EP0429367B1 - Method for making articles having a cavity by compression - Google Patents

Method for making articles having a cavity by compression Download PDF

Info

Publication number
EP0429367B1
EP0429367B1 EP90403305A EP90403305A EP0429367B1 EP 0429367 B1 EP0429367 B1 EP 0429367B1 EP 90403305 A EP90403305 A EP 90403305A EP 90403305 A EP90403305 A EP 90403305A EP 0429367 B1 EP0429367 B1 EP 0429367B1
Authority
EP
European Patent Office
Prior art keywords
sheath
core
cavity
pressing
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403305A
Other languages
German (de)
French (fr)
Other versions
EP0429367A1 (en
Inventor
Marcel Boncoeur
Frédéric Valin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0429367A1 publication Critical patent/EP0429367A1/en
Application granted granted Critical
Publication of EP0429367B1 publication Critical patent/EP0429367B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1291Solid insert eliminated after consolidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/044Rubber mold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/124Rubber matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49453Pulley making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49989Followed by cutting or removing material

Definitions

  • the invention relates to a method of manufacturing parts having a cavity by pressing.
  • a common process for manufacturing parts of non-moldable material consists in pressing a closed and deformable sheath filled with powder of this material by hydrostatic pressure.
  • the pressure causes, in conjunction with an accompanying heating, a sintering of the powder by tamping or densification.
  • the sheath is then split and rejected, and the part can be dimensioned by finishing machining. Isostatic pressing without heating also exists, see JP-A-62110899.
  • Another solution consists in placing in the sheath, before filling it, a non-deformable core which delimits the cavity.
  • the cores used in foundries have a similar role, but the problems posed by the pressing are different because significant mechanical stresses develop in the sheath, the core as well as in the part as soon as the powder takes consistency.
  • the method is characterized in that the core is initially of volume greater than the volume of the cavity and undergoes a partial extrusion out of the cavity during pressing.
  • the core also undergoes plastic deformations and must be constructed from a more ductile material than that of the part.
  • the core and the sheath can be in one piece or separate; moreover, the sheath or the core may or may not be covered with a non-stick layer which facilitates demolding.
  • the process can be perfectly applied to parts where the core or the sheath are an integral part of the finished product.
  • the parts can be in particular ceramic. Mention may be made of the oxides (Al2O3, CeO2, ZrO2), borides (TiB2), nitrides (TiN, TaN), carbides (TaC, NbC), silicides (Si3N4, SiC), mixtures of such ceramics to make granular compounds, composites with ceramic matrix and fiber reinforcement.
  • the invention can also be applied in particular to composites with a metallic matrix and with ceramic or metallic reinforcement as well as to metals and alloys which are not very ductile such as tungsten, cast iron, the alloy of nickel and aluminum in particular.
  • the cores can be made, for example, of titanium, niobium or tantalum when high temperatures are to be reached. It is also possible to use pure silica glass or silicon enriched with boron oxide. One such body is sold under the VYCOR brand by Corning Corp. Other materials such as low-melting metals and glasses can be used when pressing is carried out at lower temperatures.
  • the cavity can take various forms. It can be a cylindrical cavity, or a conical undercut when demolding is necessary. One can however envisage cavities almost without communication with the outside, even if it is then necessary to remove the material from the core, which is then eliminated by a chemical attack.
  • the material of the part to be densified is frequently powder but can also be a cold pre-compacted or pre-sintered body.
  • FIG. 1A and 1B there is shown respectively the shape of a titanium sheath and its content before and after pressing.
