EP0207861B1 - Castings and process for their preparation - Google Patents

Castings and process for their preparation Download PDF

Info

Publication number
EP0207861B1
EP0207861B1 EP86401430A EP86401430A EP0207861B1 EP 0207861 B1 EP0207861 B1 EP 0207861B1 EP 86401430 A EP86401430 A EP 86401430A EP 86401430 A EP86401430 A EP 86401430A EP 0207861 B1 EP0207861 B1 EP 0207861B1
Authority
EP
European Patent Office
Prior art keywords
reinforcing framework
strengthening member
process according
framework
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86401430A
Other languages
German (de)
French (fr)
Other versions
EP0207861A1 (en
Inventor
Michèle Sabatie
Michel Marée
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0207861A1 publication Critical patent/EP0207861A1/en
Application granted granted Critical
Publication of EP0207861B1 publication Critical patent/EP0207861B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]

Definitions

  • the present invention relates to foundry pieces of metal or light alloy according to the preamble of claim 1, as well as a process allowing their preparation according to the preamble of claim 5.
  • These pieces are of the type constituted by a metal matrix reinforced with fibers and include protuberances such as fixing legs, bosses, etc.
  • One of the solutions used consists in reinforcing the metal matrices by incorporating fibers having strong mechanical characteristics.
  • the most commonly used fibers are fibers of alumina, boron, carbon, silicon carbide, silica, ceramic, etc.
  • a significant gain is obtained on the mechanical characteristics at ambient temperature, with however a low elongation at break, and also a significant gain on the temperature behavior.
  • the introduction of 30% of short silicon carbide fibers leads to a tensile strength at 350 ° C identical to that obtained at 250 ° C with the same unreinforced metal. fiber.
  • the latter can be in the form of long and continuous fibers which can be woven or wound, in the form of short fibers the length of which can vary from a few micrometers to a few centimeters, or alternatively in the form of particles such as polycrystals ground and equiaxed whose diameter is of the order of 2 to 3 micrometers or whiskers in the form of single crystals of diameter 0.1 to 2 micrometers and of length generally less than 100 micrometers.
  • the characteristics obtained and the processing technologies are different depending on the type of fibers used as reinforcement. This is how reinforcements made up of uniformly distributed short fibers give non-oriented average characteristics, but make it possible to obtain billets which can then be transformed by deformation (forging, stamping, spinning, etc.). On the contrary, reinforcements made of continuous fibers prohibit any further transformation which would break these fibers, but consume high characteristics which, moreover, can be oriented in preferred directions.
  • a sheet of fibers can be metallized, then heated and compressed, or else proceed by extruding a profile into which continuous fibers are introduced during spinning.
  • Document FR-A-2 363 636 describes a more efficient and more easily industrializable method, which is the casting of the matrix in a fibrous preform produced beforehand and placed in the mold before casting.
  • the production of such preforms can be done by different techniques.
  • the structures obtained with such methods generally have remarkable properties both at room temperature and at temperatures of the order of 300 to 350 ° C. These mechanical properties are in any case much superior to those of the metallic matrix used.
  • simple parts of constant thickness are obtained, for which the production of fibrous preforms is easy and the corresponding technology well suited.
  • parts with a simple shape have limited use.
  • the field of use of light alloy foundry parts is increased by the gross production of foundry parts comprising, in addition to a simple general surface, areas which have very specific functions: various bosses, fixing lugs, connection areas, etc., ie large local growths.
  • the continuous fiber preform which constitutes the general reinforcement of the casting cannot easily be adapted to ensure the reinforcement of local growths. It follows that, in the final part, the zones not reinforced by fibers have only the performance of the base matrix. They constitute so many weak points and this is all the more annoying that, very often, these growths serve as means of connection or fixing.
  • the object of the present invention is to remedy these drawbacks by proposing foundry parts made up of a metal matrix reinforced by a fibrous reinforcement and having protuberances themselves having good mechanical characteristics.
  • this protrusion comprises a non-metallic reinforcing framework of which at least a part is incorporated into the fibrous reinforcement.
  • solid part used in the present description designates the part of the part having a shape simple enough to be produced in the form of a metal matrix reinforced with fibers, as opposed to the protuberances.
  • the invention applies more particularly to foundry pieces, the metal matrix of which is made of a material chosen from the group consisting of aluminum, magnesium, silicon and titanium.
  • the fibrous reinforcement and the reinforcing framework are made of a refractory material.
  • refractory material means a material whose melting temperature is greater than 1300 ° C. Materials which are particularly suitable for the present use are for example: alumina, boron, silicon, silicon carbide, silicon nitride, aluminum nitride, magnesium oxide, titanium carbide, graphite, beryllium oxide, boron carbide, nickel oxide, nickel bromide, selenium, etc.
  • the method may include an additional step, carried out after step b), constituting to cover at least part of the reinforcing framework with a protective capsule.
  • a protective capsule is preferably made of a material capable of melting during the casting of the metal matrix.
  • the reinforcing frame it can be produced in different ways. For example, one can press particles or fibers mixed with an organic binder or perform multidimensional weaving of fibers.
  • This framework can also be produced by winding a fabric, this fabric itself being able to be positioned on a core of particles or fibers made of the same material as the fabric.
  • the method comprises an additional step, carried out after step b), consisting in opening the fringes by crushing on a part of the fibrous reinforcement.
  • Figure 1 shows a reinforcing frame 2 which, in the particular case described here, has a symmetry of revolution and is constituted by whiskers, particles or short fibers agglomerated by pressing with an organic binder.
  • the frame 2 has an elongated cylindrical recess 4, the role of which will be explained below with reference to FIGS. 2a to 2e.
  • FIG. 2a it can be seen that a sheet of fibers 8 has been placed in contact with a part 6 of the mold, into which the metal matrix will be cast later.
  • Part 6 of the mold can be a cylindrical mandrel if the part to be produced has a generally tubular shape.
  • a pin 10 is stuck in part 6 of the mold and it is surrounded over a small part of its length by the sheet of fibers 8.
  • the next step consists in placing the reinforcement framework 2 by threading it on the pin 10 thanks to the recess 4.
  • the use of a pin such as 10 allows good precision of the positioning of the reinforcing frame 2, the maintenance of the latter being ensured by clamping between its central bore 4 and the spike 10.
  • a layer of fibers 12 is deposited on the fiber sheet 8 so as to at least partially enclose the reinforcing framework as illustrated in FIG. 2c.
  • the mold is then closed so that the layers of fibers 8 and 12 and the reinforcing frame 2 are located between the first element 6 and the second element 14 thereof (FIG. 2d).
  • the part 14 of the mold has a recess 16 which is located in the vicinity of the reinforcing frame 2 the mold is closed.
  • the metal matrix 18 is then poured between the parts 6 and 14 of the mold so that the molten metal fills all the interstices of the sheets of fibers 8 and 12 as well as the reinforcing framework 2. The metal matrix also fills the cavity 16 of the mold.
  • the pin 10 is made of a material having a sufficiently low melting point so that it can melt at the time of the casting of the matrix 18. Once the latter is solidified, the part is extracted from the mold and we can proceed machining if necessary.
  • Figure 2e shows an example of such machining where the part 20 has a bore 19 in an area where there is a protuberance or a local reinforcement 22. The dotted line in Figure 2e shows the place where was initially l reinforcement frame 2.
  • the particles constituting this framework are located in the protrusion 22: the latter is therefore reinforced and has the same mechanical characteristics as the rest of the part 20.
  • the frame 2 which has the same shape as in the case of the previous figures, is coated with a protective capsule 24.
  • the capsule 24a completely covers the framework 2, while, on the left part of the figure, the capsule 24b only partially covers it.
  • the capsule 24 is made of a thin metal (for example 0.1 mm thick) and compatible with the material constituting the framework and the fibers. In addition, this material is capable of melting during the infiltration of the matrix.
  • FIG. 4 illustrates another example in which the reinforcing protuberances are inside a room.
  • the reinforcing frame 2 comprises a body 26 and an anchoring part 30.
  • the body 26 is placed in a cavity 28 of the mold 6 while the anchoring part 30 becomes trapped in the sheet of fibers 8 at the time of its installation.
  • the reinforcing frame 2 may comprise a single anchoring piece 30 as shown in solid lines in FIG. 4, or more if the reinforcing frame is of larger dimensions as shown in dashed lines on the same figure (anchors 30a, 30b, etc.).
  • the framework 2 or at least the anchoring part 30 can be covered with a protective capsule as in the case of FIG. 3.
  • Figures 5 and 6 illustrate a variant similar to that of Figure 4, but in which the part to be produced is of cylindrical shape.
  • the reinforcing frame 2 comprises a body 26 and four anchoring parts 30a to 30d.
  • Figure 7 illustrates the application of the invention to the production of a cylindrical part 32 having at a certain location a bulge 34 to be machined in a predetermined shape.
  • a mandrel 6 is used around which is laid or wound a sheet of fibers 8. Inside this sheet of fibers are arranged one or more reinforcing frames 2 which may possibly be in the form of a continuous framework as in the case of FIGS. 5 and 6.
  • FIG. 8 illustrates a variant in which the reinforcing frame 2 has the same external shape as that of Figure 1 but, instead of being produced by agglomeration of particles with an organic binder, it is produced by three-dimensional weaving of fibers.
  • the fibers 38 are in the x direction perpendicular to the plane of the figure while the fibers 40 and 42 are in the plane of the figure and are oriented in the y and z directions respectively.
  • FIGS. 9a to 9d illustrate the case where the reinforcing frame is produced by winding a fabric. It can be seen in FIG. 9a that this reinforcing frame is in the form of a fringed fabric 44, having notches 46, which are wrapped around itself to give it the shape illustrated in FIG. 9b. The winding is made so that the frame 2 has a substantially conical shape and is protected by a capsule 24 which, in the particular case described here, is a partial capsule. The next step is to spread the fibers or the fringes of the frame 2 by threading it on a pin 10 similar to that used in the variant of FIGS. 2a to 2e.
  • the invention has particularly advantageous advantages since it makes it possible to obtain in a simple manner foundry parts having protuberances or bosses having mechanical characteristics comparable to those of the massive part of the part.
  • the invention is not limited to the only examples which have just been described here, but that many variants can be envisaged without thereby departing from the scope of the invention.
  • the person skilled in the art can adapt, according to each particular case, the shape of the reinforcing framework and the means of fixing it on the fibrous framework in which the matrix is to be cast.
  • the lists which have been given above are not limiting and the invention is applicable whatever the material used to make the part, the fibrous reinforcement or the reinforcing frameworks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

