised in that the indicators (JH and/or M) are formed as relays.
  4. A circuit according to claim 1 and/or 2, characterised in that the indicators (JH and/or M) are formed as optical couplers (U1, U3).
  5. A circuit according to claim 4, characterised in that the optical couplers (U1, U3) have antiparallel-connected transmitter diodes.
  6. A circuit according to claim 4 or 5, characterised in that the optical coupler (U3) connected in series with the secondary filament (MF) is connected to its transmitter diodes in parallel with the switch means (TR) controlled by the main filament monitor (JH), and that, when the transmitter diodes are carrying current, the switching transistor of this optical coupler (U3) short-circuits directly or indirectly the transmitter diode of a further optical coupler (U4), the switching transistor of which outputs the monitoring information, opens the supply circuit of this optical coupler (U4), overrides the short-circuit or closes the supply circuit.
  7. A circuit according to claim 6, characterised in that the switching transistor of the optical coupler (U3) connected in series with the secondary filament, when in the adjusted state sets an electronic switch (S2) for connecting the further optical coupler (U4).
  8. A circuit according to claim 4 or 5, characterised in that the optical coupler (U1) of the main filament monitor (JH) is connected on the input side to the secondary winding of a current transformer (T2) connected on the primary side in the current path of the main filament.
  9. A circuit according to claim 4 or 5 characterised in that the optical coupler of the main filament monitor is connected on the input side in parallel to a load impedance connected in the current path of the main filament.
  10. A circuit according to claim 4 or 5 characterised in that in the lamp circuit of the main filament (HF) there is arranged an electronic alternating current switch (TRH) and in that the optical coupler (U1) of the main filament monitor (JH) is supplied on the input side by way of the main filament of the signal lamp (L) from the current supply device (T1) of the signal lamp, and in the state when carrying current, switches through the main filament-alternating current switch (TRH).
  11. A circuit according to claim 6 or 7, characterised in that the switching transistors of the optical couplers (U1, U3) lie at a direct voltage derived from the lamp voltage of the signal lamp.
  12. A circuit according to claims 4 or 5, 6, 8 or 9, characterised in that the switch means controlled by the main filament monitor (JH) are formed as an electronic alternating current switch (TR), which is able to be controlled directly or indirectly by the optical coupler (U1) of the main filament monitor.
  13. A circuit according to claim 12, characterised in that the electronic alternating current switch (TR) connected in series with the secondary filament, is formed as a bi-directional triode thyristor which is able to be controlled by an opto-electronically controllable alternating current switch (U2), connected in parallel thereto by way of resistors.
  14. A circuit according to claim 13, characterised in that, in the set state, the switching transistor of the optical coupler (U1) used as main filament monitor sets an electronic switch (S1) for short-circuiting the transmitter diode or transmitter diodes of the opto-electronically controllable alternating current switch (U2).
  15. A circuit according to claim 6 and/or 13, characterised in that a capacitor is connected in parallel to the contact gap of the optical coupler-switching transistor.
  16. A circuit according to claim 6 and/or 13 or 15, characterised in that a Zener diode is connected in series with at least one transmitter diode of the opto-electronically controllable alternating current switch (U2), the conducting-state voltage of which is at least equal to the voltage set at the contact gap of the set optical coupler-switching transistor or at the capacitor.
  17. A circuit according to claim 7 and/or 14, characterised in that the electronic switch (S1, S2) is formed as a field effect transistor.
  18. A circuit according to one of claims 1 and 17, characterised in that the transmitter diode of a further optical coupler (U5) is connected in series with the transmitter diode of the opto-electronically controllable alternating current switch (U2), with the contact gap of the electronic switch (S1) or with the contact gap of the first optical coupler-switching transistor, the switching transistor of which optical coupler (U5) serves to trigger monitoring information.
EP90123329A 1989-12-14 1990-12-05 Failure detection circuit for multifilament lamps in signalling devices Expired - Lifetime EP0432623B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941327 1989-12-14
DE3941327A DE3941327A1 (en) 1989-12-14 1989-12-14 CIRCUIT FOR MONITORING THE FUNCTION OF DOUBLE-THREAD LAMPS IN LIGHT SIGNALS

Publications (2)

Publication Number Publication Date
EP0432623A1 EP0432623A1 (en) 1991-06-19
EP0432623B1 true EP0432623B1 (en) 1994-06-15

Family

ID=6395469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123329A Expired - Lifetime EP0432623B1 (en) 1989-12-14 1990-12-05 Failure detection circuit for multifilament lamps in signalling devices

Country Status (6)