  • the sheath 1 has the shape of a cylinder 104 mm high and 39.6 mm in diameter. It contains a titanium core 2 composed of a cylindrical base 3 of 39.6 mm in diameter and 9 mm in height placed on the bottom of the sheath 1 and surmounted by a truncated cone 4 of 35 mm in height and gradually tapering towards the top of the sheath 1 from 22 to 20 mm in diameter.
  • the interior of the sheath 1 is also occupied, opposite the bottom, by a graphite shim 5 of 39.6 mm in diameter and 20 mm in height.
  • the rest of the sheath is filled with tantalum carbide powder TaC intended to form the cavity part.
  • the internal face of the sheath 1 and the surface of the core 2 are covered with non-stick product 9 in sheet form.
  • FIG. 2 After a cycle, represented in FIG. 2 where the temperature and pressure curves T and P have been indicated as a function of time in hours with a common scale in bars and in degrees Celsius, the shape shown has been obtained
  • Figure 1B the sheath has deformed and in particular contracted radially around the part to be obtained (it is now referenced 1 ') and the core (2') has also changed shape: there remains a 4 'cone of smaller volume as the original cone 4, the material thereof having undergone an overall downward displacement which appears in the form of a bulge 6 in the form of a substantially hemisphere 13 mm in height below the base 3
  • the 4 'cone is approximately 25 mm high and has a diameter varying between 18 and 16.7 mm.
  • a crucible can be obtained by cutting slightly above the base 3 along line 7, by demolding the cone 4 ', by demolding the sheath 1, after having split it and while removing the shim 5, and by machining around the part in its part contiguous to the shim 5, which has an annular bulge, as indicated by lines 8.
  • wedges such as wedge 5 are often encountered in this technical field, but they are not always useful and their absence is therefore perfectly compatible with a correct embodiment of the invention.
  • a deformable core guarantees that the pressure is identical at all points inside the sheath, which allows a more uniform densification of the part and is not true when a non-deformable core is used, near which the pressure is more important than near the sheath. Then, the bulge of the core downwards limits the pinching of the sheath at the junction of the bottom and the cylindrical wall, and therefore the risk of seeing it broken above the base 3.
  • FIGS. 3A to 3D Another exemplary embodiment is shown in FIGS. 3A to 3D.
  • the sheath 10 is here substantially thicker, and in one piece with a cylindrical core 11. Its outer shape is still cylindrical.
  • the assembly is made of titanium and the interior is filled with precompacted tantalum carbide.
  • a thick sheath we can have a thin sheath with an inner layer of titanium pre-sintered.
  • the bead 12 obtained is shown by hermetically crushing the filler neck of the sheath 10.
  • FIG. 3A represents the initial state of the system.
  • FIG. 3B represents the final state after hot isostatic pressing, and we observe, as in the previous example, a bulge 13 at the bottom of the sheath 10, and which comes from the partial extrusion of the core 11 for form a smaller cylindrical core 11 '.
  • the sheath, now referenced 10 ', is contracted radially around the tantalum carbide while substantially retaining a cylindrical shape at this location.
  • FIG. 3C shows that a composite cylinder 14 can be obtained by dressing the two end faces of the assembly, which in particular makes the cord 12 and the bulge 13 disappear so as to leave only a thick titanium envelope substantially uniform around the tantalum carbide.
  • FIG. 3D shows that a composite crucible 15 can be obtained by continuing the dressing of the bottom of the composite cylinder 14 until reaching the tantalum carbide, then removing the core 11 ′ by appropriate mechanical or chemical machining. Tantalum carbide is surrounded by a layer of titanium on its outer faces only.
  • the method can also be applied to ductile materials for which the methods of the prior art can be envisaged in principle.
  • Such an application of the process according to the invention is particularly useful when the stresses to which the ductile materials would be subjected by previous processes are close to the breaking limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