La présente invention concerne des pièces de fonderie en métal ou alliage léger selon le préambule de la revendication 1, ainsi qu'un procédé permettant leur préparation selon le préambule de la revendication 5. Ces pièces sont du type constitué par une matrice métallique renforcée de fibres et comportent des excroissances telles que des pattet de fixation, bossages, etc.The present invention relates to foundry pieces of metal or light alloy according to the preamble of claim 1, as well as a process allowing their preparation according to the preamble of claim 5. These pieces are of the type constituted by a metal matrix reinforced with fibers and include protuberances such as fixing legs, bosses, etc.

Dans la réalisation de pièces coulées en alliage léger, des progrès importants ont permis d'obtenir des caractéristiques mécaniques nettement améliorées. L'une des solutions utilisées consiste à renforcer les matrices métalliques par incorporation de fibres possédant de fortes caractéristiques mécaniques. Les fibres les plus couramment utilisées sont des fibres d'alumine, de bore, de carbone, de carbure de silicium, de silice, de céramique, etc. On obtient un gain important sur les caractéristiques mécaniques à température ambiante, avec toutefois un allongement à la rupture faible, et également un gain sensible sur le comportement en température. C'est ainsi par exemple que, pour un alliage 2024, l'introduction de 30% de fibres courtes de carbure de silicium conduit à une résistance en traction à 350°C identique à celle obtenue à 250°C avec le même métal non renforcé de fibres. Ces dernières peuvent se présenter sous la forme de fibres longues et continues que l'on peut tisser ou enrouler, sous la forme de fibres courtes dont la longueur peut varier de quelques micromètres à quelques centimètres, ou encore sous forme de particules telles que des polycristaux broyés et équiaxes dont le diamètre est de l'ordre de 2 à 3 micromètres ou des trichites sous forme de monocristaux de diamètre 0,1 à 2 micromètres et de longueur généralement inférieure à 100 micromètres.In the production of light alloy castings, significant progress has made it possible to obtain significantly improved mechanical characteristics. One of the solutions used consists in reinforcing the metal matrices by incorporating fibers having strong mechanical characteristics. The most commonly used fibers are fibers of alumina, boron, carbon, silicon carbide, silica, ceramic, etc. A significant gain is obtained on the mechanical characteristics at ambient temperature, with however a low elongation at break, and also a significant gain on the temperature behavior. For example, for an alloy 2024, the introduction of 30% of short silicon carbide fibers leads to a tensile strength at 350 ° C identical to that obtained at 250 ° C with the same unreinforced metal. fiber. The latter can be in the form of long and continuous fibers which can be woven or wound, in the form of short fibers the length of which can vary from a few micrometers to a few centimeters, or alternatively in the form of particles such as polycrystals ground and equiaxed whose diameter is of the order of 2 to 3 micrometers or whiskers in the form of single crystals of diameter 0.1 to 2 micrometers and of length generally less than 100 micrometers.