Country Link
EP (1) EP0432623B1 (en)
AT (1) ATE107462T1 (en)
DE (2) DE3941327A1 (en)
DK (1) DK0432623T3 (en)
ES (1) ES2056351T3 (en)
FI (1) FI97675C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948718A1 (en) * 1999-09-30 2001-05-03 Siemens Ag Method of operating LED light symbol from light signal circuit for railway signalling lamps ensures disruption caused by switching to secondary filament operation is detected

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201537B (en) * 2020-10-12 2023-10-03 天津理工大学 AC filament conversion relay and on-line monitoring method for reliability thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1181792B (en) * 1963-06-29 1964-11-19 Pintsch Bamag Ag Monitoring circuit for main and secondary threads of incandescent lamps, especially signal lamps
DE1566901A1 (en) * 1967-03-21 1970-04-30 Licentia Gmbh Arrangement for monitoring signal lamps for thread breakage
NL178634C (en) * 1978-01-02 1986-04-16 Philips Nv DEVICE FOR DETECTING UNWANTED SIGNAL COMBINATIONS OF TWO SIGNAL LIGHTS IN TRAFFIC LIGHTS.
US4380718A (en) * 1981-05-22 1983-04-19 Kelsey-Hayes Co. Trailer marker light substitution circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948718A1 (en) * 1999-09-30 2001-05-03 Siemens Ag Method of operating LED light symbol from light signal circuit for railway signalling lamps ensures disruption caused by switching to secondary filament operation is detected
DE19948718C2 (en) * 1999-09-30 2003-02-27 Siemens Ag Circuit for operating a luminous sign from a light signal circuit for signal lamps

Also Published As

Publication number Publication date
DK0432623T3 (en) 1994-10-24
DE59006141D1 (en) 1994-07-21
ATE107462T1 (en) 1994-07-15
DE3941327A1 (en) 1991-06-20
EP0432623A1 (en) 1991-06-19
ES2056351T3 (en) 1994-10-01
FI906151A (en) 1991-06-15
FI97675C (en) 1997-01-27
FI906151A0 (en) 1990-12-13
FI97675B (en) 1996-10-15

Similar Documents

Publication Publication Date Title
EP2826052B1 (en) Safety relay circuit
EP0678078A1 (en) Circuit for emitting optical signals
DE3527828C2 (en)
EP0432623B1 (en) Failure detection circuit for multifilament lamps in signalling devices
EP0432624B1 (en) Main-standby filament switch for AC driven two-filament lamps in traffic signalling devices
AT398296B (en) CIRCUIT ARRANGEMENT FOR MONITORING THE OPERATING CONDITION OF AC CONSUMERS USED IN THE OUTDOOR SYSTEM OF AN ACTUATOR
DE3737791C2 (en)
AT398501B (en) DEVICE FOR SIGNAL-SAFE OPERATION OF SEVERAL ELECTRICAL CONSUMERS
DE3531001A1 (en) Monitoring device for low-voltage indicator lamps
EP0500201B1 (en) Circuit for monitoring alternating current supplied signal lamps
DE9012641U1 (en) Circuit for monitoring the function of double filament lamps in light signals
DE3029851A1 (en) CIRCUIT ARRANGEMENT FOR THE SIGNAL TECHNOLOGY SAFE CONTROL OF A POWER CONSUMER
DE1907057C3 (en) Circuit arrangement for monitoring an alternating current-fed signal lamp circuit for railway safety systems that is keyed by a flasher
DE3513357A1 (en) Circuit arrangement, in particular for a safety coupling switch in deep mining
DE3516612A1 (en) Circuit for remote monitoring of a light signal
EP0002504B1 (en) Signal supervision circuit in light-signalling devices
EP0472747A1 (en) Arrangement for the supervised operation of a consumer
DE2055070C3 (en) Circuit arrangement for monitoring the proper operating condition of AC circuits by monitoring relays
DE9102056U1 (en) Circuit for monitoring AC powered signal lamps
DE1808871B2 (en) DEVICE FOR PREVENTING EXCLUSIVE SIGNALING CONDITIONS
EP0404143A1 (en) Load monitoring circuit with alternating current working in railway systems
DE3434474C2 (en) Circuit arrangement for speed monitoring for at least one motor
DE2733798A1 (en) Traffic lights red lamp monitoring system - compares phases of command signals and lamp currents and lamp operation or failure is inferred from it
DE8914701U1 (en) Main/secondary filament switch for AC-powered double filament lamps in traffic signal systems
DE1137357B (en) Safety circuit arrangement for signal systems for multi-phase regulation of road traffic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES FR GB IT LI LU NL

17Q First examination report despatched

Effective date: 19930913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 107462

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59006141

Country of ref document: DE

Date of ref document: 19940721

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056351

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940922

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951201

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19951221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951230

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961205

Ref country code: GB

Effective date: 19961205

Ref country code: DK

Effective date: 19961205

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19961207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030307

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051205