L'invention se rapporte à un procédé de fabrication de pièces présentant une cavité par pressage.The invention relates to a method of manufacturing parts having a cavity by pressing.

Un procédé courant (appelé pressage isostatique à chaud) de fabrication de pièces en matériau non moulable consiste à presser une gaine fermée et déformable remplie de poudre de ce matériau par une pression hydrostatique. La pression provoque, en liaison avec un chauffage qui l'accompagne, un frittage de la poudre par tassage ou densification. La gaine est ensuite fendue et rejetée, et la pièce peut être mise aux cotes par un usinage de finition. Le pressage isostatique sans chauffage existe également, voir JP-A-62110899.A common process (called hot isostatic pressing) for manufacturing parts of non-moldable material consists in pressing a closed and deformable sheath filled with powder of this material by hydrostatic pressure. The pressure causes, in conjunction with an accompanying heating, a sintering of the powder by tamping or densification. The sheath is then split and rejected, and the part can be dimensioned by finishing machining. Isostatic pressing without heating also exists, see JP-A-62110899.

Dans le cas de pièces présentant une cavité et dont un exemple typique est le creuset, on choisit quelquefois de presser une pièce pleine, c'est-à-dire dont la gaine suit le contour extérieur mais pas le contour de la cavité, qui est formée par usinage après le pressage. Cette solution est en principe assez peu satisfaisante car les matériaux utilisés s'usinent souvent fort mal à cause de leur fragilité et de leur dureté. Il est difficile d'obtenir un état de surface satisfaisant, aussi bien par outil coupant que par outil abrasif et la consommation d'outils de coupe est très élevée. Il arrive même fréquemment que les contraintes mécaniques d'usinage brisent les pièces.In the case of parts presenting a cavity and of which a typical example is the crucible, one sometimes chooses to press a solid part, that is to say whose sheath follows the external contour but not the contour of the cavity, which is formed by machining after pressing. This solution is in principle quite unsatisfactory because the materials used often work very poorly because of their brittleness and their hardness. It is difficult to obtain a satisfactory surface condition, both by cutting tool and by abrasive tool and the consumption of cutting tools is very high. It even frequently happens that mechanical machining constraints break the parts.

Une autre solution consiste à disposer dans la gaine, avant de la remplir, un noyau indéformable qui délimite la cavité. Les noyaux utilisés en fonderie ont un rôle analogue, mais les problèmes posés par le pressage sont différents car d'importantes contraintes mécaniques se développent dans la gaine, le noyau ainsi que dans la pièce dès que la poudre prend consistance.Another solution consists in placing in the sheath, before filling it, a non-deformable core which delimits the cavity. The cores used in foundries have a similar role, but the problems posed by the pressing are different because significant mechanical stresses develop in the sheath, the core as well as in the part as soon as the powder takes consistency.

Certaines de ces contraintes sont dues aux différences des dilatations thermiques entre la pièce et la gaine d'une part, le noyau d'autre part ; il est possible, au moins dans certains cas, d'éviter cette difficulté en choisissant des matériaux présentant des coefficients de dilatation voisins. La gaine et le noyau sont alors favorablement recouverts d'un revêtement anti-adhérent qui facilite le démoulage. Il est également possible de réduire les contraintes dans la pièce par un choix judicieux des cycles de température et de pression. On évite alors les fissures et les ruptures avant le dégainage.Some of these constraints are due to the differences in thermal expansion between the part and the sheath on the one hand, the core on the other hand; it is possible, at least in certain cases, to avoid this difficulty by choosing materials having similar expansion coefficients. The sheath and the core are then favorably covered with a non-stick coating which facilitates demolding. It is also possible to reduce the stresses in the room by a judicious choice of temperature and pressure cycles. This avoids cracks and breaks before the drawing.

Il existe toutefois un phénomène qu'il est impossible de compenser : il s'agit de la contraction du noyau au cours de la densification et de sa dilatation à la remise à la pression atmosphérique et notamment après le dégainage. Les contraintes produites tendent à dilater la pièce, surtout quand on a retiré la gaine qui permettait d'appliquer une sollicitation contraire de compression. Si le matériau de la pièce est suffisamment ductile, la pièce se déforme mais sa rupture par éclatement est inévitable dans le cas d'un matériau fragile.There is however a phenomenon which it is impossible to compensate for: it is the contraction of the nucleus during densification and its expansion upon return to atmospheric pressure and especially after stripping. The stresses produced tend to expand the part, especially when the sheath has been removed, which made it possible to apply an opposite compression stress. If the material of the part is sufficiently ductile, the part deforms but its rupture by bursting is inevitable in the case of a brittle material.

On a cherché, en réalisant l'invention, à surmonter ce problème et par là même à rendre possible le pressage de poudre de matériaux fragiles dans des gaines pour obtenir directement des pièces présentant une cavité.In carrying out the invention, attempts have been made to overcome this problem and thereby make it possible to press powder of fragile materials in sheaths to directly obtain parts having a cavity.

Le procédé est caractérisé en ce que le noyau est au départ de volume supérieur au volume de la cavité et subit une extrusion partielle hors de la cavité pendant le pressage. En d'autres termes, le noyau subit lui aussi des déformations plastiques et doit être construit dans un matériau plus ductile que celui de la pièce.The method is characterized in that the core is initially of volume greater than the volume of the cavity and undergoes a partial extrusion out of the cavity during pressing. In other words, the core also undergoes plastic deformations and must be constructed from a more ductile material than that of the part.