Les caractéristiques obtenues et les technologies de mise en oeuvre sont différentes selon le type de fibres utilisées comme renfort. C'est ainsi que des renforts constitués de fibres courtes uniformément, réparties donnent des caractéristiques moyennes non orientées, mais permettent d'obtenir des billettes qui pourront ensuite être transformées par déformation (forgeage, matriçage, filage, etc.). Au contraire, des renforts constitués de fibres continues interdisenttoute transformation ultérieure qui casserait ces fibres, mais consuisent à de hautes caractéristiques qui, de plus, peuvent être orientées selon des directions privilégiées.The characteristics obtained and the processing technologies are different depending on the type of fibers used as reinforcement. This is how reinforcements made up of uniformly distributed short fibers give non-oriented average characteristics, but make it possible to obtain billets which can then be transformed by deformation (forging, stamping, spinning, etc.). On the contrary, reinforcements made of continuous fibers prohibit any further transformation which would break these fibers, but consume high characteristics which, moreover, can be oriented in preferred directions.

Il existe actuellement plusieus méthodes pour mettre en place des fibres longues. Par exemple, on peut métalliser une nappe de fibres, puis la chauffer et la comprimer ou encore procéder par extrusion d'un profilé dans lequel on introduit, lors du filage, des fibres continues. Le document FR-A-2 363 636 décrit une méthode plus performante et plus facilement industrialisable, qui est la coulée de la matrice dans une préforme fibreuse réalisée au préalable et mise en place dans le moule avant coulée. La réalisation de telles préformes peut se faire par différentes techniques. On peut, par exemple, superposer des tissus, nappes ou gazes inclinés différemment ou enrouler un certain nombre de filaments sur un noyau si la pièce est de révolution. On peut encore utiliser une préforme tissée en plusieurs dimensions.There are currently several methods for placing long fibers. For example, a sheet of fibers can be metallized, then heated and compressed, or else proceed by extruding a profile into which continuous fibers are introduced during spinning. Document FR-A-2 363 636 describes a more efficient and more easily industrializable method, which is the casting of the matrix in a fibrous preform produced beforehand and placed in the mold before casting. The production of such preforms can be done by different techniques. One can, for example, superimpose differently tilted fabrics, tablecloths or gauzes or wind a certain number of filaments on a core if the part is of revolution. It is also possible to use a woven preform in several dimensions.

Les structures obtenues avec de telles méthodes ont généralement des propriétés remarquables tant à température ambiante qu'à des températures de l'ordre de 300 à 350°C. Ces propriétés mécaniques sont de toute façon bien supérieures à celles de la matrice métallique utilisée. Par ces méthodes, on obtient des pièces simples d'épaisseur constante, pour lesquelles la réalisation des préformes fibreuses est aisée et la technologie correspondante bien adaptée. Cependant, les pièces ayant une forme simple ont une utilisation limitée. On augmente le champ d'utilisation des pièces de fonderie en alliage léger par la production brute de fonderie de pièces comportant, outre une surface générale simple, des zones qui ont des fonctions bien précises: bossages divers, pattes de fixation, zones de liaison, etc., c'est-à-dire d'importantes excroissances locales.The structures obtained with such methods generally have remarkable properties both at room temperature and at temperatures of the order of 300 to 350 ° C. These mechanical properties are in any case much superior to those of the metallic matrix used. By these methods, simple parts of constant thickness are obtained, for which the production of fibrous preforms is easy and the corresponding technology well suited. However, parts with a simple shape have limited use. The field of use of light alloy foundry parts is increased by the gross production of foundry parts comprising, in addition to a simple general surface, areas which have very specific functions: various bosses, fixing lugs, connection areas, etc., ie large local growths.

Avec les méthodes décrites ci-dessus, la préforme en fibres continues qui constitue le renforcement général de la pièce coulée ne peut aisément être adaptée pour assurer l'armature des excroissances locales. Il s'ensuit que, dans la pièce finale, les zones non renforcées par des fibres n'ont que les performances de la matrice de base. Elles constituent autant de points faibles et ceci est d'autant plus gênant que, bien souvent, ces excroissances servent de moyen de liaison ou de fixation.With the methods described above, the continuous fiber preform which constitutes the general reinforcement of the casting cannot easily be adapted to ensure the reinforcement of local growths. It follows that, in the final part, the zones not reinforced by fibers have only the performance of the base matrix. They constitute so many weak points and this is all the more annoying that, very often, these growths serve as means of connection or fixing.

La présente invention a pour but de remédier à ces inconvénients en proposant des pièces de fonderie constituées d'une matrice métallique renforcée par une armature fibreuse et présentant des excroissances ayant elles-même de bonnes caractéristiques mécaniques.The object of the present invention is to remedy these drawbacks by proposing foundry parts made up of a metal matrix reinforced by a fibrous reinforcement and having protuberances themselves having good mechanical characteristics.

Selon la principale caractéristique des pièces de fonderie objet de l'invention, celles-ci comportant une partie massive constituée d'une matrice métallique renforcée par une armature fibreuse et au moins une excroissance, cette excroissance comprend une ossature de renfort non métallique dont au moins une partie est incorporée à l'armature fibreuse.According to the main characteristic of the foundry pieces which are the subject of the invention, these comprising a solid part made up of a metallic matrix reinforced by a fibrous reinforcement and at least one protuberance, this protrusion comprises a non-metallic reinforcing framework of which at least a part is incorporated into the fibrous reinforcement.

L'expression «partie massive» utilisée dans la présente description désigne la partie de la pièce ayant une forme suffisamment simple pour être réalisée sous la forme d'une matrice métallique renforcée de fibres, par opposition aux excroissances.The expression “solid part” used in the present description designates the part of the part having a shape simple enough to be produced in the form of a metal matrix reinforced with fibers, as opposed to the protuberances.

L'invention s'applique plus particulièrement aux pièces de fonderie dont la matrice métallique est réalisée en un matériau choisi dans le groupe constitué par i'aiuminium, le magnésium, le silicium et le titane.The invention applies more particularly to foundry pieces, the metal matrix of which is made of a material chosen from the group consisting of aluminum, magnesium, silicon and titanium.

Selon une autre caractéristique de l'invention, l'armature fibreuse et l'ossature de renfort sont réalisées en un matériau réfractaire. Dans la présente description, on entend par «matériau réfractaire» un matériau dont la température de fusion est supérieure à 1300°C. Des matériaux convenant particulièrement bien pour le présent usage sont par exemple: l'alumine, le bore, le silicium, le carbure de silicium, le nitrure de silicium, le nitrure d'aluminium, l'oxyde de magnésium, le carbure de titane, le graphite, l'oxyde de béryllium, le carbure de bore, l'oxyde de nickel, le bromure de nickel, le sélénium, etc.According to another characteristic of the invention, the fibrous reinforcement and the reinforcing framework are made of a refractory material. In the present description, the term "refractory material" means a material whose melting temperature is greater than 1300 ° C. Materials which are particularly suitable for the present use are for example: alumina, boron, silicon, silicon carbide, silicon nitride, aluminum nitride, magnesium oxide, titanium carbide, graphite, beryllium oxide, boron carbide, nickel oxide, nickel bromide, selenium, etc.

L'invention a également pour objet un procédé de préparation de telles pièces de fonderie. Selon la principale caractéristique de ce procédé, celui-ci comporte les étapes suivantes consistant à:

  • a) réaliser partiellement l'armature fibreuse sur un support constituant le poinçon du moule,
  • b) réaliser à part une ossature de renfort,
  • c) incorporer au moins une partie de cette ossature de renfort à l'armature fibreuse,
  • d ) terminer l'armature fibreuse et la placer dans le moule, et
  • e) couler la matrice métallique dans le moule fermé de manière à remplir complètement tous les espaces internes de l'armature fibreuse et de l'ossature de renfort.
The invention also relates to a process for the preparation of such foundry parts. According to the prin characteristic of this process, it includes the following steps:
  • a) partially producing the fibrous reinforcement on a support constituting the punch of the mold,
  • b) make a reinforcing frame apart,
  • c) incorporating at least part of this reinforcing framework into the fibrous framework,
  • d) finish the fibrous reinforcement and place it in the mold, and
  • e) pour the metal matrix into the closed mold so as to completely fill all the internal spaces of the fibrous reinforcement and of the reinforcement framework.

Dans certains cas, le procédé peut comporter une étape supplémentaire, effectuée après l'étape b), constituant à recouvrier au moins une partie de l'ossature de renfort par une capsule de protection. Cette dernière est de préférence réalisée en un matériau apte à fondre lors de la coulée de la matrice métallique.In certain cases, the method may include an additional step, carried out after step b), constituting to cover at least part of the reinforcing framework with a protective capsule. The latter is preferably made of a material capable of melting during the casting of the metal matrix.

Quant à l'ossature de renfort, elle peut être réalisée de différentes manières. Par exemple, on peut presser des particules ou des fibres mélangées à un liant organique ou réaliser un tissage multidimensionnel de fibres. On peut encore réaliser cette ossature par enroulement d'un tissu, ce tissu pouvant lui-même être positionné sur un noyau de particules ou de fibres réalisées dans le même matériau que le tissu.As for the reinforcing frame, it can be produced in different ways. For example, one can press particles or fibers mixed with an organic binder or perform multidimensional weaving of fibers. This framework can also be produced by winding a fabric, this fabric itself being able to be positioned on a core of particles or fibers made of the same material as the fabric.

Dans le cas où l'ossature de renfort comporte des franges, le procédé comporte une étape supplémentaire, effectuée après l'étape b), consistant à épanouir les franges par écrasement sur une partie de l'armature fibreuse.In the case where the reinforcing framework comprises fringes, the method comprises an additional step, carried out after step b), consisting in opening the fringes by crushing on a part of the fibrous reinforcement.

Enfin, dans certains cas, il peut être avantageux d'utiliser un picot fusible incorporé à l'armature fibreuse sur lequel on enfile l'ossature de renfort au cours de l'étape c).Finally, in certain cases, it may be advantageous to use a fusible spike incorporated in the fibrous reinforcement on which the reinforcing framework is threaded during step c).

L'invention apparaîtra mieux à la lecture de la description qui va suivre, donnée à titre d'exemple purement illustratif et nullement limitatif, en référence aux dessins annexés, dans lesquels:

  • - la figure 1 est une vue schématique en coupe d'une ossature de renfort,
  • - les figures 2a à 2e illustrent les différentes étapes de réalisation d'une pièce conforme à l'invention,
  • - la figure 3 est une vue schématique en coupe montrant comment on peut protéger une ossature de renfort à l'aide d'une capsule de protection,
  • - la figure 4 est une vue schématique en coupe montrant comment on place l'ossature de renfort dans la masse de fibres dans le cas d'une pièce plane,
  • - la figure 5 est une vue semblable à la figure 4 mais dans le cas d'une pièce cylindrique,
  • - la figure 6 est une vue en coupe suivant la ligne VI-VI de la figure 5,
  • - la figure 7 est une vue schématique en coupe montrant comment on place l'ossature de renfort dans une pièce cylindrique devant être usinée au niveau de cette ossature,
  • - la figure 8 est une vue schématique en coupe d'une ossature de renfort obtenue par tissage tridimensionnel de fibres, et
  • - les figures 9a à 9d sont des vues schématiques montrant les différentes étapes de réalisation d'une pièce conforme à l'invention lorsque l'ossature de renfort est réalisée par enroulement d'un tissu.
The invention will appear better on reading the description which follows, given by way of purely illustrative and in no way limitative example, with reference to the appended drawings, in which:
  • FIG. 1 is a schematic sectional view of a reinforcing frame,
  • FIGS. 2a to 2e illustrate the various stages in the production of a part in accordance with the invention,
  • FIG. 3 is a schematic sectional view showing how a reinforcing frame can be protected using a protective capsule,
  • FIG. 4 is a schematic sectional view showing how the reinforcing framework is placed in the mass of fibers in the case of a flat part,
  • FIG. 5 is a view similar to FIG. 4 but in the case of a cylindrical part,
  • FIG. 6 is a sectional view along line VI-VI of FIG. 5,
  • FIG. 7 is a schematic sectional view showing how the reinforcing frame is placed in a cylindrical part to be machined at this frame,
  • FIG. 8 is a schematic sectional view of a reinforcing frame obtained by three-dimensional weaving of fibers, and
  • - Figures 9a to 9d are schematic views showing the different stages of production of a part according to the invention when the reinforcing frame is produced by winding a fabric.