Selon le cas, le noyau et la gaine peuvent être d'un seul tenant ou séparés ; par ailleurs, la gaine ou le noyau peuvent ou non être recouverts d'une couche anti-adhérente qui facilite le démoulage. En effet, le procédé peut parfaitement s'appliquer à des pièces où le noyau ou la gaine font partie intégrante du produit fini.Depending on the case, the core and the sheath can be in one piece or separate; moreover, the sheath or the core may or may not be covered with a non-stick layer which facilitates demolding. Indeed, the process can be perfectly applied to parts where the core or the sheath are an integral part of the finished product.

Les pièces peuvent être notamment en céramique. On peut citer les oxydes (Al₂O₃, CeO₂, ZrO₂), les borures (TiB₂), les nitrures (TiN, TaN), les carbures (TaC, NbC), les siliciures (Si₃N₄, SiC), les mélanges de telles céramiques pour faire des composés granulaires, les composites à matrice en céramique et à renfort en fibres. L'invention peut également s'appliquer notamment à des composites à matrice métallique et à renfort en céramique ou métallique ainsi qu'à des métaux et alliages peu ductiles tels que le tungstène, la fonte, l'alliage de nickel et d'aluminium en particulier.The parts can be in particular ceramic. Mention may be made of the oxides (Al₂O₃, CeO₂, ZrO₂), borides (TiB₂), nitrides (TiN, TaN), carbides (TaC, NbC), silicides (Si₃N₄, SiC), mixtures of such ceramics to make granular compounds, composites with ceramic matrix and fiber reinforcement. The invention can also be applied in particular to composites with a metallic matrix and with ceramic or metallic reinforcement as well as to metals and alloys which are not very ductile such as tungsten, cast iron, the alloy of nickel and aluminum in particular.

Les noyaux peuvent être constitués par exemple en titane, en niobium ou en tantale lorsque de hautes températures doivent être atteintes. On peut utiliser également du verre de silice pur ou du silicium enrichi en oxyde de bore. Un tel corps est vendu sous la marque VYCOR par Corning Corp. D'autres matériaux tels que les métaux à bas point de fusion et des verres peuvent être utilisés lorsque le pressage s'effectue à des températures plus basses.The cores can be made, for example, of titanium, niobium or tantalum when high temperatures are to be reached. It is also possible to use pure silica glass or silicon enriched with boron oxide. One such body is sold under the VYCOR brand by Corning Corp. Other materials such as low-melting metals and glasses can be used when pressing is carried out at lower temperatures.

La cavité peut prendre des formes diverses. Il peut s'agir d'une cavité cylindrique, ou conique en dépouille lorsque le démoulage est nécessaire. On peut toutefois envisager des cavités presque sans communication avec l'extérieur, même s'il faut ensuite enlever la matière du noyau, qui est alors éliminée par une attaque chimique.The cavity can take various forms. It can be a cylindrical cavity, or a conical undercut when demolding is necessary. One can however envisage cavities almost without communication with the outside, even if it is then necessary to remove the material from the core, which is then eliminated by a chemical attack.

Le matériau de la pièce à densifier est fréquemment de la poudre mais peut également être un corps précompacté à froid ou préfritté.The material of the part to be densified is frequently powder but can also be a cold pre-compacted or pre-sintered body.

Les figures suivantes illustrent, de manière non limitative, quelques exemples de mise en oeuvre de l'invention :

  • les figures 1A et 1B illustrent un premier exemple ;
  • la figure 2 est un diagramme montrant le cycle de température et de pression utilisé pour ce premier exemple ; et
  • les figures 3A à 3D illustrent un second exemple.
The following figures illustrate, without limitation, some examples of implementation of the invention:
  • Figures 1A and 1B illustrate a first example;
  • Figure 2 is a diagram showing the temperature and pressure cycle used for this first example; and
  • Figures 3A to 3D illustrate a second example.