La figure 1 représente une ossature de renfort 2 qui, dans le cas particulier décrit ici, présente une symétrie de révolution et est constituée par des trichites, des particules ou des fibres courtes agglomérées par pressage avec un liant organique. L'ossature 2 présente un évidement cylindrique allongé 4, dont le rôle va être explique ci-dessous en référence aux figures 2a à 2e.Figure 1 shows a reinforcing frame 2 which, in the particular case described here, has a symmetry of revolution and is constituted by whiskers, particles or short fibers agglomerated by pressing with an organic binder. The frame 2 has an elongated cylindrical recess 4, the role of which will be explained below with reference to FIGS. 2a to 2e.

Ces figures illustrent les différentes étapes de réalisation d'une pièce conforme à l'invention. Sur la figure 2a, on voit que l'on a placé en contact avec une partie 6 du moule une nappe de fibres 8, dans laquelle sera coulée ultérieurement la matrice métallique. La partie 6 du moule peut être un mandrin cylindrique si la pièce à réaliser a une forme générale tubulaire. Un picot 10 est fiché dans la partie 6 du moule et il est entouré sur une petite partie de sa longueur par la nappe de fibres 8. L'étape suivante consiste à placer l'ossature de renfort 2 en l'enfilant sur le picot 10 grâce à l'évidement 4. L'utilisation d'un picot tel que 10 permet une bonne précision de la mise en place de l'ossature de renfort 2, le maintien de cette dernière étant assuré par serrage entre son alésage central 4 et le picot 10. On dépose ensuite sur la nappe de fibres 8 une autre nappe de fibres 1 2 de manière à enserrer au moins partiellement l'ossature de renfort comme cela est illustré à la figure 2c. On ferme ensuite le moule de sorte que les nappes de fibres 8 et 12 et l'ossature de renfort 2 se trouvent entre le premier élément 6 et le deuxième élément 14 de celui-ci (figure 2d). On voit sur cette figure que la partie 14 du moule comporte un évidement 16 qui se trouve au voisinage de l'ossature de renfort 2 le moule est fermé. On coule ensuite la matrice métallique 18 entre les parties 6 et 14 du moule de sorte que le métal en fusion comble tous les interstices des nappes de fibres 8 et 12 ainsi que de l'ossature de renfort 2. La matrice métallique remplit également la cavité 16 du moule. Le picot 10 est réalisé en un matériau ayant un point de fusion suffisamment bas pour qu'il puisse fondre au moment de la coulée de la matrice 18. Une fois que celle-ci est solidifiée, la pièce est extraite du moule et on peut procéder à un usinage s'il y a lieu. La figure 2e montre un exemple d'un tel usinage où la pièce 20 comporte un alésage 19 dans une zone où se trouve une excroissance ou un renfort local 22. La ligne en pointillé de la figure 2e montre l'endroit où se trouvait initialement l'ossature de renfort 2.These figures illustrate the various stages in the production of a part in accordance with the invention. In FIG. 2a, it can be seen that a sheet of fibers 8 has been placed in contact with a part 6 of the mold, into which the metal matrix will be cast later. Part 6 of the mold can be a cylindrical mandrel if the part to be produced has a generally tubular shape. A pin 10 is stuck in part 6 of the mold and it is surrounded over a small part of its length by the sheet of fibers 8. The next step consists in placing the reinforcement framework 2 by threading it on the pin 10 thanks to the recess 4. The use of a pin such as 10 allows good precision of the positioning of the reinforcing frame 2, the maintenance of the latter being ensured by clamping between its central bore 4 and the spike 10. Next, a layer of fibers 12 is deposited on the fiber sheet 8 so as to at least partially enclose the reinforcing framework as illustrated in FIG. 2c. The mold is then closed so that the layers of fibers 8 and 12 and the reinforcing frame 2 are located between the first element 6 and the second element 14 thereof (FIG. 2d). We see in this figure that the part 14 of the mold has a recess 16 which is located in the vicinity of the reinforcing frame 2 the mold is closed. The metal matrix 18 is then poured between the parts 6 and 14 of the mold so that the molten metal fills all the interstices of the sheets of fibers 8 and 12 as well as the reinforcing framework 2. The metal matrix also fills the cavity 16 of the mold. The pin 10 is made of a material having a sufficiently low melting point so that it can melt at the time of the casting of the matrix 18. Once the latter is solidified, the part is extracted from the mold and we can proceed machining if necessary. Figure 2e shows an example of such machining where the part 20 has a bore 19 in an area where there is a protuberance or a local reinforcement 22. The dotted line in Figure 2e shows the place where was initially l reinforcement frame 2.

On voit que, dans le cas particulier de la figure 2e, les particules constituant cette ossature se trouvent dans l'excroissance 22: celle-ci est donc renforcée et présente les mêmes caractéristiques mécaniques que le reste de la pièce 20.It can be seen that, in the particular case of FIG. 2e, the particles constituting this framework are located in the protrusion 22: the latter is therefore reinforced and has the same mechanical characteristics as the rest of the part 20.

Il se peut que, lorsqu'on met en place la nappe de fibres 12 de la figure 2c, ces fibres soient soumises à des tensions qui risquent de détériorer la surface de l'ossature 2, qui est assez friable. Afin de protéger celle-ci, il peut être avantageux de la revêtir d'une capsule de protection comme cela est illustré à la figure 3.It is possible that, when the ply of fibers 12 of FIG. 2c is put in place, these fibers are subjected to tensions which risk damaging the surface of the framework 2, which is fairly brittle. In order to protect it, it may be advantageous to coat it with a protective capsule as illustrated in FIG. 3.

Sur cette figure, on voit que l'ossature 2, qui a la même forme que dans le cas des figures précédentes, est revêtue d'une capsule de protection 24. Sur la partie droite de la figure, la capsule 24a recouvre totalement l'ossature 2, tandis que, sur la partie gauche de la figure, la capsule 24b ne la recouvre que partiellement. La capsule 24 est réalisée en un métal mince (par exemple 0,1 mm d'épaisseur) et compatible avec la matière constituant l'ossature et les fibres. De plus, ce matériau est apte à fondre lors de l'infiltration de la matrice.In this figure, we see that the frame 2, which has the same shape as in the case of the previous figures, is coated with a protective capsule 24. On the right part of the figure, the capsule 24a completely covers the framework 2, while, on the left part of the figure, the capsule 24b only partially covers it. The capsule 24 is made of a thin metal (for example 0.1 mm thick) and compatible with the material constituting the framework and the fibers. In addition, this material is capable of melting during the infiltration of the matrix.

La figure 4 illustre un autre exemple dans lequel les excroissances- de renfort sont à l'intérieur d'une pièce. Dans ce cas, l'ossature de renfort 2 comporte un corps 26 et une pièce d'ancrage 30. Le corps 26 est placé dans une cavité 28 du moule 6 tandis que la pièce d'ancrage 30 devient prisonnière de la nappe de fibres 8 au moment de la mise en place de celle-ci. L'ossature de renfort 2 peut comporter une seule pièce d'ancrage 30 comme cela est représenté en traits pleins sur la figure 4, ou plusieurs si l'ossature de renfort est de plus grandes dimensions comme cela est représenté en traits mixtes sur la même figure (pièces d'ancrage 30a, 30b, etc.). Bien entendu, dans ce cas également, l'ossature 2 ou au moins la pièce d'ancrage 30 peuvent être recouver- tes d'une capsule de protection comme dans le cas de la figure 3.FIG. 4 illustrates another example in which the reinforcing protuberances are inside a room. In this case, the reinforcing frame 2 comprises a body 26 and an anchoring part 30. The body 26 is placed in a cavity 28 of the mold 6 while the anchoring part 30 becomes trapped in the sheet of fibers 8 at the time of its installation. The reinforcing frame 2 may comprise a single anchoring piece 30 as shown in solid lines in FIG. 4, or more if the reinforcing frame is of larger dimensions as shown in dashed lines on the same figure (anchors 30a, 30b, etc.). Of course, in this case also, the framework 2 or at least the anchoring part 30 can be covered with a protective capsule as in the case of FIG. 3.

Les figures 5 et 6 illustrent une variante semblable à celle de la figure 4, mais dans laquelle la pièce à réaliser est de forme cylindrique. Dans le cas particulier décrit ici, l'ossature de renfort 2 comporte un corps 26 et quatre pièces d'ancrage 30a à 30d.Figures 5 and 6 illustrate a variant similar to that of Figure 4, but in which the part to be produced is of cylindrical shape. In the particular case described here, the reinforcing frame 2 comprises a body 26 and four anchoring parts 30a to 30d.

La figure 7 illustre l'application de l'invention à la réalisation d'une pièce cylindrique 32 présentant à un certain endroit un renflement 34 devant être usiné suivant une forme prédéterminée. Comme précédemment, on utilise un mandrin 6 autour duquel est disposée ou enroulée une nappe de fibres 8. A l'intérieur de cette nappe de fibres sont disposées une ou plusieurs ossatures de renfort 2 qui peuvent éven- tuellementse présenter sous la forme d'une ossature continue comme dans le cas des figures 5 et 6.Figure 7 illustrates the application of the invention to the production of a cylindrical part 32 having at a certain location a bulge 34 to be machined in a predetermined shape. As before, a mandrel 6 is used around which is laid or wound a sheet of fibers 8. Inside this sheet of fibers are arranged one or more reinforcing frames 2 which may possibly be in the form of a continuous framework as in the case of FIGS. 5 and 6.

On procède comme précédemment en mettant l'ensemble dans un moule, puis en coulant la matrice métallique et en laissant solidifier cette dernière. On termine par un usinage suivant la ligne 36 marquée en pointillés sur la figure 7: l'ossature 2 se trouvant au niveau du renflement 34, celui-ci est renforcé et présente des caractéristiques mécaniques semblables à celles du reste de la pièce.We proceed as above by putting the assembly in a mold, then pouring the metal matrix and letting it solidify. We finish with a machining along the line 36 marked in dotted lines in Figure 7: the frame 2 being at the bulge 34, it is reinforced and has mechanical characteristics similar to those of the rest of the part.

La vue en coupe de la figure 8 illustre une variante dans laquelle l'ossature de renfort 2 a la même forme extérieure que celle de la figure 1 mais, au lieu d'être réalisée par agglomération de particules avec un liant organique, elle est réalisée par tissage tridimensionnel de fibres. Les fibrestelles que 38 se trouvent dans la direction x perpendiculaire au plan de la figure tandis que les fibres 40 et 42 se trouvent dans le plan de la figure et sont orientées suivant les directions y et z respectivement.The sectional view of Figure 8 illustrates a variant in which the reinforcing frame 2 has the same external shape as that of Figure 1 but, instead of being produced by agglomeration of particles with an organic binder, it is produced by three-dimensional weaving of fibers. The fibers 38 are in the x direction perpendicular to the plane of the figure while the fibers 40 and 42 are in the plane of the figure and are oriented in the y and z directions respectively.

Les figures 9a à 9d illustrent le cas où l'ossature de renfort est réalisée par enroulement d'un tissu. On voit sur la figure 9a que cette ossature de renfort se présente sous la forme d'un tissu frangé 44, présentant des échancrures 46, qu'on enroue sur lui-même pour lui donner la forme illustrée à la figure 9b. L'enroulement est fait de sorte que l'ossature 2 présente une forme sensiblement conique et on le protège par une capsule 24 qui, dans le cas particulier décrit ici, est une capsule partielle. L'étape suivante consiste à épanouir les fibres ou les franges de l'ossature 2 en enfilant celle-ci sur un picot 10 semblable à celui utilisé dans la variante des figures 2a à 2e. Cet épanouissement peut éventuellement être facilité par la mise en place d'un noyau 48 de forme sensiblement conique et réalisé dans le même matériau que l'ossature 2 de la figure 1. Le cône 48 est lui-même centré sur le picot 10. On met ensuite enplace une deuxième nappe de fibres 12 (figure 9d) de manière à enrober au moins partiellement l'ossature 2. Puis on ferme le moule et on coule la matrice comme cela a été décrit précédemment.Figures 9a to 9d illustrate the case where the reinforcing frame is produced by winding a fabric. It can be seen in FIG. 9a that this reinforcing frame is in the form of a fringed fabric 44, having notches 46, which are wrapped around itself to give it the shape illustrated in FIG. 9b. The winding is made so that the frame 2 has a substantially conical shape and is protected by a capsule 24 which, in the particular case described here, is a partial capsule. The next step is to spread the fibers or the fringes of the frame 2 by threading it on a pin 10 similar to that used in the variant of FIGS. 2a to 2e. This development can optionally be facilitated by the establishment of a core 48 of substantially conical shape and made of the same material as the frame 2 of Figure 1. The cone 48 is itself centered on the pin 10. We then sets up a second layer of fibers 12 (FIG. 9d) so as to at least partially coat the framework 2. Then the mold is closed and the matrix is poured as described above.