Sur les figures 1A et 1B, on a représenté respectivement la forme d'une gaine en titane et de son contenu avant et après le pressage. A l'état initial de la figure 1A, la gaine 1 a une forme de cylindre de 104 mm de hauteur et de 39,6 mm de diamètre. Elle contient un noyau 2 en titane composé d'une base cylindrique 3 de 39,6 mm de diamètre et de 9 mm de hauteur posée sur le fond de la gaine 1 et surmontée d'un tronc de cône 4 de 35 mm de hauteur et s'amincissant progressivement vers le sommet de la gaine 1 pour passer de 22 à 20 mm de diamètre. L'intérieur de la gaine 1 est également occupé, à l'opposé du fond, par une cale de graphite 5 de 39,6 mm de diamètre et de 20 mm de hauteur. Le reste de la gaine est rempli de poudre de carbure de tantale TaC destinée à former la pièce à cavité. La face interne de la gaine 1 et la surface du noyau 2 sont recouvertes de produit anti-adhérent 9 en feuille.In Figures 1A and 1B, there is shown respectively the shape of a titanium sheath and its content before and after pressing. In the initial state of FIG. 1A, the sheath 1 has the shape of a cylinder 104 mm high and 39.6 mm in diameter. It contains a titanium core 2 composed of a cylindrical base 3 of 39.6 mm in diameter and 9 mm in height placed on the bottom of the sheath 1 and surmounted by a truncated cone 4 of 35 mm in height and gradually tapering towards the top of the sheath 1 from 22 to 20 mm in diameter. The interior of the sheath 1 is also occupied, opposite the bottom, by a graphite shim 5 of 39.6 mm in diameter and 20 mm in height. The rest of the sheath is filled with tantalum carbide powder TaC intended to form the cavity part. The internal face of the sheath 1 and the surface of the core 2 are covered with non-stick product 9 in sheet form.

Après un cycle, représenté sur la figure 2 où l'on a indiqué, en fonction du temps en heures, les courbes T et P de température et de pression avec une échelle commune en bars et en degrés Celsius, on a obtenu la forme représentée figure 1B : la gaine s'est déformée et notamment contractée radialement autour de la pièce à obtenir (elle est désormais référencée 1') et le noyau (2') a également changé de forme : il subsiste un cône 4' de plus petit volume que le cône 4 primitif, la matière de celui-ci ayant subi un déplacement d'ensemble vers le bas qui apparaît sous la forme d'un renflement 6 en forme sensiblement de demi-sphère de 13 mm de hauteur en dessous de la base 3. Le cône 4' a environ 25 mm de hauteur et un diamètre variant entre 18 et 16,7 mm.After a cycle, represented in FIG. 2 where the temperature and pressure curves T and P have been indicated as a function of time in hours with a common scale in bars and in degrees Celsius, the shape shown has been obtained Figure 1B: the sheath has deformed and in particular contracted radially around the part to be obtained (it is now referenced 1 ') and the core (2') has also changed shape: there remains a 4 'cone of smaller volume as the original cone 4, the material thereof having undergone an overall downward displacement which appears in the form of a bulge 6 in the form of a substantially hemisphere 13 mm in height below the base 3 The 4 'cone is approximately 25 mm high and has a diameter varying between 18 and 16.7 mm.

Un creuset peut être obtenu par un tronçonnage légèrement au-dessus de la base 3 suivant la ligne 7, par un démoulage du cône 4', par un démoulage de la gaine 1, après l'avoir fendue et tout en retirant la cale 5, et par un usinage au tour de la pièce dans sa partie contiguë à la cale 5, qui présente un renflement annulaire, comme indiqué par les lignes 8.A crucible can be obtained by cutting slightly above the base 3 along line 7, by demolding the cone 4 ', by demolding the sheath 1, after having split it and while removing the shim 5, and by machining around the part in its part contiguous to the shim 5, which has an annular bulge, as indicated by lines 8.

Des cales telles que la cale 5 sont souvent rencontrées dans ce domaine technique, mais elles ne sont pas toujours utiles et leur absence est donc parfaitement compatible avec une réalisation correcte de l'invention.Wedges such as wedge 5 are often encountered in this technical field, but they are not always useful and their absence is therefore perfectly compatible with a correct embodiment of the invention.

On remarquera que l'invention autorise l'apparition de deux phénomènes favorables : tout d'abord, un noyau déformable garantit que la pression est identique dans tous les points à l'intérieur de la gaine, ce qui permet une densification plus uniforme de la pièce et n'est pas vrai quand on emploie un noyau indéformable, près duquel la pression est plus importante que près de la gaine. Ensuite, le renflement du noyau vers le bas limite le pincement de la gaine à la jonction du fond et de la paroi cylindrique, et donc le risque de la voir rompue en dessus de la base 3.It will be noted that the invention allows the appearance of two favorable phenomena: first, a deformable core guarantees that the pressure is identical at all points inside the sheath, which allows a more uniform densification of the part and is not true when a non-deformable core is used, near which the pressure is more important than near the sheath. Then, the bulge of the core downwards limits the pinching of the sheath at the junction of the bottom and the cylindrical wall, and therefore the risk of seeing it broken above the base 3.