L'invention présente des avantages particulièrement intéressants puisqu'elle permet d'obtenir d'une manière simple des pièces de fonderie présentant des excroissances ou bossages ayant des caractéristiques mécaniques comparables à celles de la partie massive de la pièce. Enfin, il est bien entendu que l'invention ne se limite pas aux seuls exemples qui viennent d'être décrits ici, mais qu'on peut envisager de nombreuses variantes sans sortir pour autant du cadre de l'invention. C'est ainsi que l'homme de l'art pourra adapter suivant chaque cas particulier la forme de l'ossature de renfort et le moyen de fixer celle-ci sur l'armature fibreuse dans laquelle doit être coulée la matrice. Quant aux matériaux possibles, les listes qui ont été données ci-dessus ne sont pas limitatives et l'invention est applicable quel que soit le matériau utilisé pour réaliser la pièce, l'armature fibreuse ou les ossatures de renfort.The invention has particularly advantageous advantages since it makes it possible to obtain in a simple manner foundry parts having protuberances or bosses having mechanical characteristics comparable to those of the massive part of the part. Finally, it is understood that the invention is not limited to the only examples which have just been described here, but that many variants can be envisaged without thereby departing from the scope of the invention. Thus the person skilled in the art can adapt, according to each particular case, the shape of the reinforcing framework and the means of fixing it on the fibrous framework in which the matrix is to be cast. As for possible materials, the lists which have been given above are not limiting and the invention is applicable whatever the material used to make the part, the fibrous reinforcement or the reinforcing frameworks.

Claims (13)

1. Casting having a solid part constituted by a metal matrix (18) reinforced by a fibrous strengthening member (12) and at least one metal outgrowth (22), characterized in that said outgrowth (22) comprises a non-metallic reinforcing framework (2), whereof at least part is incorporated into the fibrous strengthening member (12).
2. Casting according to claim 1, characterized in that the metal matrix (18) is made from a material chosen in the group constituted by aluminium, magnesium, silicon and titanium.
3. Casting according to either of the claims 1 and 2, characterized in that the fibrous strengthening member (12) is made from a refractory material.
4. Casting according to any one of the claims 1 to 3, characterized in that the reinforcing framework (2) is made from a refractory material.
5. Process for the preparation of a casting incorporating a solid part constituted by a metal matrix (18) reinforced by a fibrous strengthening member (12) and at least one metal outgrowth (22), characterized in that it comprises the following stages consisting of:
a) partly producing the fibrous strengthening member (12) on a support constituting the die of the mould (6),
b) separately producing a reinforcing framework (2),
c) incorporating at least part of the reinforcing framework (2) into the fibrous strengthening member (12),
d) placing the fibrous strengthening member (12) in the mould (14), and
e) casting the metal matrix (18) in the closed mould (6, 14), so as to completely fill all the spaces within the fibrous strengthening member (12) and the reinforcing framework (2).
6. Process according to claim 5, characterized in that it comprises a supplementary stage, performed after stage b) and which consists of at least partly covering the reinforcing framework (2) with a protective cap (24).
7. Process according to claim 6, characterized in that the protective cap (24) is made from a material able to melt during the casting of the metal matrix (18).
8. Process according to anyone of the claims 5 to 7, characterized in that the reinforcing framework (2) is produced by the compression of particles or fibres with an organic binder.
9. Process according to anyone of the claims 5 to 7, characterized in that the reinforcing framework (2) is produced by the multidimensional weaving of fibres.
10. Process according to any one of the claims 5 to 7, characterized in that the reinforcing framework (2) is produced by the winding of a fabric.
11. Process according to claim 10, characterized in that the fabric (44) is positioned on a particle or fibre core made from the same material as the fabric.
12. Process according to anyone of the claims 5 to 11, characterized in that the reinforcing framework has fringes and includes a supplementary stage, performed after stage b) and which consists of spreading the fringes by flattening over part of the fibrous framework (8).
13. Process according to any one of the claims 5 to 12, characterized in that use is made of a meltable pin (10) incorporated into the fibrous strengthening member (8) and onto which is threaded the reinforcing framework (2) during stage c).
EP86401430A 1985-07-04 1986-06-27 Castings and process for their preparation Expired EP0207861B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8510221 1985-07-04
FR8510221A FR2584323B1 (en) 1985-07-04 1985-07-04 FOUNDRY PARTS AND THEIR MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
EP0207861A1 EP0207861A1 (en) 1987-01-07
EP0207861B1 true EP0207861B1 (en) 1988-12-07

Family

ID=9320967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401430A Expired EP0207861B1 (en) 1985-07-04 1986-06-27 Castings and process for their preparation

Country Status (7)

Country Link
US (2) US4669523A (en)
EP (1) EP0207861B1 (en)
JP (1) JPH07102445B2 (en)
CA (1) CA1251322A (en)
DE (1) DE3661343D1 (en)
ES (1) ES2000459A6 (en)
FR (1) FR2584323B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013304A1 (en) * 1984-03-15 1993-07-08 Norio Nakazawa Variable capacity turbo-supercharger
FR2584323B1 (en) * 1985-07-04 1987-11-20 Aerospatiale FOUNDRY PARTS AND THEIR MANUFACTURING METHOD
EP0280830A1 (en) * 1987-03-02 1988-09-07 Battelle Memorial Institute Method for producing metal or alloy casting, composites reinforced with fibrous or particulate materials
JPH01287242A (en) * 1988-05-11 1989-11-17 Hitachi Ltd Surface modified parts and its manufacture
US5172746A (en) * 1988-10-17 1992-12-22 Corwin John M Method of producing reinforced composite materials
US5199481A (en) * 1988-10-17 1993-04-06 Chrysler Corp Method of producing reinforced composite materials
US4932099A (en) * 1988-10-17 1990-06-12 Chrysler Corporation Method of producing reinforced composite materials
US4986231A (en) * 1989-05-04 1991-01-22 Outboard Marine Corporation Piston with graphite fiber mesh
US5207263A (en) * 1989-12-26 1993-05-04 Bp America Inc. VLS silicon carbide whisker reinforced metal matrix composites
JPH04224198A (en) * 1990-12-26 1992-08-13 Tokai Carbon Co Ltd Production of mmc preform
US5439750A (en) * 1993-06-15 1995-08-08 General Electric Company Titanium metal matrix composite inserts for stiffening turbine engine components
US5407495A (en) * 1993-09-22 1995-04-18 Board Of Regents Of The University Of Wisconsin System On Behalf Of The University Of Wisconsin-Milwaukee Thermal management of fibers and particles in composites
JP3869255B2 (en) * 2001-06-14 2007-01-17 富士通株式会社 Metal molded body manufacturing method and metal molded body manufactured thereby
DE60221236T2 (en) 2001-09-12 2008-04-10 Lockheed Martin Corporation WOVEN PRESENT FOR CONSTRUCTION CONNECTION

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484434A (en) * 1924-02-19 Eeake-shoe mold
SU522900A1 (en) * 1975-03-18 1976-07-30 Физико-технический институт АН Белорусской ССР The method of manufacture of composite material
JPS6041136B2 (en) * 1976-09-01 1985-09-14 財団法人特殊無機材料研究所 Method for manufacturing silicon carbide fiber reinforced light metal composite material
US4216682A (en) * 1977-08-23 1980-08-12 Honda Giken Kogyo Kabushiki Kaisha Fiber-reinforced light alloy cast article
US4318438A (en) * 1977-09-27 1982-03-09 Honda Giken Kogyo Kabushiki Kaisha Method for casting a fiber-reinforced composite article
FR2419498A1 (en) * 1978-03-08 1979-10-05 Merlin Gerin CAST COMPOSITE SHIELD
JPS57121868A (en) * 1981-01-22 1982-07-29 Mazda Motor Corp Aluminum composite body and its production
JPS5829564A (en) * 1981-08-17 1983-02-21 Mazda Motor Corp Production of fiber reinforced composite body
JPS5974247A (en) * 1982-10-20 1984-04-26 Toyota Motor Corp Fiber reinforced metallic composite member and its production
JPS5996236A (en) * 1982-11-26 1984-06-02 Toyota Motor Corp Production of composite material
JPS59215982A (en) * 1983-05-20 1984-12-05 Nippon Piston Ring Co Ltd Rotor for rotary compressor and its production method
JPS6046860A (en) * 1983-08-24 1985-03-13 Kawasaki Heavy Ind Ltd Production of casting consisting of fiber reinforced composite metal
JPS6092437A (en) * 1983-10-27 1985-05-24 Nippon Denso Co Ltd Production of fiber reinforced metallic composite material
FR2584323B1 (en) * 1985-07-04 1987-11-20 Aerospatiale FOUNDRY PARTS AND THEIR MANUFACTURING METHOD

Also Published As

Publication number Publication date
JPH07102445B2 (en) 1995-11-08
JPS6264468A (en) 1987-03-23
FR2584323B1 (en) 1987-11-20
ES2000459A6 (en) 1988-03-01
US4669523A (en) 1987-06-02
CA1251322A (en) 1989-03-21
FR2584323A1 (en) 1987-01-09
DE3661343D1 (en) 1989-01-12
US4755437A (en) 1988-07-05
EP0207861A1 (en) 1987-01-07

Similar Documents

Publication Publication Date Title
EP0207861B1 (en) Castings and process for their preparation
EP2315673B1 (en) Decorative item produced by inlaying
FR2513153A1 (en) PISTON FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR MANUFACTURING THE SAME
FR2527595A1 (en) TRANSFER MOLDING PROCESS FOR PRODUCING FIBER REINFORCED GLASS ARRAY COMPOSITE COMPOSITE ARTICLES
ITMI942341A1 (en) BRAKE DISC AND METHOD FOR ITS PRODUCTION
FR2497843A1 (en) METHOD FOR MANUFACTURING FIBER-REINFORCED METAL COMPOSITE
EP3302874B1 (en) Method for manufacturing a tial blade of a turbine engine
FR2502036A1 (en) PROCESS FOR PRODUCING A MECHANICAL PART OF A FIBROUS STRENGTH BODY INTEGRATED WITH METALLIC MATERIAL, AND MECHANICAL PART OBTAINED, CONNECTING ROD
CA2734083A1 (en) Method for making a part made of a composite material with a metal matrix
EP2395125A1 (en) Method of manufacturing a coated amorphous metal part
FR2699933A1 (en) Cylinder block and its manufacturing process
FR2713663A1 (en) Fabrication of axisymmetrical composite components
CA2921534C (en) Composite reinforcement insert and manufacturing method
EP0280592A2 (en) Process for applying a porous layer to a substrate, and use of this process for manufacturing a prosthesis
FR2665383A1 (en) PROCESS FOR OBTAINING MOLDING BIMATERIAL PARTS.
FR2673938A1 (en) Fibre/ceramic matrix composite and process for reinforcing this composite
EP4076794A1 (en) Method for manufacturing a composite turbomachine bladed disk (blisk) with ceramic reinforcement
FR2567807A1 (en) Process for the production of components made from composite materials and device for the implementation of this process and components obtained by this process
EP2158986A1 (en) Lost-wax pattern casting process and lost-wax pattern for this process
FR3104042A1 (en) Manufacturing process of a hollow part using a core
KR100497189B1 (en) Fabrication method of metal matrix composite
JP2800025B2 (en) Manufacturing method of composite material
JPH10323747A (en) Manufacture of alloy of aluminum and silicon
FR2675063A1 (en) Method for producing composite metallic components with metallic reinforcements
EP0429367B1 (en) Method for making articles having a cavity by compression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19870612

17Q First examination report despatched

Effective date: 19880216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3661343

Country of ref document: DE

Date of ref document: 19890112

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86401430.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990607

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990615

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990617

Year of fee payment: 14

Ref country code: BE

Payment date: 19990617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990630

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990712

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 20000630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86401430.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050627