Un autre exemple de réalisation est représenté sur les figures 3A à 3D. La gaine 10 est ici sensiblement plus épaisse, et d'un seul tenant avec un noyau cylindrique 11. Sa forme extérieure est encore cylindrique. L'ensemble est en titane et l'intérieur est rempli de carbure de tantale précompacté. A la place d'une gaine épaisse, on pourra avoir une gaine mince avec une couche intérieure de préfritté de titane.Another exemplary embodiment is shown in FIGS. 3A to 3D. The sheath 10 is here substantially thicker, and in one piece with a cylindrical core 11. Its outer shape is still cylindrical. The assembly is made of titanium and the interior is filled with precompacted tantalum carbide. Instead of a thick sheath, we can have a thin sheath with an inner layer of titanium pre-sintered.

On a représenté par souci d'exactitude le cordon 12 obtenu en écrasant de manière hermétique le col de remplissage de la gaine 10.For the sake of accuracy, the bead 12 obtained is shown by hermetically crushing the filler neck of the sheath 10.

L'état initial du système est représenté sur la figure 3A. La figure 3B représente quant à elle l'état final après pressage isostatique à chaud, et on observe, comme dans l'exemple précédent, un renflement 13 au fond de la gaine 10, et qui provient de l'extrusion partielle du noyau 11 pour former un noyau cylindrique 11' plus petit. La gaine, désormais référencée 10', est contractée radialement autour du carbure de tantale tout en conservant sensiblement une forme cylindrique à cet endroit.The initial state of the system is shown in Figure 3A. FIG. 3B represents the final state after hot isostatic pressing, and we observe, as in the previous example, a bulge 13 at the bottom of the sheath 10, and which comes from the partial extrusion of the core 11 for form a smaller cylindrical core 11 '. The sheath, now referenced 10 ', is contracted radially around the tantalum carbide while substantially retaining a cylindrical shape at this location.

La figure 3C montre qu'un cylindre composite 14 peut être obtenu par un dressage des deux faces extrêmes de l'ensemble, qui fait disparaître en particulier le cordon 12 et le renflement 13 pour ne laisser subsister qu'une enveloppe de titane d'épaisseur sensiblement uniforme autour du carbure de tantale. Enfin, la figure 3D montre qu'un creuset composite 15 peut être obtenu en poursuivant le dressage du fond du cylindre composite 14 jusqu'à parvenir au carbure de tantale, puis en faisant disparaître le noyau 11' par un usinage approprié, mécanique ou chimique. Le carbure de tantale est entouré d'une couche de titane sur ses faces extérieures seulement.FIG. 3C shows that a composite cylinder 14 can be obtained by dressing the two end faces of the assembly, which in particular makes the cord 12 and the bulge 13 disappear so as to leave only a thick titanium envelope substantially uniform around the tantalum carbide. Finally, FIG. 3D shows that a composite crucible 15 can be obtained by continuing the dressing of the bottom of the composite cylinder 14 until reaching the tantalum carbide, then removing the core 11 ′ by appropriate mechanical or chemical machining. Tantalum carbide is surrounded by a layer of titanium on its outer faces only.

On signalera enfin que le procédé peut également s'appliquer à des matériaux ductiles pour lesquels les procédés de l'art antérieur sont envisageables en principe. Une telle application du procédé selon l'invention est notamment utile lorsque les contraintes auxquelles seraient sujets les matériaux ductiles par des procédés antérieurs sont proches de la limite de rupture.Finally, it should be noted that the method can also be applied to ductile materials for which the methods of the prior art can be envisaged in principle. Such an application of the process according to the invention is particularly useful when the stresses to which the ductile materials would be subjected by previous processes are close to the breaking limit.

Claims (3)

  1. Process for the production of parts having a cavity by pressing the material to be densified previously poured into a sealed sheath (1) and containing the core (2) for defining the cavity, characterized in that the core (2) is more voluminous than the cavity prior to pressing and undergoes a partial extrusion outside the cavity during pressing.
  2. Process for the production of parts by pressing according to claim 1, characterized in that the sheath (10) and the core (11) are in one piece.
  3. Process for the production of parts by pressing according to claim 1, characterized in that at least some of the interfaces between the part, the sheath and the core are covered by an anti-adhesive coating (9).
EP90403305A 1989-11-24 1990-11-22 Method for making articles having a cavity by compression Expired - Lifetime EP0429367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8915479A FR2654973B1 (en) 1989-11-24 1989-11-24 METHOD FOR MANUFACTURING PARTS HAVING A CAVITY BY PRESSING.
FR8915479 1989-11-24

Publications (2)

Publication Number Publication Date
EP0429367A1 EP0429367A1 (en) 1991-05-29
EP0429367B1 true EP0429367B1 (en) 1994-04-06

Family

ID=9387753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403305A Expired - Lifetime EP0429367B1 (en) 1989-11-24 1990-11-22 Method for making articles having a cavity by compression

Country Status (5)

Country Link
US (1) US5092023A (en)
EP (1) EP0429367B1 (en)
JP (1) JPH03174945A (en)
DE (1) DE69007939T2 (en)
FR (1) FR2654973B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201015267D0 (en) * 2010-09-14 2010-10-27 Rolls Royce Plc An object forming assembly
CN104842579A (en) * 2015-05-12 2015-08-19 天津太平洋超高压设备有限公司 Isostatic-pressing die pressing hydraulic machine for powder slab blank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1637707A (en) * 1924-03-25 1927-08-02 Charlotte T Porter Method of manufacturing crucibles and the like
US4127684A (en) * 1977-12-23 1978-11-28 Ford Motor Company Crack protection method
BE887615A (en) * 1981-02-20 1981-06-15 Nat Forge Europ DEVICE FOR INCLUDING EXPANSION FORCES IN ISOSTATIC PRESSING
DE3343210C1 (en) * 1983-11-30 1985-01-10 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Method and device for the production of compacted shaped bodies
JPH0244640B2 (en) * 1985-11-08 1990-10-04 Tokai Carbon Kk RABAAPURESUSEIKEIHO

Also Published As

Publication number Publication date
FR2654973B1 (en) 1992-02-07
JPH03174945A (en) 1991-07-30
DE69007939T2 (en) 1994-10-20
FR2654973A1 (en) 1991-05-31
US5092023A (en) 1992-03-03
DE69007939D1 (en) 1994-05-11
EP0429367A1 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
EP0296074B1 (en) Method and apparatus for sand casting composite parts with a fibre insert in a light alloy matrix
EP2683673B1 (en) Method for producing a composite including a ceramic matrix
EP3860785B1 (en) Method for manufacturing a part of complex shape by pressure sintering starting from a preform
EP3728162B1 (en) Process for the manufacture of a ceramic matrix composite part
FR2712218A1 (en) Metal or ceramic part with dense outer shell and porous core, as well as its manufacturing process.
JP2634213B2 (en) Method for producing powder molded article by isostatic press
US6315945B1 (en) Method to form dense complex shaped articles
EP0651166B1 (en) Process for preparing connectable sintered parts
EP0429367B1 (en) Method for making articles having a cavity by compression
EP0207861B1 (en) Castings and process for their preparation
EP0472478A1 (en) Method of making bi-material composite bodies by casting
CA1039026A (en) low pressure fast casting plant
CH622857A5 (en)
EP0101948B1 (en) Method of manufacturing a surface composite reinforced member
SE440496B (en) SET TO CONSOLIDATE POWDER IN A CONTAINER THROUGH EXTENSION OF PRESSURE ON THE OUTER OF THE CONTAINER AND APPARATUS FOR IMPLEMENTATION OF THE SET
GB2283042A (en) Method for fabricating long-fibre-reinforced components, e.g. turbine blades
EP0437456B1 (en) Vessel for molten metals, material for such vessel and method for fabricating the material
JP2008531289A (en) Casting process
JP2001524390A (en) Stopper rod
JP4744722B2 (en) Method for producing metal-ceramic composite material having hollow structure
EP0881061B1 (en) Device and process for making ceramic tubes
FR2666038A1 (en) Mould for manufacturing hollow metal components
FR2718279A1 (en) Body shape.
JPH0559162B2 (en)
BE823111A (en) EXTRA-HARD PRODUCTS MANUFACTURING PROCESS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19911104

17Q First examination report despatched

Effective date: 19930617

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940406

REF Corresponds to:

Ref document number: 69007939

Country of ref document: DE

Date of ref document: 19940511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941025

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941111

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

Ref country code: LI

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 90403305.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19941130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

EUG Se: european patent has lapsed

Ref document number: 90403305.7